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Abstract: Due to its perennial nature and size, the acquisition of phenotypic data in 

grapevine research is almost exclusively restricted to the field and done by visual estimation. 

This kind of evaluation procedure is limited by time, cost and the subjectivity of records. As a 

consequence, objectivity, automation and more precision of phenotypic data evaluation are 

needed to increase the number of samples, manage grapevine repositories, enable genetic 

research of new phenotypic traits and, therefore, increase the efficiency in plant research. In 

the present study, an automated field phenotyping pipeline was setup and applied in a plot 
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of genetic resources. The application of the PHENObot allows image acquisition from at least 

250 individual grapevines per hour directly in the field without user interaction. Data 

management is handled by a database (IMAGEdata). The automatic image analysis tool 

BIVcolor (Berries in Vineyards-color) permitted the collection of precise phenotypic data of 

two important fruit traits, berry size and color, within a large set of plants. The application 

of the PHENObot represents an automated tool for high-throughput sampling of image data 

in the field. The automated analysis of these images facilitates the generation of objective 

and precise phenotypic data on a larger scale. 

Keywords: robot; geoinformation; high-throughput analysis; image acquisition; plant 

phenotyping; grapevine breeding; Vitis vinifera 

 

1. Introduction 

With the fast development of genotyping methods to support grapevine breeding based on SSR 

(Simple Sequence Repeats) [1,2] or SNP (Single Nucleotide Polymorphism) analyses, including next 

generation DNA sequencing [3], genotyping efficiency has been greatly improved and costs have been 

reduced contemporaneously. However, plant phenotyping methods have only slowly improved during the 

last few decades, becoming now a major bottleneck. Therefore, the lack of sufficient phenotypic data 

and phenotyping methods constrains the possibility to reveal the genetics of quantitative traits, such as 

yield, growth and adaption to abiotic or biotic stresses. The development and implementation of  

high-throughput phenotyping platforms is therefore a key tool to improve the efficiency of grapevine (Vitis 

vinifera L. subsp. vinifera) or, more generally, plant breeding. In recent years, much effort has been 

made to build up such platforms, which allow the assessment of large quantities of phenotypic data under 

controlled environments [4–9]. Although these systems enable a detailed non-invasive plant assessment 

throughout the plant life cycle under controlled conditions, they neglect information about the  

genotype-environment interactions and do not take horticultural or viticultural plants into account. 

However, grapevine, for example, as a rather large perennial plant, needs to be evaluated directly in the 

field. Several studies of the implementation of new techniques for an improved management of vineyards 

in practical viticulture [10–14] have been conducted in recent years. Yield estimation is one of the most 

important traits in precision viticulture due to annual and spatial variations. The published studies aimed 

to improve yield estimation and forecasting by detecting bunches of grapes, berries [15–18] or the number 

of inflorescences [19] in images. Ground-based sensor data used in precision viticulture are than either 

recoded from a constant distance to the canopy [16,19–21], mounted to a tractor [10–12], truck  

crane [22] or include modified vehicles [13,15,23] equipped with global positioning systems (GPS) 

devices [18,24,25]. Another approach is the application of a field phenotyping robot. Such systems have 

already been introduced for application in maize [26] and small grain cereals [27]. A robot application for 

viticulture was suggested by Longo et al. [28]. The U-Go (Unmanned Ground Outdoor) robot was 

developed as a multipurpose vehicle with the aim of facilitating work during the season (harvesting, 

pruning, transportation of bins) [28]. Furthermore, the opportunity to be equipped with a modular remote 

sprayer [29] is given. Its technical specification allows remote control or autonomous motion using GPS 
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waypoints [28]. Nonetheless, all of these studies focus mainly on vineyard management, site-specific 

information to improve crop load, water or the health status of the considered plot. In contrast, grapevine 

breeding aims at the phenotyping of single grapevines, whereby genetic resources and large sets of 

breeding material need to be screened. That implies that in one experimental field plot, each plant can be 

a different genotype, showing its distinct phenotype, which needs to be assessed individually with high 

precision. Not only the resolution of phenotypic data towards one single grapevine may differ, also the 

variation of traits within breeding material is considerably higher than in commercial vineyards. Important 

phenotypic traits in grapevine breeding are the detection of fruit parameters, e.g., the berry size and color of 

berries. Current assessment of phenotypes in breeding programs relies largely on visual estimations, using 

the BBCH (phenological development stages of a plant; stands for Biologische Bundesanstalt, 

Bundessortenamt und CHemische Industrie) scale [30] or OIV (International Organization of Vine and 

Wine) descriptors [31]. These systems are laborious, time-consuming and, therefore, expensive. The data 

obtained are subjective and can vary significantly when evaluated by different persons. The biggest 

limitation, however, is the needed simultaneous screening of vines from several hectares of experimental 

vineyards, which limits a detailed evaluation of traits to a rather small number of breeding strains. The 

application of non-invasive, high-throughput sensor technologies is required to increase the efficiency 

of grapevine breeding by increasing the phenotyping efficiency (number of plants per time), improving 

the quality of phenotypic data recording and reducing the error variation. Such new methods 

progressively increase the amount of data that needs to be handled. 

First steps towards a high-throughput phenotyping pipeline in grapevine breeding have been introduced 

by Herzog et al. [32]. The study implemented a Prototype Image Acquisition System (PIAS) for  

semi-automated capturing of geo-referenced images and a semi-automated image analysis tool to 

phenotype berry size. An automated phenotyping platform in grapevine breeding is needed to screen for 

phenotypic traits on a single-plant-level in a reasonable time, unlike the application in precision farming, 

whereas the overall appearance of a plot or at least single areas of a plot are of greatest interest. 

Here, we describe the setup of an updated and expanded phenotyping pipeline involving automated data 

acquisition in the field, automated data management and data analysis. The challenges of this pipeline are 

the combination of: (1) automated simultaneous triggering of all cameras at a predefined position in the field; 

(2) automated acquisition of geo-referenced images; (3) data management via a database; and (4) automated 

image analysis for objective and precise phenotyping of the berry size and color. Moreover, we demonstrate 

the application of the pipeline in the grapevine repository at Geilweilerhof. 

2. Material and Methods  

2.1. Plant Material 

The application of the phenotyping pipeline involved 2700 grapevines representing 970 accessions 

from the grapevine repository at the experimental vineyards of Geilweilerhof located in Siebeldingen, 

Germany (N 49°21.747, E 8°04.678). Interrow distance was 2.0 m, and grapevine spacing was 1.0 m. 

Rows were planted in a north-south direction. Colored size reference labels were fixed to the wires and 

used to scale the images. 
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2.2. Automated Image Acquisition 

For the automated image acquisition directly in the field, the PHENObot (Phenotyping robot) was 

developed [33]. This phenotyping platform consists of a chain vehicle containing a control unit and a 

camera-light unit in combination with an industrial computer. In order to operate in a harsh outdoor 

environment and to enable the transportation and navigation of the camera-light unit for the non-destructive 

inspection of phenotypic grapevine traits, the chain vehicle had to meet certain requirements: a lifting 

capability up to 250 kg, low vibration drive at a speed between 4 to 6 km·h−1, an easily adjustable mounting 

system for the sensors, a navigation system based on GPS coordinates, the ability for path planning, as 

well as fulfilling safety standards [33]. For targeted image acquisition, path planning is needed for the 

PHENObot. Therefore, precise GPS positions of individual vines are necessary and, so, all grapevines 

have been surveyed. The camera-light unit used on the PHENObot consists of three monochrome 

cameras (AVT GT-2450; objective: CVO 8 mm; 2448 × 2050 pixels), one RGB camera (AVT  

GT-2450C; objective: Schneider KMP-IR CINEGON 8 mm; 2448 × 2050 pixels) and one NIR camera 

(AVT MANTA; objective: Schneider KMP-IR CINEGON 8 mm; 1388 × 1038). To enable an adequate 

illumination for standardized image acquisition, a lightning unit containing eight LED bars (12 LEDs; 

ODLW300 series; Smart vision lights, Muskegon, MI, USA) was combined with the camera unit (for 

the setup, see Figure 1A). The components are connected with the image acquisition computer by a fast 

Ethernet network (GigE). All cameras are synchronously triggered using this network, and the images 

are transmitted immediately to the PC. The lightning unit is triggered by one of the monochrome cameras. 

For configuration and monitoring of the image acquisition process, a software application 

(IggGeotagger.Ext) has been developed fulfilling two main tasks: the communication task handles the 

communication between the control unit of the PHENObot and the image acquisition computer; the 

image acquisition task controls the cameras and the image transport and storage. The application is also 

used for visualization of the images and for setting the camera parameters (screenshot in Figure 1). A single 

image acquisition cycle performs several steps (see Figure 2). The communication task waits for a message 

from the PHENObot control unit. As soon as the PHENObot has reached a predefined position, it sends 

a specific message containing the position, the orientation and the corresponding plant ID to the 

computer. Then the communication task starts the image acquisition task, which triggers all cameras, 

receives the images, generates the filenames for the images (plantID_camera_cameraID_datetime) and 

saves them to the hard drive. Additionally, the position and orientation information is written directly 

into the file header of the image. When the image acquisition task has finished, the communication task 

sends an acknowledgment message to the PHENObot control, signaling that it can move to the next 

position. One hundred forty grapevines have been assessed to verify the image section: (1) includes the 

whole bunch area of each grapevine assessed, and (2) remains the same when repeatedly approached. The 

PHENObot was stopped at the surveyed position of the grapevine and under the consideration of the 

training direction (trained to the south or north, respectively). Moreover, the 140 grapevines have been 

approached 4 times in a row. 
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Figure 1. Graphical user interface of the IggGeotagger.Ext. The software manages the 

communication between the control unit of the PHENObot and the image acquisition PC, 

triggers the cameras and controls the image transport and storage. It is preferentially used 

for the visualization of captured images and for setting the camera parameters. 

 

Figure 2. Communication and image acquisition task within the IggGeotagger.Ext software. 

The communication task handles the communication between the control unit of the PHENObot 

and the image acquisition PC; the image acquisition task controls the cameras and the image 

transport and storage. 
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2.3. Data Management 

All 2700 grapevines of the genetic repository have been surveyed using a RTK  

(real-time-kinematic)-GPS system (Trimble® SPS852, Geo Systems GmbH, Jena, Germany) with 2-cm 

accuracy. The geo-information of each grapevine and the associated plant ID is stored in the central 

database, PLA (Plant Location Administration)—A common management tool for experimental areas in 

the Julius Kühn-Institut. All images delivered by the IggGeotagger.Ext are imported into the database, 

IMAGEdata. Based on the image names, which contain the plant ID, every image is uniquely assigned to 

a single grapevine. For this assignment, the PLA is used. PLA, as well as IMAGEdata work with 

geographical data (UTM). The aim of IMAGEdata is to have a powerful and easy to use tool for managing 

the images as a basis for further evaluation. These databases can be used by modern Web 2.0 interfaces 

and web services. Current technologies allow safe operation and offer modern user interfaces. 

2.4. Image Analysis 

Image analysis was conducted by using the MATLAB®-based tool, BIVcolor (Berries in  

Vineyards-color). Based on a one-class classification framework determining grapevine berry sizes, some 

slight modifications have been done (MATLAB 2012b and Image Processing Toolbox, The Mathworks, 

Natick, MA, USA) on the Berries in Vineyards (BIV) algorithm [34]. This was targeted to separately 

record mean RGB values of each single berry according to their color channels (RGB) and their position 

within the corresponding image. The data were written loop-wise into a tab-limited text file 

corresponding to the image file analyzed and finally stored in a SQL-database (Access 2010, Microsoft, 

Redmond, WA, USA). The known position of berries within a trait later on provides clustering to check 

berry patterns and outliers.  

A set of 500 images, including 235 different accessions and n = 1,300,900 segmented single berries, 

was used for color information assessment. The mean of the RGB values of all berries detected in one 

image were used for statistical analysis. As reference data, the berry color was assessed as five classes  

(1 = black; 2 = red; 3 = rose; 4 = grey; 5 = green). 

2.5. Statistical Analysis 

Statistical analysis was conducted using the software R Version 3.1.1 (R Foundation for Statistical 

Computing, Vienna, Austria). Linear discriminate analysis (LDA) was performed to predict the berry 

color class using the RGB values as predictor variables. 

3. Results and Discussion 

3.1. Field Application of the Phenotyping Robot 

A phenotyping pipeline has been set up and consists of the following components: (1) data 

acquisition; (2) data management; and (3) data analysis (Figure 3). Data acquisition was done 

automatically using the PHENObot. Each image was linked to one plant, respectively one genotype, 

without any post-processing. Applying the PHENObot image data from 2700 grapevines representing 

970 grapevine accessions has been done. Automated data recording for these large set of plants was 
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completed within 12 h. The image acquisition of one grapevine took on average 15 s. Although the 

camera was equipped with a lightning unit, it was impossible to take standardized images on sunny days 

(Figure 4). Consequently, the image acquisition in the grapevine repository was done at night due to 

uniform light conditions. This has also been reported to work best for images taken in commercial 

vineyards to estimate yield [18]. 

Two pre-test drives consisting of 140 grapevines have been done. The first one to ascertain the image 

section comprises the whole bunch zone of each grapevine assessed and the second one to make sure the 

same image section is captured each time a grapevine is approached. The image section was best when 

the stopping position of the PHENObot was shifted 25 cm south or north in accordance with the training 

direction in order to enable one to see as much of the bunch zone as possible. The 140 grapevines were 

approached four times, and the image section stayed the same for each grapevine and all four repetitions. 

The comparison of the GPS position logged at the image acquisition point for the four drives showed a 

difference of 1–2 cm, which is within the accuracy of the GPS system. 

 

Figure 3. Phenotyping pipeline in grapevine breeding. (a) Data acquisition using the PHENObot 

consisting of a robotic platform, a multi-camera-system and a geo-information system;  

(b) data management of the sensor data is achieved by a database (IMAGEdata); (c) data 

analysis through the application of MATLAB®-based tools, e.g., BIVcolor (Berry in 

Vineyards-color), to extract the phenotypic data; (d) the phenotyping pipeline was developed 

for application in grapevine breeding. This enables the phenotyping of large sets of plant 

material from genetic resources or breeding material. 
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Figure 4. Comparison of images taken during the day and at night. Three examples of vines 

photographed on a sunny day and at night. All images were captured using the PHENObot 

with the lightning unit on. Image acquisition at night enables standardized conditions, which 

are very important for robust automated image analysis and comparable phenotyping results, 

e.g., with regard to the determination of berry colors. 

3.2. Image Analysis 

Images have been analyzed using the MATLAB®-based tool, BIVcolor. The tool enables the automated 

extraction of the phenotypic traits, berry size and color. The berry size is one of the most important fruit 

parameters integrated for seedling selection in breeding programs. The BIVcolor evaluated berry size ranging 

from 9.8 mm to 13.9 mm. The acquisition of the berry color is important for the characterization of genetic 

repositories or the phenotyping of mapping populations for genetic analysis. Initially, the color of grapes can 

be classified according to the presence or absence of anthocyanin in the berry skin, as either black or green. 

As a result of natural hybridization and human selection, the grape skin color is very diverse nowadays, 

ranging from green-yellow, grey, rose, red to black. The reference assessment for berry color in the set of 

500 images showed a distribution of: 202 (Class 1 = black), 200 (Class 5 = green), 39 (Class 4 = grey), 37 

(Class 2 = red) and 22 (Class 3 = rose) (Figure 5a). Linear discriminant analysis (LDA) using three predictor 

variables (red, green and blue color values) was used to predict the class of berry color. Table 1 shows the 

cross-validation of the real vs. predicted color class. The percentage of the correct prediction of black  

(197 berries; 97%) and green (178 berries; 89%) berries was very high. Some of the green berries were 

predicted as grey, but in most cases, grey berries were predicted as grey (28 berries; 71%). Thirteen images 

(59%) visually assessed as rose berries have been predicted as red. The difference between red and rose 

berries can be difficult to discern no matter whether one predicts the class doing visual estimations  

(Figure 5a) or if one uses RGB values (Figure 5b,c). Due to the fact that RGB values of these two classes are 

very similar and overlapping (Figure 5b,c), it was not possible to distinguish these two classes in our study. 

One can clearly distinguish between black, green, grey and red/rose berries, and this is exactly what can be 

used for the evaluation of genetic resources and breeding material, but also for the management of grapevine 
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repositories. Usually, three grapevines of one accession are planted next to each other, through the  

image-based color detection planting mistakes based on wrong berry color can be uncovered, for instance. 

 

Figure 5. Distance plots of single RGB values indicating the fitness of the color model used 

for LDA. Prediction of berry color classes was done using the image-based detected RGB 

values. LDA used three parameters (red, green and blue color values) and, as the ground truth, 

the visually assessed berry color. (a) Berry color was visually assessed as five classes:  

Class 1 = black; Class 2 = red; Class 3 = rose; Class 4 = grey; Class 5 = green; (b) distance 

plot of R values vs. G values; (c) distance plot of G values vs. B values. 
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Table 1. Cross-validation of the real berry color classes assessed by visual estimation and the 

color classes predicted with the LDA. 

 Real Color Classes 

Predicted Color Classes Black Green Grey Red Rose 

black 197 7 2 5 3 
green 5 178 7 0 0 
grey 0 15 28 2 3 
red 0 0 1 26 13 
rose 0 0 1 4 3 

From previous work presented by Roscher et al. [34], it is known that the acquisition of images in the 

field and automated image analysis in order to determine berry sizes is about 24-times faster compared to the 

application of a caliper to measure the diameter of 50 berries per grapevine. The image analysis runs 

automatically and needs no user interaction after starting the program. Thus, the analysis can be performed 

simultaneously as daily work within the common breeding program. With the extension of the BIV tool [34] 

to BIVcolor, we gained information about an additional phenotypic trait that can be extracted from the images 

without losing any time for evaluations. Another advantage is that images can always be analyzed 

retrospectively when new tools come along. 

3.3. Future Work 

The phenotyping pipeline has been successfully tested in grapevine breeding. So far, only the RGB 

images are used for automated image analysis. The camera unit consisting of five cameras (one RGB, 

three monochrome and one NIR camera) offers more opportunities. It enables the generation of 3D 

information using the monochrome cameras [32]; furthermore, it is suitable to use the NIR information for 

vitality indices. In addition, it is conceivable that the sensor unit of the PHENObot is going to be extended 

by additional sensors, like lasers, multi- or hyper-spectral sensors. There are plans to connect the IMAGEdata 

database with other existing databases, like VIVC (Vitis International Variety Catalogue [35]) and the 

European Vitis Database [36], to complete the linkage of available information.  

An important stage in grapevine development is the beginning of berry ripening, namely veraison. 

This is the time when the berries start to soften and colored cultivars start to change their color, e.g., 

from green to black. It is conceivable that BIVcolor can be used to detect that date if images are taken 

continuously throughout the growing period. 

4. Conclusions 

A setup of a phenotyping pipeline has been introduced for grapevine breeding and to support  

the management of a grapevine repository. A robotic platform, the PHENObot, was built to enable the 

automatic image acquisition directly in the field. In order to facilitate the management of the data gained 

by automated image acquisition, an image database was developed. Compared to human visual 

assessments, a larger set of grapevines can be screened automatically, and the data revealed are objective 

and precise. 
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