

Correction

Correction: Tang, C. Y. and Chen, X.Y. A Class of Coning Algorithms Based on a Half-Compressed Structure. *Sensors* 2014, *14*, 14289–14301

Chuanye Tang and Xiyuan Chen*

Key Laboratory of Micro-Inertial Instrument and Advanced Navigation Technology, Ministry of Education, School of Instrument Science and Engineering, Southeast University, Sipailou 2, Nanjing 210096, China; E-Mail: 230129460@seu.edu.cn

* Author to whom correspondence should be addressed; E-Mail: chxiyuan@seu.edu.cn; Tel./Fax: +86-25-8379-2010.

Academic Editor: Vittorio M.N. Passaro

Received: 23 December 2014 / Accepted: 11 February 2015 / Published: 13 February 2015

1. Change in Tables/Equations

Due to an oversight by MDPI and the authors, the following numerical corrections were not made in the originally published article [1]. MDPI-Sensors and the authors would like to apologize for any inconvenience brought to the readers.

The authors wish to make the following correction to the article [1]:

The former Table 9 (labelled here as Old Table 9) and Table 10 (labelled here as Old Table 10) should be replaced by the new versions shown below (labelled here as New Table 9 and New Table 10), respectively. The z s in Tables 15 and 16 and the maneuver errors in [1] Table 17 will not be affected by the correction to Tables 9 and 10, because these z s and the maneuver errors were all calculated using the correct coefficients in New Tables 9 and 10. That means, the mistakes in Old Tables 9 and 10 are just writing errors.

L	N	Coefficients
3	3	$\varsigma_{12} = \varsigma_{23} = 27/40, \ \varsigma_{13} = 9/20$
4	4	$\varsigma_{12} = \varsigma_{34} = 232/315, \ \varsigma_{23} = 178/315, \ \varsigma_{13} = \varsigma_{24} = 46/105, \ \varsigma_{14} = 54/105$
5	5	$\varsigma_{12} = 18575/24192, \ \varsigma_{13} = 2675/6048, \ \varsigma_{14} = 11,225/24,192, \ \varsigma_{15} = 125/252, \ \varsigma_{23} = 2575/6048, \ \varsigma_{24} = 425/672, \ \varsigma_{25} = 139,75/24,192, \ \varsigma_{34} = 1975/3024, \ \varsigma_{35} = 325/1512, \ \varsigma_{45} = 21,325/24,192$

Old Table 9. FTSuc	algorithm	coefficients
--------------------	-----------	--------------

L	N	Coefficients
3	3	$\varsigma_{12} = \varsigma_{23} = 27/40, \ \varsigma_{13} = 9/20$
4	4	$\varsigma_{12} = \varsigma_{34} = 232/315, \ \varsigma_{23} = 178/315, \ \varsigma_{13} = \varsigma_{24} = 46/105, \ \varsigma_{14} = 54/105$
5	5	$\varsigma_{12} = 21325/24192, \ \varsigma_{13} = 325/1512, \ \varsigma_{14} = 13975/24192, \ \varsigma_{15} = 125/252, \ \varsigma_{23} = 1975/3024, \ \varsigma_{24} = 425/672, \ \varsigma_{25} = 11225/24192, \ \varsigma_{34} = 2575/6048, \ \varsigma_{35} = 2675/6048, \ \varsigma_{45} = 18575/24192$

New Table 9. FTSuc algorithm coefficients.

Old Table 10. LMSuc algorithm coefficients.

L	N	Coefficients
3	3	$\varsigma_{12} = 0.681306, \varsigma_{13} = 0.444312, \varsigma_{23} = 0.679452$
4	4	$\varsigma_{12} = 0.739716, \ \varsigma_{13} = 0.432467, \ \varsigma_{14} = 516734, \ \varsigma_{23} = 0.571812, \ \varsigma_{24} = 0.4434453, \ \varsigma_{34} = 0.737795$
5	5	$\varsigma_{12} = 769,240, \ \varsigma_{13} = 0.438591, \ \varsigma_{14} = 0.467191, \ \varsigma_{15} = 0.495116, \ \varsigma_{23} = 0.431753, \ \varsigma_{24} = 0.625867,$
		$\zeta_{25} = 0.5/9681, \zeta_{34} = 0.656805, \zeta_{35} = 0.213527, \zeta_{45} = 0.881820$

New Table 10	. LMSuc	algorithm	coefficients.
--------------	---------	-----------	---------------

L	N	Coefficients
3	3	$\varsigma_{12} = 0.679452, \varsigma_{13} = 0.444312, \varsigma_{23} = 0.681306$
4	4	$\varsigma_{12} = 0.737795, \ \varsigma_{13} = 0.434453, \ \varsigma_{14} = 516734, \ \varsigma_{23} = 0.571812, \ \varsigma_{24} = 0.432467, \ \varsigma_{34} = 0.739716$
5	5	$\varsigma_{12} = 0.881820, \ \varsigma_{13} = 0.213527, \ \varsigma_{14} = 0.579681, \ \varsigma_{15} = 0.495116, \ \varsigma_{23} = 0.656805, \ \varsigma_{24} = 0.625867,$
5	5	$\varsigma_{25} = 0.467191, \ \varsigma_{34} = 0.431753, \ \varsigma_{35} = 0.438591, \ \varsigma_{45} = 0.769240$

The former Equation (12) of [1]:

$$G\Gamma(t_{l-1}) = \overline{G}, G \equiv (g_i)_{M \times 1}, \overline{G} \equiv (\overline{g}_j)_{M \times 1}, \Gamma(t_{l-1}) \equiv (\gamma_{ji}(t_{l-1}))_{M \times M}$$
$$\gamma_{ji}(t_{l-1}) = \begin{cases} (-t_{l-1})^{i-j} &, j = 1\\ (-t_{l-1})^{i-j}(i-1)!/(j-1)!, 1 < j \le i\\ 0 &, j > i \end{cases}$$
(12)

Should be replaced by the new Equation (12):

$$G\Gamma(t_{l-1}) = \overline{G}, G \equiv (g_i)_{M \times 1}, \overline{G} \equiv (\overline{g}_j)_{M \times 1}, \Gamma(t_{l-1}) \equiv (\gamma_{ji}(t_{l-1}))_{M \times M}$$
$$\gamma_{ji}(t_{l-1}) = \begin{cases} (-t_{l-1})^{i-j} &, j = 1\\ (-t_{l-1})^{i-j} (i-1)!/((i-j)!(j-1)!), 1 < j \le i\\ 0 &, j > i \end{cases}$$
(12)

Affected by the correction to Equation (12), the former Table 17 (labelled here as Old Table 17) of [1] should be replaced by the new version (labelled here as New Table 17). The correction to Table 17 will not affect the conclusions of [1].

L	N		Maximum Maneuver Error, μ Rad				
	1	FTSc	LMSc	FTShc	LMShc	FTSuc	LMSuc
3	3	1.00e-2	-1.88e-2	-3.34e-3	3.65e-3	2.86e-6	-2.52e-2
4	4	3.24e-2	3.25e-2	-5.51e-3	-5.54e-3	1.48e-12	9.66e-4
5	5	7.32e-2	7.33e-2	-7.50e-3	-7.52e-3	-7.23e-13	3.25e-5

Old Table 17. Maximum maneuver error over 2 s maneuver.

New Table 17. Maximum maneuver error over 2 s maneuver.

L	N		Max	imum Mano	euver Error,	, μ rad	
		FTSc	LMSc	FTShc	LMShc	FTSuc	LMSuc
3	3	-1.09e-2	-7.29e-3	3.63e-3	7.48e-3	1.39e-6	3.66e-3
4	4	-3.52e-2	-3.54e-2	5.98e-3	5.89e-3	1.67e-12	-1.40e-4
5	5	-7.97e-2	-7.97e-2	8.15e-3	8.17e-3	-3.09e-13	-4.73e-6

2. Change in Main Body Paragraphs

Due to an obscurity on how Equations (13) and (14) of [1] were built, the authors wish to insert some additional sentences to explain how Equations (13) and (14) of [1] can be converted from Equations (59) and (13) of Song (reference [9] of [1]).

Below we respectively denote the Song ζ_{ij} and the [1] ζ_{ij} using $(\zeta_{ij})_S$ and $(\zeta_{ij})_T$.

After setting p = N + 1 - i and q = N + 1 - j, we can rewrite Equation (5) of Song [9] as:

$$\delta \hat{\phi}_{unc}(t) = \sum_{p=1}^{N-1} \sum_{q=p+1}^{N} \left(\varsigma_{N+1-p,N+1-q} \right)_{S} \Delta \alpha_{p} \times \Delta \alpha_{q}$$
(a1)

If $\delta \hat{\phi}_{unc}(t)$ and $(\zeta_{N+1-p,N+1-q})_s$ are respectively denoted by $\delta \hat{\phi}_l$ and ξ_{pq} , Equation (a1) can be rewritten as:

$$\delta \hat{\phi}_{l} = \sum_{p=1}^{N-1} \sum_{q=p+1}^{N} \xi_{pq} \Delta \alpha_{p} \times \Delta \alpha_{q}$$
(a1)

Comparing Equation (a2) with the [1] Equation (3), we will find that both equations are the same expression under $\xi_{pq} = (\zeta_{ij})r$ with p = i and q = j.

Thus, to make Song [9] Equation (5) of and [1] Equation (3) equivalent will achieve $(\zeta_{ij})_T = (\zeta_{N+1-i,N+1-j})_S$. Using this relationship, we have respectively converted ζ_{ij} s in Tables 1 and 2 of Song [9] to ζ_{ij} s in New Tables 9 and 10, also we can convert Song [9] Equation (13) to [1] Equation (14), when Song [9] *n* is replaced by *L*.

Now we rewrite Song [9] Equation (59) as:

$$\begin{split} \hat{\delta \varphi}_{unc} - \delta \varphi_{c} &= z_{3}' \omega(t_{m-1}) \times \dot{\omega}(t_{m-1}) \left(t - t_{m-1} \right)^{3} + z_{4}' \omega(t_{m-1}) \times \ddot{\omega}(t_{m-1}) \left(t - t_{m-1} \right)^{4} \\ &+ \left(z_{51}' \omega(t_{m-1}) \times \ddot{\omega}(t_{m-1}) + z_{52}' \dot{\omega}(t_{m-1}) \times \ddot{\omega}(t_{m-1}) \right) \left(t - t_{m-1} \right)^{5} \\ &+ \left(z_{61}' \omega(t_{m-1}) \times \ddot{\omega}(t_{m-1}) + z_{62}' \dot{\omega}(t_{m-1}) \times \ddot{\omega}(t_{m-1}) \right) \left(t - t_{m-1} \right)^{6} \\ &+ \left(z_{71}' \omega(t_{m-1}) \times \ddot{\omega}(t_{m-1}) + z_{72}' \dot{\omega}(t_{m-1}) \times \ddot{\omega}(t_{m-1}) + z_{73}' \ddot{\omega}(t_{m-1}) \times \ddot{\omega}(t_{m-1}) \right) \left(t - t_{m-1} \right)^{7} \\ &+ o \left(\left(t - t_{m-1} \right)^{9} \right) \\ z_{3}' &= \frac{1}{6} \left(f_{3} - \frac{1}{2} \right), z_{4}' = \frac{1}{24} \left(f_{4} - 1 \right), z_{51}' = \frac{1}{120} \left(f_{51} - \frac{3}{2} \right), z_{52}' = \frac{1}{120} \left(f_{52} - 1 \right), z_{61}' = \frac{1}{720} \left(f_{61} - 2 \right) \\ z_{62}' &= \frac{1}{720} \left(f_{62} - \frac{5}{2} \right), z_{71}' = \frac{1}{5040} \left(f_{71} - \frac{5}{2} \right), z_{72}' = \frac{1}{5040} \left(f_{72} - \frac{9}{2} \right), z_{73}' = \frac{1}{5040} \left(f_{73} - \frac{5}{2} \right) \end{split}$$
(a3)

where *f* s are of Song [9], rather than of [1].

Set:

$$g_{i} = \frac{d^{i-1}}{dt^{i-1}} \left(\omega(t) \Big|_{t=t_{m-1}} \right) / (i-1)!, \ i = 1, 2, \dots$$
 (a4)

where *i* is a positive integer, and $\frac{d^0}{dt^0} \left(\omega(t) \Big|_{t=t_{m-1}} \right)$ denotes $\omega(t_{m-1})$.

Then Equation (a3) can be converted into [1] Equation (13), when $\delta \hat{\phi}_{unc}(t) - \delta \phi_c(t)$, t_{m-1} and *n* are respectively replaced by $\delta \hat{\phi}_l - \delta \phi_l$, t_{l-1} and *L*.

To confirm the correctness of [1] Equations (13) and (14), the z s in [1] Equation (13) are calculated for LMSuc using the [1] f s (see [1] Equation (14)) and ζ s in New Table 10. Also the z' s in Equation (a3) are calculated for UncExp using the Song [9] f s (see Song [9] Equations (13)) and ζ s in Song [9] Table 1. The z s for LMSuc and the z' s for UncExp are listed in Tables a1 (the copy of [1] Table 16) and a2, respectively.

N L **Z**3 **Z**4 **Z**51 **Z**52 Z61 Z62 **Z**71 **Z**72 **Z**73 3 3 -2.29e-5 -1.83e-3 -5.53e - 4 0 -9.12e-4 -2.56e-4 -2.57e-3 -1.48e-3 -8.46e-44 4 4.95e-7 -2.00e-8-1.04e-6 -2.84e-5-1.30e-81.32e-7 -1.02e-8 -6.17e-5 -7.30e-5 5 2.24e-9 2.21e-8 3.03e-9 -3.49e-5 3.45e-6 5 1.07e-8 1.07e-9 1.55e-9 2.08e-9

Table a1. The z s for [1] LMSuc.

n	N	Z 3	Z 4	Z 51	Z 52	Z61	Z62	Z 71	Z72	Z73
3	3	-2.29e-5	0	-1.52e-4	-1.28e-4	-7.63e-5	-1.41e-4	-2.15e-5	-6.18e-5	-4.61e-5
4	4	4.95e-7	-6.51e-9	-3.34e-9	-5.21e-7	5.49e-9	-1.70e-9	-5.14e-7	-3.04e-6	-2.37e-6
5	5	1.07e-8	5.33e-10	3.73e-10	1.10e-8	1.26e-10	2.58e-10	-2.91e-7	8.67e-11	2.87e-7

Table a2. The z's for Song [9] UncExp.

Comparing the z_3', z_4', z_{51}' and z_{52}' in Table a2 with those in Equations (65)–(67) of Song [9], we can find that the former is consistent with the later except for z_4' and z_{51}' . (The z_4' and z_{51}' in Equations (66) and (67) of Song [9] are zero, while the z_4' and z_{51}' in Table a2 for UncExp4 and UncExp5 are near

zero. The difference between z_4 and z_{51} of Table a2 and those of Song [9] is due to round-off (to six places) in the Song [9] ς s used in [1].) This has been confirmed independently by a Reviewer of [1] that found identical results when using Song [9] equations and Song rounded ς s.

The authors wish to express their appreciation to a reviewer of [1] for his insightful comments and constructive suggestions used in the original article, also for his valuable suggestions used in this correction.

References

1. Tang, C.Y.; Chen, X.Y. A Class of Coning Algorithms Based on a Half-Compressed Structure. *Sensors* **2014**, *14*, 14289–14301.

 \bigcirc 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).