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Abstract: In this work, the staggered SAR technique is employed for high-speed platform 

highly-squint SAR by varying the pulse repetition interval (PRI) as a linear function of 

range-walk. To focus the staggered SAR data more efficiently, a low-complexity modified 

Omega-k algorithm is proposed based on a novel method for optimal azimuth non-uniform 

interpolation, avoiding zero padding in range direction for recovering range cell migration 

(RCM) and saving in both data storage and computational load. An approximate model on 

continuous PRI variation with respect to sliding receive-window is employed in the 

proposed algorithm, leaving a residual phase error only due to the effect of a time-varying 

Doppler phase caused by staggered SAR. Then, azimuth non-uniform interpolation (ANI) 

at baseband is carried out to compensate the azimuth non-uniform sampling (ANS) effect 

resulting from continuous PRI variation, which is further followed by the modified Omega-k 

algorithm. The proposed algorithm has a significantly lower computational complexity, but 

with an equally effective imaging performance, as shown in our simulation results. 

Keywords: staggered SAR; continuous PRI variation; azimuth non-uniform sampling 

(ANS); modified Omega-k 
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1. Introduction 

Synthetic Aperture Radar (SAR) has become an indispensable part of current Earth observation 

systems [1–3]. Recently, highly-squint SAR onboard high-speed platforms (such as unmanned aerial 

vehicles or missiles) has developed very quickly and been employed widely for target detection, 

natural disaster monitoring, and surveillance, etc. [3–8]. However, the spatial-variant range cell 

migration (RCM) problem in highly-squint high-speed SAR data is much more challenging than in the 

traditional side-looking SAR mode, leading to not only extremely large data size and computational 

load [9–11], but also difficulty in acquiring the radar echo signals. 

To mitigate the RCM problem, we can have a large pulse repetition interval (PRI) and change the 

opening time of the receive-window to remove the range-walk term in RCM [12,13]. However, this is 

not applicable to high-speed platform highly-squint SAR due to the lower PRI caused by the larger 

Doppler bandwidth. Another method is to continuously vary the PRI, which is referred to as staggered 

SAR [14,15]. This concept was first introduced for imaging with a wide seamless coverage by 

smoothly shifting the blind ranges across the swath with continuous PRI variation [16,17]. It has also 

been applied to highly-squint high-speed platform SAR to mitigate the large range-walk effect and 

solve the range blinding problem [18]. 

In this work, we focus on the high-speed platform highly-squint staggered SAR and vary the PRI as 

a function of range-walk to effectively receive the radar echo signals. However, this results to two 

problems: azimuth non-uniform sampling (ANS) and Doppler phase history changing (DPHC).  

The DPHC problem can be overcome by recovering the RCM back into the original form through zero 

padding in the range direction [19]. Then, the ANS effect can be compensated by azimuth non-uniform 

interpolation (ANI) at baseband, as the azimuth spectrum is centered at non-zero frequency in squint 

mode. At last, to focus signals accurately, we can employ the classic Omega-k algorithm [20,21]. 

However, the traditional algorithm is very time-consuming and requires large storage due to zero 

padding [22]. 

Therefore, in this paper a modified Omega-k algorithm based on ANI is proposed. An approximate 

model on continuous PRI variation with respect to sliding receive-window is employed, with a  

residual phase error only due to effect of a time-varying Doppler phase caused by different sampling 

positions of the platform. And the effect of ANS is removed by optimal ANI processing at baseband. 

Then, considering the removal of range-walk resulting from the continuous PRI variation, modified 

bulk compression and Stolt interpolation is derived. Consequently, the proposed algorithm can be 

implemented successfully without any data extension through zero padding. 

This paper is organized as follows. Details of the high-speed platform highly-squint staggered SAR 

are provided in Section 2, while we focus on the proposed algorithm in Section 3, where an overview 

of the traditional algorithm is first presented in Section 3.1, followed by the proposed modified 

Omega-k algorithm in Section 3.2. An analysis of the computational complexity of the proposed 

algorithm is given in Section 4.1 and simulation results are provided in Section 4.2. Finally, 

conclusions are drawn in Section 5. 



Sensors 2015, 15 3752 

 

 

2. High-Speed Platform Highly-Squint Staggered SAR 

Figure 1 shows the imaging geometry of highly-squint high-speed platform SAR. Point O is the 

nadir at the azimuth time zero. The platform travels along the azimuth direction, parallel to the x-axis, 

and the y-axis points along the range direction. Furthermore, φ is the squint angle, R(t;r) denotes the 

instantaneous slant range distance from the antenna phase center (APC) to a certain target T, and r is 

the range. 

 

ϕ

r ( ; )R t r

 

Figure 1. Imaging geometry of highly-squint high-speed platform SAR. 

The instantaneous slant range R(t) for target T can be expressed as [21]: 
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v t
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−

−

= + −

= − + + ⋅⋅⋅
 (1)

where v is the velocity of the platform, and t is the azimuth time. The range-walk term in Equation (1) 

is independent of slant range, while the following term represents the range-curve, which is much 

smaller than the range-walk [18]. 

In a traditional SAR system, it transmits and receives linear frequency-modulated (LFM) signals 

with a constant PRI and a fixed receive-window opening delay time, as shown in Figure 2a.  

However, the RCM will increase significantly at highly-squint angles, and its length can be much 

larger and even exceed the size of receive window. As the range-walk is not only the prominent part of 

RCM but also independent of the target, we can use two methods to alleviate the RCM. One is to slide 

the receive-window opening time to remove the range-walk, as shown in Figure 2b, and a larger PRI is 

needed [12,13]; the other one is using continuous PRI variation with staggered SAR to remove the 

range-walk, as Figure 2c shows. 
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Figure 2. Different SAR working modes. (a) Constant PRI and fixed receive-window;  

(b) Constant PRI and sliding receive-window; (c) Variable PRI and fixed receive-window. 

For high-speed platform highly-squint SAR, the length of continuous reception-time limits its echo 

data acquisition, since RCM increases with squint angle. Furthermore, with the lower PRI caused by 

highly-squint angle and high-speed of the platform, there is even no enough space to shift the  

receive-window, rendering the sliding receive-window method invalid as shown in Figure 3. However, 

this is not the case for staggered SAR. For staggered SAR, even though any given transmitted pulse  

is unable to be received until several pulse intervals have elapsed, it is no longer an issue for  

highly-squint high-speed platform SAR. Therefore, the staggered SAR is used for solving the problem 

of echo acquisition limitation. 

2pτ 3pτ
4pτ

 

Figure 3. An example when the sliding receive-window method is not working. 

According to Equation (1), the function of range-walk with time t is: 

( ) sinφwR t vt= −  (2)

As range-walk is independent of slant range, in the calculation of staggered SAR, we can remove 

the range-walk term first and the relationship between the (i + 1)th and the ith transmitted pulse 

intervals PRIi + 1 and PRIi can be revised as [18]: 

1

2 sinφ
1i i

v
PRI PRI

c+
 = − 
 

 (3)
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where c is the speed of light. Figure 4 shows PRI variation with respect to the azimuth time using 

parameters listed in Table 1 (in Section 4). With continuous variation of PRI, the azimuth sample 

positions keep changing, causing ANS effect on azimuth data. 

 

Figure 4. PRI variation with respect to the azimuth time. 

3. Processing Algorithm for High-Speed Platform Highly-Squint Staggered SAR 

In this section, the traditional algorithm for high-speed platform highly-squint staggered SAR is 

introduced first, and then, based on the similarity of staggered SAR and sliding receive-window SAR, 

a modified Omega-k algorithm employing ANI is proposed. 

In order to facilitate the discussion and mathematical formulation, the following assumptions  

are made: 

 The sensor trajectory is linear; 

 The platform velocity is constant; 

 The “stop-go” approximation is adopted. 

3.1. Traditional Algorithm for High-Speed Platform Highly-Squint Staggered SAR 

With the analysis of Section 2, the instantaneous slant range for target T in staggered SAR can be 

rewritten as: 
1

2 2 2
1

1

( ) 2 sinφ , , 2; 0
n i

i i i i n
n

R t r v t rvt t PRI i t
= −

=

= + − = ≥ =  (4)

where ti denotes the ith transmitted pulse time. The demodulated baseband SAR signal, S0(τ, ti; r), 

received from the single point target T can be modeled as [13]: 

2

0

2 ( ) 2 ( ) 4π ( )
(τ, ) ω τ exp π τ exp

λ
i i i

i r

R t R t R t
S t j K j

c c

       = − − − −             
 (5)
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where ω(·), τ, Kr and λ denote signal envelope, range time, range chirp FM rate and signal wavelength, 

respectively. To simplify the derivation, the backscatter coefficient and amplitude factors have  

been ignored. 

To tackle the inherent problems of DPHC and ANS in staggered SAR, the imaging algorithm 

normally includes three stages: range cell migration recovery (RCMR), interpolation and focusing. 

Details for each stage are shown in Figure 5. 

 

Figure 5. Processing details of the traditional imaging algorithm for staggered SAR. 

At the RCMR stage, the recovery of RCM is performed by phase compensation with filter Equation (6), 

in range-frequency and azimuth-time domain [19]: 

{ } τ

( ) ( )
( , , ) exp 2π exp 4π i

rcmr i i

R t R t
H f t t j f t j f

cτ τ
− = Δ − 

 
 (6)

( ) ( )0

2 ( ) 2 ( )
mod modi

i i i

R t R t
t t t PRI PRI

c c
   Δ = − = −   

    
(7)

where fτ is the range frequency, PRI0 is the mean PRI of the sequence of varied PRI, t is the azimuth 

uniform sampling time and mod(·) the complementation function. 

At ANI stage, traditional Lagrange interpolation is performed instead of non-uniform FFT, as the 

non-uniform FFT processing is more complicated and the processing result is highly dependent on 

parameter selection [23]. Since the target spectrum is centered at non-zero frequency in squint mode, 

the azimuth signal should be moved to baseband before Lagrange interpolation. After interpolation, the 

data is resampled to a uniform grid, so that the target spectrum is recovered back to its original center 

frequency fd0, and 0
2 cosvfd φ

λ= − . More details of this stage will be provided in Section 3.2. 

In the focusing stage, the classic Omega-k focusing algorithm is implemented [20,24]. Bulk 

compression is applied by the filter HBulk(fτ, f): 

( )
22

2

τ τ 0

4π
( , ) exp π exp sinφ cosφ

2 2
ref

Bulk
r

Rf cf cf
H f f j j f f

K c v v
τ

       = − ⋅ + − + ⋅           
 (8)

where f0, f and Rref denote the signal carrier frequency, azimuth frequency and reference range, 

respectively. And the new range frequency of Stolt interpolation is: 

( )
2

2'
τ 0 τ 0sinφ cosφ

2 2

cf cf
f f f f

v v
 + = ⋅ + − + ⋅ 
 

 (9)
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Then, a two-dimensional IFFT is performed to transform the signal back to the time domain. 

Finally, the staggered SAR echoes are focused accurately. 

3.2. A Modified Omega-k Algorithm Based on ANI 

Although the traditional algorithm is accurate enough for staggered SAR image formation, it is very 

time-consuming and requires large storage for processing. In this part, an approximate model on 

continuous PRI variation with respect to sliding receive-window is employed in the proposed 

algorithm, leaving a residual phase error only due to the effect of a time-varying Doppler phase caused 

by staggered SAR. As its block diagram is shown in Figure 6, where different from the traditional 

algorithm, the processing for range-walk recovery is no longer needed and the inherent signal 

characteristics in staggered SAR are preserved. 

 

Figure 6. Block diagram of the modified Omega-k algorithm based on ANI. 

We assume that the post-ANI processing data acquired by the SAR mode with a sliding  

receive-window aiming for range-walk removal and the PRI is constant, as indicated in Figure 2b. 

However, different from traditional SAR, the platform sampling position of staggered SAR is 

accordingly changing due to varying PRI. For this approximation model, it only leaves a residual phase 

error with the different range history caused by staggered SAR. This residual phase error should be 

compensated before the ANI by the following filter: 
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( , ) exp 4π

λ
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r i

R t R t
H t t j
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 (10)

Then, ANI processing is performed to resample the azimuth signal into a uniform grid, and its 

processing steps are identical to the traditional method, as shown in Figure 5. In the high-speed platform 

highly-squint staggered SAR, the azimuth spectrum is centered far away from the zero-frequency. As a 

result, the normal uniform interpolation inevitably leads to resolution degradation and leak of echo 

energy. Therefore, baseband non-uniform interpolation is needed for a quality imaging result. The first 

step of the ANI stage is moving the azimuth spectrum center to zero-frequency for baseband Lagrange 

interpolation through multiplying a linear phase term Hbase(ti) [25]: 

( ) { }0= exp 2πbase i iH t j fd t−  (11)

where fd0 is Doppler centroid. Then the baseband Lagrange interpolation is performed to resample the 

data to a uniform grid. After that, the target spectrum should be recovered back to its original center 

frequency fd0, by multiplying Hrecovery(t) [25]: 

( ) { }0= exp 2πrecoveryH t j fd t  (12)

After the ANI processing, the single point target signal can be expressed as [12]: 

2

1

2 ( ) 2 ( ) 4π ( )
(τ, ) ω τ ( ) exp π τ ( ) exp

λr

R t R t R t
S t T t j K T t j

c c

       = − − Δ ⋅ − − − Δ ⋅ −             
 (13)

2 sinφ
( )

vt
T t

c
Δ =  (14)

where v is a constant for the platform. Applying FFT with respect to τ, the signal S1(τ, t) is transformed 

into the range frequency domain, yielding: 

{ }
( )

2 τ 1 τ

2
0 τ

τ

( , ) (τ, ) exp 2π τ τ

4π ( )
ω exp π exp

4π sinφ
exp

r r

S f t S t j f d

f f R tf f
j j

K K c

vt
j f

c

τ τ

= −

+    
= − ⋅ ⋅ −    

     
 ⋅ − 
 


 

(15)

Then, to obtain two-dimensional (2D) spectrum of the signal, the azimuth FFT is applied to 

Equation (15): 

{ }
( )

{ }

3 τ 2 τ

2
0 ττ τ

τ

( , ) ( , ) exp 2π

4π ( )
ω exp π exp

4π sinφ
exp exp 2π

r r

S f f S f t j ft dt

f f R tf f
j j

K K c

vt
j f j ft dt

c

= ⋅ −

+    
= − ⋅ ⋅ −    

     
 ⋅ − ⋅ − 
 



  
(16)

By applying the principle of stationary phase (POSP) [26], the 2-D spectrum can be expressed as: 
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2
2 2τ τ

3 τ , ,( , ) ω exp π exp 4π cosφ sinφf f f f f
r r

f f
S f f j j r p q q

K K

     = − ⋅ ⋅ − − +       
 (17)

where: 

τ τ

0 τ τ
,

sinφ
,

2f f f

f f ff
p q

c v c

+= = +  (18)

But r is defined in the range time domain, and its range variation cannot be adjusted in the range 

frequency domain. We need to set the range to its reference one for bulk compensation in the 

frequency domain. In the traditional Omega-k algorithm, the bulk compensation filter is given in 

Equation (8). However, according to Equation (17), the term caused by the staggered SAR should be 

added to the modified bulk compensation filter, which can be expressed as: 

( ) { }τ τ τ

2
' 2 2 τ

τ , ,, exp 4π cosφ sinφ exp πbulk ref f f f f f
r

f
H f f j R p q q j

K

  = − + ⋅ −    
 (19)

After bulk compensation, the residual phase is zero at the reference range, but a residual phase  

Φ(fτ, f) (including differential RCMC, differential SRC and differential azimuth compression) exists 

for targets at other ranges [25]: 

( ) ( )
τ τ τ

2 2
τ , ,

4π
, exp cosφ sinφ

ref

f f f f f

r R
f f j p q q

c

 −  Φ = − +    
 (20)

Then, the residual phase is compensated by warping of the range frequency axis, using a modified 

Stolt interpolation. Combining the residual phase Equation (21), the new substitution range frequency 

of the modified Stolt interpolation is: 

τ τ τ

* 2 2
0 τ , ,cosφ sinφf f f f ff f p q q+ = − +  (21)

After the modified Stolt interpolation, the range frequency axis fτ is resampled and mapped to a new 
axis *

τf , and the new 2D spectrum can be expressed as: 

( ) ( ) ( )* *τ
3_ τ 0 τ

4π
, ω exp

ref

new
r

r Rf
S f f j f f

K c

 −   = − ⋅ − +  
    

 (22)

As shown in Equation (22), a linear phase is left in the new 2-D spectrum in both directions, which 

implies that the targets in all range have been focused. Then, an azimuth IFFT operation is performed 

to transform the new 2D spectrum to the azimuth time and range frequency domain: 

( ) ( ) { }

( ) ( ) ( )

/2* *
4 τ 3_ τ 0/2

*
*τ

0 0 τ

1
, , exp 2π

2π

4π1
ω sin exp

2π

a

a

B

newB

ref

r

S f t S f f j ft df

r Rf
c t t j f f

K c

−
= ⋅

 −   = − ⋅ − ⋅ − +  
    


 (23)

where Ba and t0 denote the azimuth bandwidth and target azimuth location time, respectively. 

However, the signal still has geometric distortion after the above processing due to the range-walk 
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effect, so geometric correction is performed in the azimuth time and range frequency domain with the 
filter *

τ( , )cH f t  [13]: 

( ){ }* * *
τ τ τ

sinφ
( , ) exp 2π exp 4πc

vt
H f t j f T t j f

c
 = Δ =  
 

 (24)

After the above processing, a range IFFT is performed, leading to an accurately focused  

distortion-free image: 

( ) ( ) ( ) { }

( ) ( ) ( )

*

*

/2 * * * *
5 0 4 τ τ 0 τ2 /2

0 02

1
τ, sin , ( , ) exp 2π τ

4π

2 4π1 2 sinφ
sin sinc τ τ exp

4π λ

s

s

f

cf

ref ref

S t c t t S f t H f t j f df

r R r Rvt
c t t j

c c

τ−
= − ⋅ ⋅

   − − = − ⋅ − + − ⋅ −   
      


 (25)

where *
sf  and 0τ  denote the new range sampling rate and target range location time, and 0

2 refR
cτ = . 

Therefore Equation (25) can be revised as: 

( ) ( ) ( ) ( )
5 02

4π2 sinφ1
τ, sin sinc τ exp

4π λ
refr Rvt r

S t c t t j
c

 −−   = − ⋅ + ⋅ −  
    

 (26)

Finally, an accurately focused distortion-free image is acquired. 

4. Performance Evaluation 

In this section we first give a computational complexity analysis to our proposed algorithm and then 

provide some simulation results to verify its performance. The parameters used in our simulations are 

listed in Table 1 and the scene is shown in Figure 7. All the targets are located in five different regions 

labeled as A, B, C, D and E, with their centers denoted by A0, B0, C0, D0, and E0, respectively. 

 

Figure 7. Distribution of the simulation scene. 
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Table 1. Main simulation parameters. 

Parameters Value Parameters Value Parameters Value 

λ (cm) 1.875 v (m/s) 350 fs (MHz) 180 
f0 (GHz) 16.0 φ (°) 65.0 height of platform (Km) 8.0 

PRI0 (ms) 0.5 Rref (Km) 143.9 Range Chirp FM rate (s−2)  7.5e13 
Look Angle (°) 86.8 fd0 (Hz) −33,854.9 Antenna Length (m)  0.8 

4.1. Computational Complexity Analysis 

The complexity of the traditional and our proposed algorithm in each step is studied in terms of 

number of floating point operations (FLOP). Each FLOP can either be a real multiplication or a real 

addition [25]. Assume the sampled echo data has a size of Na × Nr (azimuth× range), and the Lagrange 

and Stolt interpolation kernel length are Mken_l and Mken_s, respectively. Because of the recovered RCM 

in the traditional algorithm, the sampled data will go through zero padding processing in the range 
direction, and we assume the extended range sample number is N ' 

r . The FLOP in each step is  

provided in Table 2. Obviously, the storage requirement can be cut down N' 
r/Nr times by applying our 

proposed algorithm. 

According to Table 2, the total FLOP of the traditional algorithm is: 

' '
_ _ 2 220 4 4 20log 10logtra a r ken l ken s r aFLOP N N M M N N = + + + +   (27)

While for our proposed algorithm it is: 

_ _ 2 226 4 4 10log 10logpro a r ken l ken s r aFLOP N N M M N N = + + + +   (28)

We can define the computation efficiency factor ζ as: 

ζ tra

pro

FLOP

FLOP
=  

(29)

Table 2. Comparison of computational complexity [25]. 

 Traditional Algorithm Proposed Algorithm 

Range FFT 
' '

25 loga r rN N N  0 

RCM Recovery (Residual phase compensation) 
'6 a rN N  6 a rN N  

Range IFFT 
' '

25 loga r rN N N  0 

Baseband-Shift 
'6 a rN N  6 a rN N  

Lagrange interpolation ( ) '
_2 2 1ken l a rM N N−  ( )_2 2 1ken l a rM N N−  

Band Recovery 
'6 a rN N  6 a rN N  

Range FFT 
' '

25 loga r rN N N  25 loga r rN N N  

Azimuth FFT 
'

25 loga r aN N N 25 loga r aN N N

Bulk compression 
'6 a rN N  6 a rN N  

Stolt interpolation ( ) '
_2 2 1ken s a rM N N−  ( )_2 2 1ken s a rM N N−  

Azimuth IFFT 
'

25 loga r aN N N 25 loga r aN N N

Geometric correction 0 6 a rN N

Range IFFT 
' '

25 loga r rN N N 25 loga r rN N N
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Now consider a specific example. Assume the echo data size is 65,536 × 16,384 (Na × Nr), and the 

Lagrange interpolation is 3-point (Mken_l = 3), while the Stolt interpolation is 8-point (Mken_s = 8). 

Furthermore, the range sampling number is 65,536 ( ' 65,536rN = , ' / 4r rN N = ) in the traditional 

algorithm. Then the computation efficiency ζ is: 

[ ]
' '

2 2

2 2

64 20log 10log
ζ 6

70 10log 10log
r r a

r r a

N N N

N N N

 + + = ≈
+ +

 (30)

which indicates a significant saving in computational complexity by our proposed algorithm. Even more 

savings can be achieved in some other situations, such as high-resolution-wide-swath SAR [27]. 

4.2. Simulation Results 

With the parameters listed in Table 1 and the simulation scene shown in Figure 7, the processing 

results of both the traditional algorithm and our proposed one before ANI are shown in Figure 8.  

As Figure 8a shows, the range history is recovered back into its normal form in the traditional 

algorithm. So, zero padding is inevitable in range direction, which would bring pressure on data 

storage and computation load. However, in Figure 8b, the processing for range-walk recovery is no 

longer needed and the inherent signal characteristics of staggered SAR are preserved. And at the edge 

of the scene, there is still a little but tolerable residue range-walk which cannot be removed, as the 

function of varying PRI is referred to the range-walk of scene center. Then, the imaging results for 

center A0 of A-region are shown in Figure 9. Comparing these two sets of results, we would not be 

able to see a clear difference between them, indicating that our proposed algorithm has been 

adequately and equally effective with the traditional one. 

To show the performance of the proposed algorithm with respect to the spatially variant slant range, 

the imaging results for all five regions are provided in Figure 10. Moreover, the spatial resolution 

(azimuth resolution ρa, range resolution ρr), peak side lobe ratio (PSLR) and integrated side lobe  

ratio (ISLR) for each simulated region center (A0/B0/C0/D0/E0) are listed in Table 3. All of these 

indicate a quality imaging result by our proposed algorithm, which has adapted to the full-scene 

requirement effectively. 

(a) (b) 

Figure 8. Processing results before the ANI. (a) Traditional algorithm; (b) Proposed algorithm. 
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(a) 

 
(b) 

Figure 9. Contour plots and range/azimuth slices for target A0. (a) Imaging results of the 

traditional algorithm; (b) Imaging results of our proposed algorithm. 

Table 3. Imaging quality analysis for the five point targets. 

 
Azimuth * Range * 

ρa (m) PSLR (dB) ISLR (dB) ρr (m) PSLR (dB) ISLR (dB) 

A0 0.962 −13.11 −10.01 0.886 −13.21 −10.05 
B0 0.951 −13.19 −10.11 0.886 −13.22 −10.06 
C0 0.946 −13.26 −10.10 0.886 −13.25 −10.10 
D0 0.950 −13.20 −10.12 0.887 −13.23 −10.05 
E0 0.959 −13.12 −10.03 0.887 −13.22 −10.04 

* Ideal azimuth resolution is 0.946 m, ideal range resolution is 0.886 m. 

 
(a) (b) 

Figure 10. Cont. 
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(c) 

(d) (e) 

Figure 10. Imaging results for the five different regions. (a) Imaging results of A-region; 

(b) Imaging results of B-region; (c) Imaging results of C-region; (d) Imaging results of  

D-region; (e) Imaging results of E-region. 

5. Conclusions 

In this paper, by continuously varying PRI as a function of the linear term of range-walk, the 

staggered SAR technique was employed for high-speed platform highly-squint SAR applications, and 

a low-storage low-complexity modified Omega-k algorithm based on ANI was proposed.  

The formulation of the proposed algorithm was derived based on an approximate model about 

staggered SAR and sliding receive-window SAR, with only a residual phase error left due to the effect 

of a time-varying Doppler phase. And this residual phase error can be easily compensated at the 

beginning of the imaging process. Then, considering the large fd0 in high-speed platform highly-squint 

staggered SAR, optimal ANI processing based on baseband operation is adopted to resample the data 

back to a uniform grid. Unlike the direct interpolation operation, in this approach the center of azimuth 

spectrum is moved to zero-frequency first to guarantee the validity and effectiveness of Lagrange 

interpolation. Subsequently, novel bulk compression and Stolt interpolation was proposed, considering 

the signal feature changed by staggered SAR. As shown by our analysis and simulation results, the 

computational complexity of the proposed algorithm is significantly lower than the traditional one, 

without any observable loss of performance in terms of imaging quality. 
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