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Abstract: 3D models of indoor environments are increasingly gaining importance due to the 

wide range of applications to which they can be subjected: from redesign and visualization 

to monitoring and simulation. These models usually exist only for newly constructed 

buildings; therefore, the development of automatic approaches for reconstructing 3D indoors 

from imagery and/or point clouds can make the process easier, faster and cheaper. Among 

the constructive elements defining a building interior, doors are very common elements and 

their detection can be very useful either for knowing the environment structure, to perform 

an efficient navigation or to plan appropriate evacuation routes. The fact that doors are 

topologically connected to walls by being coplanar, together with the unavoidable presence 

of clutter and occlusions indoors, increases the inherent complexity of the automation of the 

recognition process. In this work, we present a pipeline of techniques used for the 

reconstruction and interpretation of building interiors based on point clouds and images. The 

methodology analyses the visibility problem of indoor environments and goes in depth with 

door candidate detection. The presented approach is tested in real data sets showing its 

potential with a high door detection rate and applicability for robust and efficient  

envelope reconstruction. 
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1. Introduction 

In recent years, 3D building reconstruction has become a research subject of interest due to the 

increasing demand for up-to-date building models, which are requested as an input source for a variety 

of purposes.  

The application area for which buildings are reconstructed determines both geometric detail and 

semantic content of the models. On the one hand, realistic 3D city models are gaining importance 

because three-dimensional virtual reality is much more efficient than 2D data for applications such as 

urban planning, global energy analysis—e.g., heat island effect or wind tunnels—evacuation routes or 

city navigation for tourism purposes. In these large-scale applications, the representation of the exterior 

of buildings in the form of 2.5D elevation models or block models with textures that provide a realistic 

visualization of façades may be enough. On the other hand, there is an increasing need for highly detailed 

3D building models with information about their interior structure. The representation of building 

interiors, where we spend a great deal of our time, is important for a variety of applications from 

architectural planning, to lighting and energy analysis, crowd management or even crime scene 

investigation. Specifically, 3D modeling of building interiors including details such as doors and 

windows is very important for applications like indoor navigation, emergency route planning and crisis 

management in large indoor environments 

Representation of the modeled objects can be carried out according five different levels of detail [1]. 

The coarsest level of detail is the LoD-0 in which buildings are defined as 2.5D representations. The 

LoD-1 represents building as prismatic block models with vertical walls and horizontal roofs while in 

the LoD-2 the shape of roofs is represented as well as walls and balconies. LoD-3 is the most detailed 

level for exterior description in which holes such as windows and doors are included and finally,  

LoD-4 includes the representation of building interiors. 

As manual creation of a building model is a time-consuming process that requires expert  

knowledge [2], reconstruction tools based on the interpretation of measured data, such as LiDAR data 

and images, are frequently used to automatically extract building geometry. 

There is a wide range of approaches for automatically modeling buildings with the coarsest levels of 

detail, from LoD-0 to LoD-2. Regarding the reconstruction of large-scale cities with a LoD-2, a review 

of a number of approaches for city modeling and building reconstruction, in order to detail the state of 

the art of the techniques and their grounds, is available [3]. Recently, the reconstruction of buildings and 

their immediate surroundings from Terrestrial Laser Scanner data was presented in [4], resulting in  

LoD-2 models for solar analysis purposes. Nevertheless, recent efforts aim to enrich building  

models in order to obtain more complex and realistic representations (LoD-3 and LoD-4). While in the 

first case (LoD-3), façades have to be modelled in a more complex way by including windows,  

doors and other protrusions such as balconies, corbels, etc.; in the second case, building interiors have 

to be reconstructed.  
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The challenge in indoor modeling is automated reconstruction of LoD-4 models. This requires 

methods that can accurately reconstruct structural elements (walls, floors and ceilings) in presence of 

noise, occlusion and clutter, but can also robustly recognize and model important details, particularly 

doors. Existing approaches rely mostly on point clouds as the main source of data for geometric 

reconstruction of interiors, and recognize doors as openings in the point cloud. This requires that the 

doors are open during data acquisition, and eventually some closed doors will be missed during the 

reconstruction. The contribution of this paper is to propose an approach based on combined use of point 

cloud data, acquired by a laser scanner, and image data, captured by an off-the-shelf digital camera. We 

present a data-driven method for geometric reconstruction of structural elements using the point cloud, 

and a model-driven method for the recognition of closed doors in image data based on the generalized 

Hough transform. 

1.1. Related Work 

According to [5], reconstruction methodologies can be classified into two major categories:  

data-driven (non-parametric or bottom-up) approaches and model-driven (parametric or top-down) 

approaches. While data-driven approaches directly extract features such as points or edges from data, 

model-driven approaches use previous knowledge to search for the most appropriate model from a 

specific library [6] and fitting it to the data [7]. 

Despite the presence of significant clutter and occlusions, which frequently occur in building 

interiors, some approaches have dealt successfully with the reconstruction of indoor spaces [8,9] and 

their structural elements (walls, floors and ceilings) [10–13] from imagery and/or point cloud data. A 

good review about building reconstruction procedures according to this classification was presented  

in [14]. Therefore, this section is specifically focused on openings reconstruction.   

1.1.1. Data-Driven Approaches  

As mentioned above, data-driven techniques consider data as the unique input source for modeling 

buildings regardless of form. Therefore, they strongly depend on data quality. Since geometrical features 

are directly extracted and modeled from the measurements without previous knowledge, these 

approaches are also relatively sensitive to clutter and occlusions [15].  

When a point cloud is used for reconstruction and assuming homogeneous point cloud density, a large 

number of these approaches bases the location of openings on searching holes or low data density regions 

on the wall plane. On the one hand, windows and doors can be assumed as holes because they are usually 

not coplanar with the wall in which they are contained, especially in case of façades. Thus, after carrying 

out a segmentation process, both windows and doors can be extracted from the boundary points of the 

holes on the façade segment [16–18]. On the other hand, a laser beam usually penetrates window glasses, 

so that no laser points are reflected, causing areas with low raw laser information. [9,19] consider this 

fact for classifying point cloud voxels with a ray-tracing algorithm into three categories: opening 

(windows or doorways), occupied and occluded. Analyzing data density and classifying low-density 

areas as openings limit the scope to low-density windows and doorways.  

Other approaches are based on the use of color information. An illustration of such methods is the 

recognition and labeling of windows from thermal colored 3D point clouds [20]. As the material and the 
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thermal conductivity is different in walls and in windows, a temperature map is used for detecting 

windows and labelling them as closed, open or damaged.  

1.1.2. Model-Driven Approaches 

In contrast to data-driven methods, model-driven approaches integrate previous knowledge about 

the appearance and arrangement of object structures. They are more robust in the presence of partial 

occlusion, since they incorporate some form of knowledge about the shape of the object [15].  

Model-driven approaches have been widely used in computer vision for object recognition and 

classification in images, and most of them can be classified into two categories: generative and 

discriminative strategies. Generative based methods organize the meaningful parts of the input data 

for stochastically obtaining different models. After a predicted model is generated and comparted with 

real data, the parameters of the predicted model are modified in order to archive the highest degree of 

similarity. Discriminative based methods use statistical analysis and machine learning techniques to 

learn template characteristics from training data. The authors in [21] propose a categorization of façade 

openings, windows, doors and balconies, without supervision using Bag-of-Words models. Another 

interesting approach for window detection using Implicit Shape Models is proposed by [22]. 

Preliminary experiments on door detection using the Generalized Hough Transform (GHT) to estimate 

the parameters of rectangular shape models have been presented [23].  

1.2. Proposed Approach  

In this work, we propose an automatic approach for the reconstruction of LoD-4 models, consistent 

with a data-driven method for geometric reconstruction of structural elements using the point cloud, 

and a model-driven method for the recognition of closed doors in image data based on the generalized 

Hough transform (Figure 1). The approach starts with the segmentation of the point cloud based on a 

curvature analysis followed by a 3D region-growing algorithm. Data is provided by a Terrestrial Lasers 

Scanner with a high-resolution digital camera mounted on top. In comparison with other sensors such 

as RGB-D cameras (i.e., Microsoft Kinect), which are being explored in depth for mapping  

indoors [24], and Terrestrial Laser Scanners (TLS), which have the capability to acquire point clouds 

with higher geometric accuracy and a wider range of working distances [25]. Then, a visual labelling 

is carried out for reconstructing the building envelope. The geometry of walls is used for the 

orthoimages generation, which are the basis for the closed-door detection approach. The final step 

consists in projecting the doors extracted from the orthoimages onto the 3D building envelope in order 

to obtain the complete 3D building interior models with geometrical and identity information. 

This paper is organized as follows. Section 2 introduces data acquisition devices and data sets while 

Section 3 explains the methodology developed for the building interior reconstruction. Section 4 is 

focused on presenting the results and the discussion obtained from the application of the methodology 

to four cases of study, and finally, Section 5 deals with the conclusions of the work.  
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Figure 1. Schema of the proposed methodology for building interior reconstruction.  

2. Instruments and Data 

Data sets consist of point clouds and images obtained from a single hybrid acquisition system formed 

by a Terrestrial Laser Scanner (TLS), model Riegl LMS Z-390i (RIEGL Laser Measurement Systems 

GmbH, Horn, Austria), and a high-resolution digital camera (Nikon D200, Nikon Corporation, Tokyo, 

Japan) firmly mounted on top (Figure 2).  

 

Figure 2. An example of a complete point cloud of an indoor scene and four images partially 

covering the horizontal field of view.  

The technical characteristics of the laser device used in this work are summarized in Table 1. The 

laser scanner presents a field of view of 360° horizontally and 80° vertically, which implies missing 

information from the immediate ceiling and floor on top and under it. This fact, together with the 

complex geometry of the different indoor scenes and the presence of objects between the scanner and 

the indoor envelope that provoke occlusions, makes data acquisition from different positions necessary. 

The number of scanner positions and their location is determined by the user according to the shape 

complexity of the indoor scene, maximizing the area of interest visible from each of them.  
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Table 1. Technical characteristics of the Riegl LMS Z-390i laser scanning device according 

to the manufacturer datasheet. 

Technical Characteristics 

Measurement range  From 1 to 400 m 
Accuracy (at 50 m) 6 mm 

Repeatability (at 50 m) 4 mm 
Vertical scanner range 0–80° 

Horizontal scanner range 0–360° 
Angular resolution 0.002°–0.2° 

Measurement rate (points per second) 8000–11,000 
Laser wavelength Near infrared 

Many laser scanner devices have a photographic camera incorporated in their configuration. 

However, the TLS used in this work integrates a calibrated photographic camera on top. Although  

last-generation cameras have lower levels of noise, the adopted Nikon D200 is quiet enough for the 

purpose of the present work. On the one hand, the Internal Calibration Parameters are calculated 

following the photogrammetric calibration process of self-calibration bundle adjustment based on flat 

check pattern images [26,27]. Table 2 shows the intrinsic and the main internal calibration parameters 

of the photographic device. 

Table 2. Technical specifications of the Nikon D200 camera. 

Technical Characteristics 

Camera Model Nikon D200 
Lens Model Nikon 20 mm 
Pixel size  6.1E−6 × 6.1E−6 m 

Pixels 3872 × 2592 pix 
Focal length  3357.27 pix 

Position Principal Point 1926.24 × 1322.28 pix 

On the other hand, the External Orientation Parameters of the camera are automatically obtained 

through a point matching process using reflective targets. Therefore, the geometric relation between each 

laser point and the camera is always known. A series of coordinate systems, which define the geometric 

dependence between the sensors and a higher order reference system, are the basis of all coordinate 

transformations [28]. The origin of the local coordinate system is settled in the origin of one of the laser 

scanner positions. The acquisition procedure is analogous for every building case and consists of two 

phases: firstly, a low-resolution scanning (0.2°) of the entire scene (360° horizontally) provides data 

from the visible area from the scan position point-of-view, and secondly, a higher density scanning is 

performed on the area of interest with an angular resolution of 0.08°. The position of the scanner and the 

number of Scan Positions depend on the complexity of the interior scene.  

Generally, the Z-axis of the laser device is vertically aligned during the acquisition procedure. 

However, the reduced dimensions of building interiors make necessary to tilt the mount for completing 

the 360° of the vertical field of view of the scanner from the same position. In the first and second cases 

of study, the device was tilted with −30° and +40°, respectively.  
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Once all data sets were registered in the same coordinate system through a point matching process 

using reflective targets, they were submitted to a pre-processing step, the results of which are shown in 

Table 3.  

Table 3. Acquisition and pre-processing results. 

 Case of Study 1 Case of Study 2 Case of Study 3 Case of Study 4 

Total Scan Positions  1 4 4 1 
Tilted Scan Positions  1 (−30°) - 2 (+40°) - 

Average Error Registration - 0.0031 m 0.0034 m - 
Original number of points 1,969,622 3,745,843 5,389,396 1,296,318 

Octree  0.02 m 0.08 m 0.08 m 0.05 m 
Points after Pre-Processing 187,361 82,736 152,045 86,628 

Regarding image acquisition, the field of view of the device used allows the capture of the complete 

scene with 10 images, with a 10% overlap between consecutive pictures. All the cases of study were 

selected according to the criteria of maximizing the number and variability of closed doors for testing 

the robustness of the approach. Figure 3 shows the different kind of doors available in the four building 

interiors. While in the first, second and third cases of study there are three types of distinguishable closed 

doors, in the fourth case, there is just one. However, the last scene is still challenging because it contains 

some pieces of furniture with similar shape and size to doors.  

 

Figure 3. The first three cases of study present different kinds of closed doors. The last 

building interior (case of study 4) contains just one door but also pieces of furniture with 

closed doors. 
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3. Methodology 

This section includes the steps of the proposed methodology for the automatic reconstruction of 3D 

indoor scenes. The initial subsection (Section 3.1) includes the preceding steps required for the closed 

door extraction, which are both reconstruction of the indoor envelope and true-orthoimage generation. 

Afterwards, Section 3.2 deals with the extraction of closed doors based on the Generalized  

Hough Transform.  

3.1. Interior Envelope Generation and Orthorectification of Images  

In order to simplify the subsequent generation of a number of orthoimages corresponding to walls, 

the procedure starts with a point cloud rotation, in a way that floor and ceiling are parallel to the x-y 

plane and walls are parallel to either x-axis or y-axis, if possible. The necessary rotation angles can be 

estimated from the distribution of the normal vectors of the points. The normals are clustered using the 

k-means algorithm into three groups. The three cluster centers form a 3D rotation matrix from the x-y 

aligned coordinate system to the original point cloud coordinate system. The inverse rotation is used to 

align the point cloud with the Project Coordinate System axes (Figure 4).  
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Figure 4. Normal vectors are clustered in three groups according to the x (blue); y (green) 

and z axes (red); before (left) and after (right) the rotation procedure. 

The procedure continues with a segmentation of the point cloud based on a seeded region-growing 

method [29], by which planar surfaces that form the indoor space are detected.  

In order to minimize the effect of noise on the normal values, a smoothing is performed by averaging 

the normal vector of points in the same neighborhood (k) [30]. The point with the lowest curvature value 

is chosen as the region seed candidate for each iteration and the region is growing if an angular and a 

distance point-to-plane conditions are satisfied. Moreover, a minimum number of points in the region is 

set for filtering false positives (Figure 5, left). Afterwards, horizontal regions are automatically classified 

into “ceiling” and “floor” according to the Z component of their normal and centroid, while vertical 

regions are submitted to a visual inspection for their identification and labelling. Then horizontal and 

vertical planes are intersected in order to achieve the boundary points that define each surface  

(Figure 5, right).  
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Figure 5. The segmented regions of an indoor scene are individually shown in different 

colors (left); Once regions are identified and intersected, boundary points defining each 

surface (red color) are obtained (right).  

Building indoors are generally composed of vertical walls with rectangular shapes. Therefore, the 

four 3D boundary points that define each wall can be used as the basis for a true-orthoimage generation. 

True-orthophoto generation has been extensively studied [31,32]. In true-orthophoto generation, the 

source images are projected over a surface model taking into account its visibility. Visibility problem is 

a major computer graphics topic and several approaches have been developed in order to solve it [33,34]. 

Compared to other 3D objects, walls are relatively simple structures. If two consecutive walls form an 

angle bigger than 180°, visibility condition is not fulfilled from any point of view of the interior scene 

(Figure 6).  

  

Figure 6. The visibility problem in concave angles. 

Visibility analysis is carried out through a simple ray-tracing algorithm enough to check if walls 

forming building interiors are visible from the source images and to avoid a double mapping effect that 

occurs when a back-projection of the points is performed on a wrongly selected image-space (Figure 7). 

For each pixel in an image (i.e., wall1), a ray in the object space towards the projection center of the 

camera is defined. The remaining walls are considered as potential occlusion walls (݈݈ܽݓ௡ଶ) and, as they 

are typically vertical elements, they are submitted to a 2D Counter Clock Wise test (CCW) for knowing 

on which side of the ray are placed [35]. If boundaries of the potential occlusion walls (݈݈ܽݓ௡ଶ) are placed 
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on the same side in relation to the ray, visibility is guaranteed (blue walls in Figure 8, left). If this 

condition is not satisfied (orange wall in Figure 8, left), the location of the edges of the ray is studied. 

According to this, if the edges of the ray are placed on the same side regarding the position of the wall, 

visibility is also ensured (Figure 8, right). 

  

Figure 7. Schema of the visibility analysis. 

 

Figure 8. Schema of the CCW test. 

Thereupon, the best image-source is selected among the images, which are visible from the  

point-of-interest. In a simple case where only one image source is used to acquire color data, this step 

can be omitted. However, in cases of multiple image sources, the horizontal angle of view  

formed between the sensor position (C) and the boundaries of the wall is used for establishing a priority 

order. The optimal position for the sensor is forming an angle closest to 60°. In order to avoid the  

ghost-effect, the points on a wall share a common image-priority order unless the visibility criteria  

is not accomplished.  
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After defining the orthoimage plane and image resolution and selecting the most suitable image 

source according to a visibility criteria, RGB values are obtained through the perspective projection of 

the 3D points using a pinhole camera model [36]. Orthoimage generation is shown in Figure 9. 

 

Figure 9. Schema of the procedure of orthoimages generation. 

Lens distortion is calculated and fixed to make possible the correction of the difference between the 

actual camera projection and the camera model, which is introduced by the lens. The Interior Orientation 

Parameters are applied to the computation of the radial and decentering corrections, which are undone 

to obtain the distorted pixel coordinates. Finally, as image acquisition is done with a 10% overlapping 

between consecutive images, a Linear Transition Method is implemented in order to eliminate edge 

seams caused by a direct pixel average fusing [37]. This method can make the pixel in the overlapping 

area transitioned from the first image to the second image slowly, which provokes the smoothness of the 

transition part with no obvious edge seam. 

3.2. Closed Door Extraction 

The extraction of closed doors is carried out through an image-based algorithm applying the 

Generalized Hough Transform to the orthoimages generated in the previous step. The approach is 

invariant to scale changes and can handle reasonably small occlusions and noise.  

The Generalized Hough Transform uses a model shape to find similar patterns in an image. We use 

a rectangle as our model and store it in a so-called R-table. The R-table is essentially a look-up table, in 

which every point on the rectangle is represented by its edge orientation φ and a vector defined by (r, β) 

to an arbitrary center point (Figure 10). The φ values are used as index to look up the vectors to the 

center point.  
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Figure 10. Parameters involved in the GHT for door-candidate detection. 

Through a voting process we find rectangular patterns of edge pixels in the image. Therefore, first 

step consists on converting true color orthoimages to grayscale images, where edges are found by using 

the Canny operator. As closed doors can be assumed as rectangles vertically oriented, resulting edges 

are submitted to an orientation filter through which only horizontally and vertically oriented edge pixels 

are retained for the subsequent computation. 

The detection of rectangular candidates is carried out as follows: 

1. Construct a 4 dimensional accumulator over (XC, YC, Sx, Sy) where Sx and Sy are the scale 

parameters corresponding to width and height of a door. 

2. For each edge pixel in the image with an orientation value φ, look up the matching entry in the  

R-table and retrieve all the vectors (r, β) corresponding to this entry.  

3. Voting: for each pair of (r, β) and for different scale parameters: 

a. Calculate the coordinates of the center point (XC, YC). 

b. The coordinates of each center point and the two scale parameters are used to cast a vote in the 

4D accumulator. Local maxima in the accumulator represent the parameters of candidate 

rectangles in the image.  

In order to enforce the detection of door candidates, some additional constraints are taken into 

account: minimum and maximum width and height, doors vertically oriented, as well as distance 

between neighbor candidates.  

Given that the number of doors in each wall is not known, a higher number of bins than expected are 

searched in each orthoimage resulting in an over-detection of door candidates (Figure 11, left). In this 

search, neighbors of most voted bins are suppressed within a certain threshold for avoiding redundancy. 

Finally, door candidates are submitted to a local and global selection based on their voting rate. First, 

each orthoimage is considered individually and the bins with a voting rate inferior to a local percentile 

are deselected. Next, all orthoimages are considered together and the bins with a voting rate superior to 



Sensors 2015, 15 3503 

 

 

the global percentile are selected. In this way, the resulting doors are the most voted candidates for each 

wall in the context of the whole indoor building (Figure 11, right).  

 

Figure 11. The results of the door extraction are shown before (left) and after  

(right) the selection.  

Figure 12 shows a failure case where, after submitting door candidates (left) to the voting selection, 

the most voted candidates consist on a true and a false positive (right).  

 

Figure 12. The results of the door extraction in a failure case.  

Final step consists on projecting the rectangles detected in the orthoimages on the 3D building 

envelope in order to get the 3D coordinates of the closed doors.  

4. Results and Discussion 

4.1. Interior Envelope Generation and Orthorectification of Images 

Segmentation of building interior surfaces is carried out from the registered and filtered point clouds. 

The main results of this process are shown in Table 4. The angle threshold of region growing step is 

higher in the two first building interiors (80°) than in the third one and fourth one (75°). This is because 

the 1st and 2nd case studies are formed by walls, ceiling and floor orthogonally connected as opposed 

to 3rd and 4th cases which present some non-orthogonally connected walls. In addition, the 3rd case of 

study presents a lower value of local connectivity because it is formed by some non-connected walls 

with similar Y component. 
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Table 4. Segmentation results. 

 Case of Study 1 Case of Study 2 Case of Study 3 Case of Study 4 

Angle Threshold (ߠ௧௛) 80° 80° 75° 75° 
Local Connectivity (݀௧௛) 0.15 m 0.15 m 0.08 m 0.15 m 

Number of Segmented Regions 14 12 34 8 
Over-Segmented Residual Regions  4 2 6 0 

Surfaces Submitted to Visual 
Identification 

10 10 28 9 

Despite the grouping carried out by the region-growing step, there are residual regions that  

come from over-segmentation. A high over-segmentation rate makes the region recognition more 

difficult [30]. These residual regions are manually inspected and corrected. The estimated exploration 

time is minimal compared to a manual modeling of the whole scene. 

The final regions are manually recognized and intersected in order to create the boundary 

representation model of the scenes. These models are submitted to a geometric quality analysis in terms 

of areas and distances. According to this, the ceiling surface of each building case is selected for area 

analysis and the height and width of the first wall for linear analysis. The comparison is made by taking 

the respective point cloud as ground truth. Results are shown in Table 5. Evaluating the results, the 

median error is −0.69% and −0.28% in area and distance measurements, respectively.  

Table 5. The results of geometric quality analysis of building envelope reconstruction. 

Ceiling Case Study 1 Case Study 2 Case Study 3 Case Study 4 

Area (automatically) 15.68 m2 57.12 m2 195.62 m2 99.60 m2 
Area (ground truth) 15.69 m2 58.62 m2 194.15 m2 100.97 m2 

Error  −0.01% −2.56% +0.01% −1.36% 

Wall 1     

Height (automatically) 2.50 m 2.93 m  3.06 m 3.26 m 
Height (ground truth) 2.52 m  3.01m 3.04 m 3.23 m 

Error −0.62% −2.85% +0.49% +0.92% 

Width (automatically) 3.84 m  12.54 m  8.29 m 9.84 m 
Width (ground truth) 3.87 m 12.63 m 8.04 m 9.83 m 

Error −0.79%  −0.71% +3.12% +0.05% 

Walls are defined by four 3D boundary points ordered in counterclockwise direction, starting from 

the lower-left point from an indoor point of view. Geometry of walls is the basis for orthoimages 

generation, which is carried out considering a resolution of two centimeters because it allows a 

successive processing in reasonable time without affecting the quality of results.  

Visibility analysis is accomplished in those building cases where acquisition was performed from two 

or more scan positions. Visibility check is carried out for every pixel and scan positions are prioritized 

for each wall according to the 60° angle criteria. The most suitable scan position according to the priority 

criteria is selected for providing RGB data to all the pixels of each wall, as long as the visibility condition 

is ensured. Nevertheless, if the visibility condition is not satisfied for the most suitable scan position, the 

successive scan positions are used. The Scan Positions selected for each wall are showed in Figure 13.  
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Figure 13. Scan Position selection for each wall according to the angle prioritizing and  

pixel-visibility test. 

Finally, one orthoimage for each wall is generated according to the central perspective projection. 

Furthermore, in those cases in which two or more images are combined, edge seams are eliminated by 

applying the Linear Transition method for both horizontal and vertical overlapping. Figure 14 shows an 

orthoimage of case study 3 before (left) and after (right) edge seams elimination. 

 

Figure 14. Left orthoimage presents edge seams as opposed to right orthoimage, where 

pixels are fused making the overlapping area transited from the first image to the second 

image slowly.  

In Figure 15, orthoimages, which are the inputs of closed door extraction, are shown as textures the 

3D envelope of each case study.  
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Figure 15. 3-D building interiors are exported to Sketchup© with the resulting orthoimages. 

4.2. Closed Door Extraction 

Finally, orthoimages are submitted to the door detection approach. All orthoimages of each building 

case are processed together, so that, the input parameters are common to all of them. As explained in 

Section 3.2, orthoimages are converted to grayscale images for finding edges with Canny operator. As 

doors are assumed as rectangles vertically oriented, the resulting edges are submitted to an orientation 

filter through which 90° and 180° oriented edge pixels are selected for computation. As it can be 

observed in Figure 16, the presence of additional elements such as posters causes clutter in the edge 

image. Furthermore, the lowest contrast between door and the bottom part of the wall incurs in missing 

door boundary edges. Both the presence of additional elements in the orthoimage as well as the lowest 

contrast between door and other objects may influence the detection process. However, as GHT detects 

shapes based on a maximum analysis, it is robust to partial occlusion and clutter caused by the presence 

of additional structures in the image [15]. 

Given that the number of doors in each wall is not known, 25 bins are searched in each orthoimage 

resulting in an over-detection of door candidates. Neighbors of most voted bins are suppressed within a 

10 cm threshold for avoiding redundancy. Finally, door candidates are submitted to a local and global 

selection based on their voting rate as explained in Section 3.2. The results of each cases study are shown 

in Table 6. 
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Figure 16. Two door examples from case study 3 (up) and case study 4 (down): the input 

orthoimages (left); the resulting edge images after horizontal and vertical edge pixel 

selection (medium) and the door candidates detected (right). 

Table 6. True positives, false positives and false negatives. 

 Case Study 1 Case Study 2 Case Study 3 Case Study 4 

Minimum width (cm) 70 70 70 70 
Maximum width (cm) 100 100 100 120 
Minimum height (cm) 200 200 200 200 
Maximum height (cm) 240 240 240 240 

Door candidates 23 57 106 54 
Local percentile  95 85 85 95 
Global percentile 85 80 75 85 

Doors 3 11 9 1 
True positives 3 9 7 1 
False positives 0 0 7 2 
False negatives 0 2 2 0 

In order to analyze the results, we design an evaluation scheme based on four commonly used 

properties: precision, recall and F1-score. Precision indicates the correctness of the door identification, 

so that, true positives are evaluated with regard to total, both true and false positives. Recall represents 

the ability to identify doors correctly, where true positives are compared with existent doors in each 

building test. F1-score combines recall and precision with equal weights [38]. 
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The results of the methodology evaluation are shown in Table 7. Doors are correctly detected as true 

positives in the first and forth case study. However, in the second and third experiments, two doors are 

missing (false negatives). In reality, these false positives are detected by the GHT. However, in both 

case studies, the number of door candidates, understood as rectangles detected after performing the GHT, 

is very high due to the great color similarity between doors and walls (case study 2) and to the existence 

of furniture and curtain walls (case study 3). This fact causes that missing doors obtain a lower 

percentage of votes compared to false positives and they are excluded during the local and global 

selection. Finally, false positives are obtained in the third and fourth case studies. The main reason is the 

presence of curtain walls in third case and furniture with similar shape and size, such as cupboards, 

bookshelves, in the fourth case.  

Table 7. Recall, precision and F1-Scores for the cases of study. 

 Case Study 1 Case Study 2 Case Study 3 Case Study 4 

Recall 1.00 0.82 0.78 1.00 
Precision 1.00 1.00 0.50 0.33 
F1-score 1.00 0.90 0.61 0.50 

Finally, the resulting doors are shown as three dimensional elements included in their correspondent 

building envelope (Figure 17). 

  

Figure 17. The resulting 3D building interiors visualized in Sketchup©. 
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5. Conclusions 

The paper presents a pipeline of techniques for the reconstruction and interpretation of building 

interiors. While the point cloud is the basis for modeling the envelope of the scene, closed doors are 

extracted from the orthoimages. 

From the results, the following main conclusions can be drawn: 

• The proposed methodology optimizes the results of the 3D model by maximizing the information 

acquired without increasing acquisition time, given that both the point cloud and the 

corresponding images are captured at the same time. 

• The building interior modeling process is robust enough for envelope reconstruction without 

submitting data to a manual cleaning and thus, minimizing the processing time.  

• The visibility analysis based on a ray-tracing algorithm optimizes the generation of orthoimages 

selecting the most suitable image sources, avoiding wrong RGB projections and orthoimage areas 

without information. These high quality orthoimages are not only used for detecting doors but 

also to texture the models and create real-looking visualizations.  

• The extraction of closed doors is carried out with a robust approach to clutter and occlusions. All 

the doors are initially detected as candidates by the GHT. Even though additional constraints lead 

to results that are not 100% accurate and complete, the method can largely reduce the amount of 

manual work in modeling doors.  

• False negatives and false positives can be obtained especially if other elements with the same 

shape and size as doors are present in the building interior.  

The point cloud could be used for excluding false positives from doors with similar size and shape. 

In case of curtain walls, the point cloud density could be analyzed because windows are typically  

low-density areas. In case of pieces of furniture, a point-to-plane distance should be obtained for 

knowing the position of the candidate with regard to the correspondent wall plane. If it is coplanar within 

a certain threshold, the candidate would be a true positive.  

In summary, the combination of images and point clouds enables the reconstruction of building 

components, especially in the case of closed doors in which geometry is not enough to detect them. 
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