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Abstract: High-speed blades are often prone to fatigue due to severe blade vibrations. In 

particular, synchronous vibrations can cause irreversible damages to the blade. Blade  

tip-timing methods (BTT) have become a promising way to monitor blade vibrations. 

However, synchronous vibrations are unsuitably monitored by uniform BTT sampling. 

Therefore, non-equally mounted probes have been used, which will result in the  

non-uniformity of the sampling signal. Since under-sampling is an intrinsic drawback of 

BTT methods, how to analyze non-uniformly under-sampled BTT signals is a big 

challenge. In this paper, a novel reconstruction method for non-uniformly under-sampled 

BTT data is presented. The method is based on the periodically non-uniform sampling 

theorem. Firstly, a mathematical model of a non-uniform BTT sampling process is built. It 

can be treated as the sum of certain uniform sample streams. For each stream, an 

interpolating function is required to prevent aliasing in the reconstructed signal. Secondly, 

simultaneous equations of all interpolating functions in each sub-band are built and 

corresponding solutions are ultimately derived to remove unwanted replicas of the original 

signal caused by the sampling, which may overlay the original signal. In the end, numerical 

simulations and experiments are carried out to validate the feasibility of the proposed 

method. The results demonstrate the accuracy of the reconstructed signal depends on the 
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sampling frequency, the blade vibration frequency, the blade vibration bandwidth, the probe 

static offset and the number of samples. In practice, both types of blade vibration signals can be 

particularly reconstructed by non-uniform BTT data acquired from only two probes. 

Keywords: blade tip-timing; non-uniformly sampled signal; under-sampled signal 

reconstruction; on-line vibration; band-pass sampling 

 

1. Introduction 

High cycle fatigue (HCF) is a common failure mode of high-speed rotating blades in turbo-machinery, 

such as engine compressor and turbine blades [1]. It often induces blade cracks during the operation, 

and even catastrophic accidents. Generally speaking, blade vibrations, including synchronous and 

asynchronous vibrations, are major reasons behind HCF. In particular, when the blade frequency of 

synchronous vibrations is an integer multiple of the rotating frequency of the bladed-disk, the vibration 

amplitude of one blade will increase rapidly, which will cause irreversible damage to the blade. Thus 

nowadays it is urgent to carry out on-line blade vibration monitoring [2–18]. From vibration 

measurements, stresses induced in the blades may be determined. Action can then be taken to avoid 

harmful stresses. In this way, it is possible to predict the durability and the life of blades under 

operating conditions. 

Blade tip-timing (BTT) methods have been proposed for non-contact blade vibration monitoring for 

many years [3–6]. Their outstanding advantages over conventional strain gages are that they are  

non-contact and can online monitor all-blade vibrations simultaneously. Classical BTT sensors include 

capacitive, optical-fiber, microwave probes. Among these, optical probes have the highest resolution, 

so they have been used widely [4,6]. Methods for analyzing BTT data have been developed for a 

number of applications, such as modal parameter identification of mistuned bladed disks [13,19]. 

However, since the sampling frequency of BTT methods is determined by the rotation speed and the 

number of BTT probes, it is always lower than the Nyquist frequency, i.e., twice the maximum 

frequency of the blade vibration signal. Therefore, the vibration signals collected by BTT methods are 

always well under-sampled according to the Shannon sampling theorem [20].  

Up to now, many studies have been done on monitoring asynchronous vibrations using  

equally-mounted BTT probes. Zielinski et al. [5] used six equally-mounted probes to obtain conclusive 

vibration frequencies and amplitudes. Garrido et al. [8,9] proposed an autoregressive method to obtain 

modal parameters based on equally-mounted BTT probes. Beauseroy et al. [18] proposed a new 

method to analyze multicomponent blade vibrational signals based on groups of regularly spaced 

optical sensors. However, in these methods it was difficult to avoid aliasing due to under-sampling. In 

order to overcome this problem, Bendali et al. [13] proposed alternative methods to reconstruct 

uniformly under-sampled BTT signals for asynchronous vibrations based on the Shannon sampling 

theorem. Furthermore, Chen et al. [14,15] improved the work of Bendali and proposed a novel 

reconstruction algorithm by combining the Shannon sampling theorem and wavelet packet 

transformation. In this way, multiple accurate features of asynchronous vibrations are extracted in both the 

time and frequency domains. 
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Compared with asynchronous vibrations, synchronous ones are more dangerous to the blades. 

Unfortunately, the conventional uniform sampling method will be invalid in measuring such 

vibrations. The reason is that blade vibration frequencies will be an integer multiple of the sampling 

rate. Assuming that the bladed-disk keeps running at a constant speed, the blade tips will have 

nominally the same displacement every time they pass the probes. That is to say, the blade tip 

displacements are essentially repeated over multiple rotations. Therefore, it is nearly impossible to 

extract true vibration characteristics from the sampling BTT signals. In order to solve this problem, 

non-equally mounted BTT probes have to be used, instead of equally-mounted ones. The big 

advantage is that they can be used to measure asynchronous and synchronous blade vibrations 

simultaneously. However, how to analyze non-uniformly under-sampled BTT signals is a big 

challenge, including irregular vibration data and frequency aliasing. According to the literature, little 

work has been done on reconstructing non-uniformly under-sampled BTT signals. To address this 

knowledge gap this paper will therefore explore a novel method for non-uniformly under-sampled 

BTT data reconstruction, which should be of great use in blade vibration monitoring.  

The remainder of this paper is organized as follows: firstly, the difficulties of monitoring 

synchronous vibrations are stated in Section 2. In Section 3, a mathematic model of a non-uniform 

BTT sampling process is built and blade vibration displacements are derived. Then a reconstruction 

algorithm is proposed in Section 4 based on the periodically non-uniform band-pass sampling theorem. 

In Section 5 and Section 6, numerical simulations and experimental tests are carried out to validate the 

feasibility of the proposed method. Finally, some major conclusions are summarized in Section 7. 

2. Problem Statement  

As shown in Figure 1, optical-fiber probes are embedded non-equally into a stationary casing 

around a bladed disk. Then the times at which the blade tips pass each probe can be measured. It can 

be seen that the angles between these sensors are different, so it is a typical non-uniform BTT 

sampling process.  

 

Figure 1. Schematic of the non-uniform BTT sampling.  
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Suppose that the rotating period of a rotor is rT  and the blade vibration period is 2rT . For a 

uniform sampling, eight probes are mounted equally to monitor blade vibrations. Each probe associates 

with a time-series of blade tip displacements, called periodically uniform sample stream. As Figure 2a 

shows, eight probes are numbered sequentially, starting with one for the first probe. Obviously, the 
time interval between successive samples is constant, i.e., 3 2 2 1t t t t− = − . However, it is also easily 

found that one or more probes see the same point on the vibration waveform over multiple rotations, 

such as probes 1 and probe 5, probes 2 and probe 6, and so on. They record the same displacements 

every time the blade tips pass them. This phenomenon has two adverse effects. The first one is that 

probes 5–8 are duplicated for redundancy, which is a waste of probes. The second is that the number of 

available displacements is reduced from 8 to 4. This makes the analysis of the data become more 

difficult. In particular, when the blade vibration frequency is an integer multiple of the sampling rate, 

the number of available displacements can be reduced to 1. This decrease determines that uniform 

sampling is unsuitable to measure synchronous vibrations. 

rT rT

(a) (b) 

Figure 2. (a) The uniform sampling; (b) The non-uniform sampling.  

Conversely, an alternative non-uniform sampling occurs by using eight non-equally mounted 

probes. As shown in Figure 2b, it is also a sum of eight periodically uniform sample streams. However, 

in this way, the time interval between successive samples is not constant for all samples, i.e., 

3 2 2 1t t t t− ≠ − . Eight points on the vibration waveform are different from each other, so that enough 

available information can be provided to monitor synchronous vibrations. In fact, it allows 

measurement of both types of blade vibrations with a reduced number of probes. 

Except for the above drawback of uniform sampling, one should attach importance to another fact. 

That is, in practice, probes are hardly equally spaced in the outer casing due to minimal manufacturing 

tolerances. Reference [18] has investigated the frequency spectrum of such uniform BTT data. The 

results indicate that in this way, BTT sampling acts like non-uniform sampling. Thus, it is quite 

necessary to apply non-uniform BTT sampling to address the drawbacks of uniform sampling. 
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3. Mathematical Model of the Non-Uniform BTT Sampling 

3.1. Representation of Blade Tip Displacements 

As shown in Figure 1, BTT samples are acquired from I probes mounted circumferentially around a 

rotor with K blades. An additional probe r is mounted in front of the shaft as a reference sensor.  

There is a white marker line milled on the shaft, so that the reference sensor can measure the  

once-per-revolution signal. The relative angular position in the casing between probe 0 and probe 

(0 )i i I≤ <  is denoted as iα . Without loss of generality, the angular position of probe 0 is set to 0. 

Similarly, the location of blade k  is set as kθ . Since blades are assumed to be equally spaced, one will 

have 0 2 , {0,1,..., 1}k k K k Kθ θ π= + ∈ − , where generally 0 0θ = .  

The concept of the BTT method is to measure the arrival time of the tip of a vibrating blade as it 

passes a probe. The expected blade arrival times for a single non-vibrating blade at any probe are 

determined by the rotation speed, blade tip radius and angular position of the probe. When there are 

vibrations, any deviations from these expected arrival times indicate blade vibrations with respect to 

the hub. These deviations are recorded by each probe to calculate a time-series of blade tip 

displacements and further used to analyze blade vibration characteristics. 

Assuming that ,
k
i nt  represents the actual arrival time when the blade k  passes in front of the probe i  

at the n-th rotation, and the expected arrival time for a non-vibrating blade is denoted as ,
k

i nt . When the 

rotating speed rf  is constant, the expected arrival time can be formulated as follows [18]: 

,

1
( 2 )

2
k

i n i k
r

t n
f

α π θ
π

= + −  (1)

There is an angular deflection ,( )k
i nd t at time ,

k
i nt  due to the blade vibration. Thus one will obtain: 

, ,

1
( 2 ( ))

2
k k
i n i k i n

r

t n d t
f

α π θ
π

= + − −  (2)

Subtracting Equation (2) from Equation (1), one will have: 

, , , ,( ) 2 ( ) 2k k k k
i n r i n i n r i nd t f t t f tπ π= − = Δ  (3)

As shown by Equation (2), the sampling time ,
k
i nt depends on the signal itself. Using ,( )k

i nd t  instead 

of ,( )k
i nd t  is a feasible way to reduce the complexity of following signal processes.  

3.2. Mathematical Model of the Non-Uniform BTT Sampling  

Assuming that a real continued vibration signal of blade k  is denoted as ( )kr t . Since the following 

mathematical model is true for any blade k , an arbitrary blade can be considered. Thus, to simplify 

notations, the index k  is dropped in the following sections. Based on Equation (3), the blade vibration 

signal ( )r t  will be sampled at the time ,i nt . If the rotation speed rf  is constant, the non-uniform BTT 

sampling function can be formulated as follows:  

1 1 1 1

,
1 0 1 0

( ) ( ) ( ) ( ) ( )
2

I N I N
i

i n
i n i n r r

n
x t r t t t r t t

f f

αδ δ
π

− − − −

= = = =

= − = − −    (4)
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where δ(·) is the Dirac delta function. x(t) denotes the blade tip displacements, i.e., x(ti,n) = d(ti,n)R, 

where R is the distance between the blade tip and the rotating center. Equation (4) is a sum of I 

uniform sample streams. Here a stream associates with a time-series of blade tip displacements 

recorded by a probe. ai/2πfr represents the delay of the i-th sample stream. This delay depends strongly 

on the angular position of probe i and the rotation speed. In particular, a0/2πfr = 0.  

In practice, the blade vibration is often dominated by a single frequency. The blade response can 

then be modeled as a single degree of freedom formulation: 

0(2 )( ) j f tr t Ae π ϕ+=  (5)

where 0f  is the dominant frequency. However, the real frequency spectrum of such a blade vibration 

may have a narrow bandwidth 0B . As shown in Figure 3a, a frequency window with a bandwidth B 
and a central frequency cf  is selected to represent the blade vibration signal, where cf  is an estimated 

vibration frequency. The guard-band 0gB B B= −  is set to prevent aliasing. The lowest and highest 

positive frequencies of the window are defined as 2L cf f B= −  and 2H cf f B= + , respectively. 

Therefore the blade tip-timing sampling becomes a band-pass sampling. 

( )R f

Lf HfB
Cf

Hf− Lf−
B

Cf−

( )R f

Lf HfB
Cf

Hf− Lf−
B

Cf−

f

f

sf

 

Figure 3. (a) The original blade vibration signal; (b) The spectrum of one sample stream of 

the non-uniform sampling. 

4. Reconstruction of the Periodically Non-Uniform Band-Pass Sampling  

4.1. Mathematical Model of the Reconstruction 

Reference [21] indicated that to reconstruct any sampled signal in the time domain it is necessary to 

apply an interpolating function to the sampled signal. The non-uniform sampling comprises I uniform 
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sample streams. For each stream, an interpolating function is required, as shown in Figure 4. Thus the 

reconstructed signal can be defined as follows: 
1 1

1
1 0

( ) ( ) ( )
2 2

I N
i i

i
i n r r r r

n n
r t r S t

f f f f

α α
π π

− −

= =
= + − −  (6)

where ( )iS ⋅  is the interpolating function, 1( )r t represents the reconstructed signal.  

1 ( )Is t−

0 ( )s t

1( )s t

( )r t
1( )r t

0

0

( )
2

N

n r r

n
t

f f

αδ
π=

− −

1

0

( )
2

N

n r r

n
t

f f

αδ
π=

− −

1

0

( )
2

N
I

n r r

n
t

f f

αδ
π

−

=

− −

 

Figure 4. Reconstruction of the periodically non-uniform sampling. 

Since it is difficult to directly derive analytical solutions of interpolating functions in the time-domain, 

one could solve this problem in the frequency-domain. The Fourier transform of 1( )r t  can be 

formulated as follows: 

1

1
0

( ) ( ) ( ) i

I
jn

r i r
i n

R f f S f R f nf e α
− ∞

−

= =−∞

= −   (7)

The frequency spectrum of one sample stream is shown in Figure 3b. The original signal is marked 

by the blue color. It is easily observed that uniform sampling leads to a periodical replication of the 

original signal, and a finite number of replicas are intersected in ranges of the original signal, i.e., 

HLf f f< <  and L Hf f f− < < − . It must be noted that the aliased contribution is the same for each 

sample stream except for a different phase shift. To reconstruct the original signal, all unwanted 

replicas in these ranges must be removed such that 1( ) ( )R f R f= . 

To achieve that, the ranges of the original signal are separated into a number of sub-bands. Each 

sub-band has different intersected parts of replicas, which strongly depend on / rB f [22]. In each sub-band, 

simultaneous equations are built to ensure that all unwanted replicas sum to zero upon summation of 

all post-interpolation sample stream. It is assumed that the range of the jth  sub-band with jN  

interacted replicas is denoted as j j
L Hf f f< < . Based on Equation (7), simultaneous equations in this 

sub-band are built: 

1

,
0

1

,
0

( ) 1

( ) 0, , 0i

I

r i j
i

I
jn

i j
i

f S f

S f e n A nα

−

=

−
−

=

 =

 = ∀ ∈ ≠





 (8)
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where , ( )i jS f  represents the jth element of ( )iS f  in the corresponding sub-band. The first equation 

indicates that the original blade vibration signal in this sub-band should be remained. Other 1jN −  

equations are built to remove unwanted replicas, where A denotes the index set of unwanted replicas, 

i.e., { | ( ) ( )}j j j j
H r H L r L L r H H r LA n f nf f f nf f f nf f f nf f= + ≥ ∧ + ≤ ∨ − + ≥ ∧ − + ≤ . 

4.2. Blade Vibration Reconstruction by Using Two Probes 

Reference [22] has derived a generalization of the analytical solution of , ( )i jS t . However, it is 

relatively complicated when rB f> . The calculations of partitioning sub-bands and solving equations 

are rapidly increasing with the increases of rB f . It also requires more sample streams to obtain a 

solution of Equation (8). This requirement conflicts with the limited number of probes in BTT. In 

order to solve this problem, this paper will propose a non-uniform BTT sampling with only two 

probes. It is totally enough to reconstruct a blade vibration signal in practice.  

In Equation (8), if the number of replicas is greater than the number of probes, i.e., 2jN I> = , 

there will be no solutions for each , ( )i jS f  since alias-free interpolation requires the solution of more 

than I equations using only I  variables. In contrary, there will at least one solution for , ( )i jS f  if 

2jN I≤ = . Instantaneously, reference [22] demonstrated that jN  increases with the increases of 

rB f , i.e., j rN B f∝ . Especially, when 1rB f = , one will have 2jN = . Hence, if 0rB f B= > , that 

is, if the rotation speed is more than the narrow bandwidth of the blade vibration signal, it is enough to 

use two probes to reconstruct a blade vibration signal non-aliasing.  

Generally, three or four probes are selected in practice. In the view of this paper, only the case 

0rB f B= <  needs more probes simultaneously to reconstruct a signal. Otherwise the blade vibration 

signal can be reconstructed by using two arbitrary probes. The corresponding reconstruction formula 

has derived based on the results in [23]: 

1( ) ( ) ( ) ( ) ( )
2 2

i i

n

n n n n
r t r S t r S t

B B B B B B

α α
π π

∞

=−∞

= − + + − + +  (9)

where S  is the interpolation as follows: 

cos(2 ( ) 2) cos(2 2)
( )

2 ( 2)

cos(2 ( ) ( 1) 2) cos(2 ( ) ( 1) 2)

2 (( 1) 2)

L i L i

i

L i L i

i

mB f t m f t m
S t

BtSin m

B f t m mB f t m m

BtSin m m

π α π α
π α

π α π α
π α

− − − −=

+ − + − − − ++
+

 (10)

Here 2 Lm f B=    . The ceiling operator X    denotes the smallest integer not less than X . In 

Equation (10), important constraints should be noticed, i.e., sin( / 2) 0imα ≠  and sin(( 1) / 2) 0im α+ ≠ . 

Otherwise the interpolation will be meaningless due to the dividing zero. This way, the angular 

positions of probes should be selected carefully to avoid incorrect reconstructions. In addition, it must 

be noted that the central frequency cf  and the bandwidth B  (equal to the rotation speed) of the 

frequency window should be known a priori. Generally, the central frequency cf  can be estimated by 

FEM methods or modal frequency identification algorithms. 
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5. Numerical Simulations  

The reconstruction performances of non-uniformly under-sampled BTT data will be evaluated in 

terms of the sampling frequency, the blade vibration frequency, the blade vibration bandwidth, the 

probe static offset and the number of samples. Since the blade vibration is a narrowband signal, in 

order to provide more insight, the vibration signal in these simulations is simply replaced by a typical 

band-pass signal, i.e., 0( ) sin ( )sin(2 )cf t c B t f tπ= [16]. All conclusions are also established for real 

blade vibrations. With the setting of 0 = 50 Hz,  = 827 HzcB f , Figure 5 shows the frequency spectrum 

of this original signal. The related simulation parameters of BTT are shown in Table 1. In this case, the 

individual sampling rate will be equal to the rotating speed, i.e., 5000 / min 83.3 Hzrf n= = .  

The aliasing of under-sampling is evaluated first. The frequency spectra of all three uniform sample 

streams with 83.3 Hzrf =  are shown in Figure 6. The curves of various probes are the superposition 

of two replicas of the original signal with different phase shift, which are significantly different due  

to aliasing. 
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Figure 5. The frequency spectrum of the original signal.  

Table 1. Experimental Setting. 

Parameters  Properties  

Material of the bladed-disk  Type 45 steel  
The number of blades  16 

The length of each blade  45 mm  
The width of each blade  20 mm  

The thickness of each blade  2 mm  
The distance of the blade tip to the center  95 mm  

The rotating speed  5000 rpm  
The angular position of probe 1 0° 

The angular position of probe 2 120° 

The angular position of probe 3  240° 
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Figure 6. The frequency spectra of sample streams with 83.3 Hz.rf =  

5.1. Definition of the Reconstruction Error  

In this section, no-uniformly under-sampled BTT signals from Probes (1, 2) are used to reconstruct 

the original signal. Uniform BTT signals from probes (1, 2, 3) are also used to reconstruct the original 

signal based on the Shannon sampling theorem [14,23]. Compared results between reconstructed 

signals and the original signal are shown in Figure 7. The corresponding local logarithmic 

reconstruction error [14] is also shown in Figure 7, defined by: 

1( ) log( ( ) ( ) )e x r t r t= −  (11)

It can be easily found that the reconstructed signals by Probes (1, 2) are proximate to the original 

signal. The corresponding local logarithmic reconstruction error is relatively small and uniform in 

comparison with that of the uniform reconstruction. Since interpolations require many terms of 

samples to be evaluated, using a finite number of samples will affect the accuracy of the reconstructed 

signal, especially the local signals close to the start and end of samples. The uniform reconstruction 

suffers more loss since the kernel function sin ( )c •  used by the Shannon sampling theorem is known to 

decay very slowly. However, a promising way out is to apply a time-limited reconstruction kernel 

function [13,16] to replace the sin ( )c • function so that only few samples have to be involved. 
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Figure 7. Reconstructed signals and local logarithmic reconstruction errors. 
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Figure 8 shows frequency spectra of reconstructed signals and the original signal. The non-uniform 

reconstructed signal is almost as the same with the original signal. However, a mutation still occurs in 

the boundaries of the selected frequency window.  
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Figure 8. Frequency spectra of reconstructed signals.  

5.2. Reconstruction Error Affected by the Bandwidth 0B  

In this section, simulations are done to estimate the reconstruction error affected by the 
bandwidth 0B . In Equation (9), the bandwidth B of the frequency window depends on the sampling 

rate rf , i.e., 83.3 HzrB f= = . Setting 0 100 HzB B= > , the corresponding reconstructed signals in the 

time-domain and frequency-domain are shown in Figures 9 and 10, respectively.  
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Figure 9. Reconstructed signals and the original signal with B0 = 100 Hz for (a) the  

non-uniform sampling and (b) the uniform sampling. 
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Figure 10. Frequency spectra of reconstructed signals and the original signal with B0 = 100 Hz. 

Obviously, there are significant differences between the original signal and the non-uniform 

reconstructed signal. The reconstruction is aliasing. However, the reconstruction error of the uniform 

reconstructed signal is smaller than that of the non-uniform one. This is because the uniform sampling 

using three probes has a wider bandwidth 1B  of the frequency window, where 1B B> . In order to 

obtain a non-aliasing reconstructed signal for this case, there are two feasible ways. First, one can 

increase the rotating speed to increase the bandwidth B. Second, if increasing the rotation speed is not 

allowed since it will change the blade vibration characteristics, probes could be added to ensure there 

are solutions for , ( )i jS f  in Equation (8) when rB f> . 

5.3. Reconstruction Error Affected by the Vibration Frequency 0f  

The blade vibration frequency 0f  is an important parameter reflecting the health of a blade. It is 

often estimated by various methods [7,8,11]. However, the uncertainties between estimated value 0f  

and the original one 0f  may cause a severe reconstruction error. The blade vibration frequency is set as 

0  827 Hzf = . The estimated frequency is assumed as 0 800 Hzf = , so that the central frequency is 

selected as 0  800 Hzcf f= = . The uniform and non-uniform reconstructed signals are shown in  

Figure 11. The non-uniform reconstruction error is relatively large, since the frequency spectrum of 

this signal has shifted from the original position as shown in Figure 12. It has become a superposition 

of a replica and the original signal. In contrast, the uniform reconstruction has little changes in 

comparison with that shown in Figure 7b. In this case, the bandwidth 1B  of the frequency window of 

the uniform reconstruction is wide enough, such that the original signal still locates at the window 

range 1 1[ / 2, / 2]c cf B f B− +  as shown in Figure 12. For non-uniform sampling, an adjustment of  

the estimated frequency should be proposed to reduce the reconstruction error, which will be the  

next work. 
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Figure 11. Reconstructed signals and the original signal with  800 Hz.cf =  
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Figure 12. Frequency spectra of reconstructed signals with 800 . Hzcf =  

5.4. Reconstruction Error Affected by the Number of Samples  

In practice, a reconstruction error will occur since only a finite number of samples are used to 

reconstruct a signal based on Equation (9). In order to reduce this error, frequency spectra of 

reconstructed signals with various numbers of samples are investigated in Figure 13. To identify 

different curves, each curve is shifted by 100 Hz from each other. It is easily found that with the 

increases of the number of samples, the reconstructed signal is more approximate to the original signal. 

Generally, 200 samples of each uniform sample stream are enough to reconstruct the original  

signal approximately. 
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Figure 13. Frequency spectra of reconstructed signals with various numbers of samples. 

5.5. Reconstruction Error Affected by the Probe Static Offset 

The accurate reconstruction also depends on the accuracy of angular positions of probes. Setting the 
probe static offset 2iαΔ = ° , frequency spectra of reconstructed signals are shown in Figure 14. The 

significant reconstruction error indicates the probe static offset due to manufacturing tolerances should 

be kept minor. 
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Figure 14. Reconstructed signals with the probes offset in (a) time-domain and  

(b) frequency-domain. 

5.6. Summary  

In this section, the aliasing of under-sampling has been evaluated. Then the reconstruction 

performances are evaluated in terms of the blade vibration frequency, the blade vibration bandwidth, 

the probe static offset and the number of samples. The results show that the proposed method is 

feasible for reconstructing original signals by using more than 200 samples of each probe. 
Additionally, assuring that the original blade vibration frequency 0f  locates within the specified 
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frequency window [ , ]L Hf f  is very important to decrease reconstruction errors, and probe static offsets 

should be kept small too.  

6. Experiments  

As shown in Figure 15, an experimental set-up is built to validate the feasibility of the proposed 

method. In order to compare with the uniform sampling, three optical-fiber probes are embedded 

equally in the circular bracket to sample arrival times. Using two arbitrary probes forms a non-uniform 

sampling. The additional optical-fiber probe is placed close to the rotating shaft for sampling  

reference time.  



Figure 15. The test rig.  

Other detailed experimental parameters are shown in Table 1. The blade vibration frequency is 

estimated by FEM simulations, i.e., 0 827 Hzf = , such that the central frequency is selected as 

0cf f= . A long time test is done to collect at least 3000 samples. Four-channel time impulse signals 

are collected and all-blade tip displacements are calculated based on Equation (3). Here vibration 

signals of Blade 0 are considered. The frequency spectra of all three uniform sample streams are 

shown in Figure 16. The peaks of the spectra are located at 0f = . Based on the sampling theorem, the 

blade vibration frequency can be inferred as 0 r rf nf f nf= + = .  
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Figure 16. The frequency spectra of sample streams. 
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The reconstructed signals from various probes are shown in Figure 17. The reconstructed signal 

curves using probes (1, 2) and probes (1, 3) are similar. However, the curve using probes (2, 3) is not 

so precise. The measurement noise and probe static offsets forced on these probes could induce 

significant reconstruction errors. These errors have been also investigated in [21,24]. The results in 

these papers could be further used to optimize the reconstruction process. We will also focus on 

decreasing these harmful impacts in our future work. 
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Figure 17. Reconstructed Signals. 

Additionally, the uniform reconstructed signal is also different from the non-uniform one in the 

time domain as shown in Figure 17. Nevertheless, the frequency spectra in Figure 18 show that the 

blade vibration frequency 0 833.5 Hzf =  can be precisely detected from these two different 

reconstructed signals, which validates the feasibility of the proposed method. However, it must be 

noted that different notable frequencies exist nearby 833.5 Hz, which causes reconstructed signals to 

be distorted. These differences are dominated by the measurement noise propagated in these two 

different approaches, therefore, to improve the signal-to-noise ratio and optimizing the reconstruction 

process is very important, which is one key point of our future work. 
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Figure 18. Frequency spectra of reconstructed signals.  

7. Conclusions  

The blade tip-timing method has become an important non-contact way to monitor blade vibrations 

online. In order to obtain accurate vibration characteristics, two key points are important. First, it is 

well known that under-sampling is an intrinsic drawback of BTT methods. Thus a signal 

reconstruction based on BTT data is required to solve this bottleneck problem. Second, non-equally 

mounted probes have been used to measure synchronous and asynchronous vibrations instantaneously. 

However, nowadays little work has been done on reconstructing non-uniformly under-sampled BTT 

signals. In this paper, a novel reconstruction of non-uniformly under-sampled BTT data is proposed 

based on the periodically non-uniform sampling theorem. Firstly, all-blade vibration displacements 

using optical-fiber probes are calculated based on BTT methods. Then a mathematical model of a  

non-uniform BTT sampling process is built. It can be treated as the sum of certain uniform sample 

streams. For each stream, an interpolating function is required to prevent aliasing in the reconstructed 

signal. To achieve that, sub-bands are defined in the range of the original signal. Each sub-band has 

different intersected parts of replicas of the original signal. Next, it builds simultaneous equations of all 

interpolating functions in each sub-band and ultimately derives the solutions to remove unwanted 

replicas of the original signal caused by the sampling. In the end, numerical simulations and 

experiments are done to validate the feasibility of the proposed method. The main results are 

summarized as follows:  

1. A non-aliasing reconstruction of non-uniformly under-sampled BTT data based on the 

periodically non-uniform sampling theorem is presented.  

2. The accuracy of the reconstructed vibration signal depends on the sampling frequency (the 

rotation speed), the blade vibration frequency, the blade vibration bandwidth, the probe static 

offset and the number of samples. 

3. In practice, a blade vibration signal can be particularly reconstructed by non-uniformly under-

sampled BTT data acquired from only two probes if the blade vibration frequency of the blade 

is known in advance. 
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