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Abstract: Most simulation-based noise maps are important for official noise assessment but 

lack local noise characteristics. The main reasons for this lack of information are that official 

noise simulations only provide information about expected noise levels, which is limited by 

the use of large-scale monitoring of noise sources, and are updated infrequently. With the 

emergence of smart cities and ubiquitous sensing, the possible improvements enabled by 

sensing technologies provide the possibility to resolve this problem. This study proposed an 

integrated methodology to propel participatory sensing from its current random and 

distributed sampling origins to professional noise simulation. The aims of this study were to 

effectively organize the participatory noise data, to dynamically refine the granularity of the 

noise features on road segments (e.g., different portions of a road segment), and then to 

provide a reasonable spatio-temporal data foundation to support noise simulations, which 

can be of help to researchers in understanding how participatory sensing can play a role in 

smart cities. This study first discusses the potential limitations of the current participatory 

sensing and simulation-based official noise maps. Next, we explain how participatory noise 
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data can contribute to a simulation-based noise map by providing (1) spatial matching of the 

participatory noise data to the virtual partitions at a more microscopic level of road networks; 

(2) multi-temporal scale noise estimations at the spatial level of virtual partitions; and (3) 

dynamic aggregation of virtual partitions by comparing the noise values at the relevant 

temporal scale to form a dynamic segmentation of each road segment to support multiple 

spatio-temporal noise simulations. In this case study, we demonstrate how this method could 

play a significant role in a simulation-based noise map. Together, these results demonstrate 

the potential benefits of participatory noise data as dynamic input sources for noise 

simulations on multiple spatio-temporal scales. 

Keywords: participatory sensing; noise simulation; virtual partition; spatio-temporal  

data organization  

 

1. Introduction 

In urban areas, noise pollution has become a serious environmental problem that adversely impacts 

the health of the population and degrades its quality of life [1–3]. To understand the effects of noise 

pollution, some standard data collection practices have been performed to support noise simulations, 

which serve as input for future decision-making [4,5]. Currently, the major sources of noise data used in 

the simulations are calculated from daily statistics regarding traffic volume or collected at predefined 

locations. These discrete collections are usually expensive and time consuming, which results in low 

update frequency for noise simulations (e.g., 5 years for the UK [6]) and makes it difficult to analyze the 

noise impact at different spatio-temporal granularities. 

Advances in Information and Communication Technologies (ICTs) especially sensors and sensor 

networks are producing a quite different urban environment that we have experienced hitherto [7], 

leading to a transformation of the cyber and real cities into smart cities [8]. As sensors can be integrated 

into nearly all parts of the real world, sensor-based sensing is at the heart of smart cities [9]. Hereinto, 

sensor-rich smart phones have made possible the recent birth of the mobile sensing research area [10]. 

A mobile sensing system (MSS) could be simply regarded as a user-level application (app) running on 

the phone to read data from an internal sensor in the phone, or external sensors in the wireless sensor 

network (WSN) and then reporting the sensed data to the Web. As a type of environmental-centric and 

human-based MSS, mobile device-based participatory sensing [11] has been gradually applied for 

collection of actual noise data with multiple granularities in space and time to improve the update 

frequency and reduce the cost of data collection for noise mapping. However, participatory data are 

generally contributed by volunteer participants at arbitrary locations and times in most cases [12]. 

Consequently, collected samples of noise measurements are randomly distributed in space and time, thus 

making processing and management of these data difficult, especially for the purpose of supporting noise 

simulations. Therefore, effective organization and management of these participatory data are needed to 

further support the data input for noise simulations to improve noise mapping [6,13]. 

Within the context of the sensors and smart cities, the purpose of this study was to provide a 

methodology to bridge noise simulations and participatory noise monitoring and thus to facilitate more 
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rational simulation results. We first present a multi-stage method to coordinate participatory noise data. 

In this method, the granularity of the noise data on road segments can be dynamically refined to provide 

a reasonable spatio-temporal data foundation to support noise simulations. The multi-stage method 

includes three stages of spatial matching, dynamic estimation of noise data at multi-temporal scales and 

dynamic segmentation of road segments based on spatio-temporal aggregation of participatory noise 

measurements. Taking the campus of the Chinese University of Hong Kong as a case study, dynamically 

processing, organizing and refining noise information on road segments were performed on different 

temporal scales. Furthermore, a dynamic spatio-temporal database was formed with the support of 

participatory sensing approach; this database can be fed into simulations as the ground truth to improve 

noise mapping. A comparison of the results demonstrated the potential benefits of participatory noise 

data as dynamic input sources for noise simulations at multiple spatio-temporal scales, especially for 

reflecting the short-term local variations in noise pollution. 

To this end, this paper was organized in the following manner: the related works are introduced in 

Section 2. Section 3 provides the methodology for coordinating the participatory noise data to form a 

dynamic spatio-temporal database to support noise simulations. Experimental results and discussions are 

presented in Section 4. Finally, Section 5 provides the conclusions of this study and commons  

on future prospects. 

2. Related Works 

Noise simulations can help to obtain global trends of the urban soundscape and to provide an 

indication of the actual citizen exposure to noise levels [14]. Many cities in developed countries have 

applied noise simulations in noise assessments [4,15,16]. Currently, two main ways of collecting the 

input noise data exist: using sound level meters to perform field measurements at predefined locations 

and estimating daily traffic volumes. For field measurements, the conventional process of collecting 

noise data is expensive and time-consuming. For example, Madrid’s Environmental Administration 

operates the largest urban noise-monitoring network, which is based on 4395 measuring points [17]. 

Such simulations can only provide the general noise conditions of an entire region during a time period; 

it is difficult to reflect short-term, local variations in noise pollution, particularly for accidental pollution 

peaks. The second method, which uses estimates of daily traffic volumes, generally relies on outdated 

statistics for traffic-related noise from road, rail and air traffic, and it is difficult to reflect the up-to-date 

noise levels in real scenarios. For example, a map from January 2013 may rely on outdated traffic volume 

statistics from 2008. Thus, because of the limited number of data measurements and missing noise 

sources, inaccurate simulation results are inevitable when using existing methods, despite the use of 

accurate landscape models and simulations. Moreover, increasing the amount of data collected by using 

more sound level meters and manpower is too expensive and does not scale [18].  

The concept of participatory sensing was first introduced by Burke et al. [11] and has a wide range 

of applications, such as monitoring the performance and environment of a cyclist [19] and predicting the 

arrival time of a bus [20]. The mobile sensors carried by people (e.g., microphones and GPSs [21]) can 

be organized as external sensors in a WSN; these sensors have the potential to monitor and estimate 

noise pollution [22]. However, the uncontrollable procedure of data collection leads to uncertainties in 

the monitoring tasks and had an adverse effect on the management/use of participatory sensing  
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data [12,13]. To guarantee a high level of trustworthiness for sensed data, two types of efforts are 

important here. On the one hand, following the framework of human-centric wireless sensor networks 

(HWSN) [23], participatory sensing-based data collection is allowed to present the right tasks to the right 

participants; data gathering is triggered on-demand by a user request and matched with the suitable 

monitoring tasks. In this framework, human-based mobile sensors can act as the nodes of the HWSN, 

thereby reducing the energy consumption of the nodes and protecting the privacy of users’ activities and 

locations. On the other hand, participatory sensing can be performed as measurement campaigns that let 

volunteers measure data along a fixed route at predefined times to minimize data redundancy and avoid 

uncertain data; however, this method limits the possibility for widespread use of participatory sensing 

data. NoiseTube [24] and Ear-phone [6] are two notable participatory sensing mobile applications that 

have been used to generate collective noise maps via aggregation of volunteer measurements. Such 

participatory sensing applications specialize in collection and visualization of noise data, and the noise 

data are directly organized according to sequences of spatio-temporal points to facilitate representation 

of the raw data on maps [25,26]. However, considering that the participatory noise measurements are 

collected randomly in space and time, and that the data sets can be sparse or incomplete, more samples 

and more sophisticated statistical methods are required to produce credible results, especially for the 

purpose of supporting noise simulations. Some supplementary technologies to enhance the potential of 

the available data have been proposed, Examples include the spatio-temporal index of mobile data [27], 

generalizations from trajectory data for efficient pattern discovery [28], and data aggregation to protect 

privacy [29]. The ear-phone project has particularly investigated the feasibility of two sensing strategies, 

namely the projection method and the raw-data method, for reconstructing the complete noise data from 

incomplete samples [6]. Although such formal methods can take advantage of the availability of 

crowdsourcing sensors to estimate the missing data [30], they did not explore the spatio-temporal 

correlations among the participatory data that may be lost due to the inappropriate approximations of the 

spatial and temporal properties of the data. For example, noise measurements from participants were 

distributed unevenly with variable densities, and their values may differ from each other at the same 

location but at different time periods. In this regard, more focus should be placed on organizing noise 

information with multiple spatiotemporal granularities to support simulated analysis of the uneven 

spatiotemporal coverage of noise pollution. Moreover, previous methods have rarely taken participatory 

noise data as dynamic input sources for noise simulations on multiple spatio-temporal scales. An 

effective data coordination method would provide statistics obtained from measurements and extract 

local features with high granularity in space and time, which would further ensure well-organized results 

to support official noise simulations. 

As the trend of “combining networked sensors with dynamic information flows into our daily lives” 

is becoming more feasible and affordable [31], a merging of professional simulation and participatory 

monitoring methods can be valuable under specific circumstances, and can benefit both citizens  

who are progressively raising people’s awareness of the environmental issues at hand and official 

assessments [32]. Given the above-mentioned facts, the purpose of this study was to provide a 

methodology to bridge noise simulations and participatory noise monitoring and thus to facilitate more 

rational simulation results. The main idea was to effectively organize the participatory noise data in a 

manner such that the granularity of the noise features on road segments can be dynamically refined, and 

then provide a reasonable spatio-temporal data foundation to support noise simulations.  
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3. Methodology 

In this section, we first introduce a multi-stage method for coordinating the participatory noise data. 

In this method, there are three stages: spatial matching; dynamic estimation of noise data at  

multi-temporal scales and dynamic segmentation of road segments based on the spatio-temporal 

aggregation of participatory noise measurements, in terms of dynamically processing, organizing and 

refining noise information on each road segment at different temporal scales; and construction of a 

dynamic spatio-temporal database with the support of participatory data-based noise simulations  

(see Figure 1). 

 

Figure 1. Framework of the multi-stage method. 

Stage I: Spatially Matching Noise Data to Road Networks 

The basic spatial positioning component has three hierarchies, namely, geometric representation, 

semantic road networks, and spatial matching (see Figure 2). 
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Figure 2. Spatial positioning components: geometric representation, semantic road networks, 

and spatial matching. 

The geometric representation hierarchy refers to the basic structures of geometric primitives to 

support the construction of road networks. First, the noise data collected dynamically were abstracted as 

a multi-dimensional feature, which included spatial (3D coordinates), temporal, and attribute 

dimensions. The corresponding data structures included PersonID, RoadSegmentID, ID of the linear 

index on road segments, X, Y, Z, dB(A) value, and Time. To spatially match the noise data to a road 

network, the structure of the arc-node can be used as the basic geometrical expression of road networks. 

Furthermore, the linear index is organized to further subdivide a road segment (arc) into more detailed 

divisions (virtual partitions) to link it with efficient noise data collection. 

The semantic road network hierarchy includes the road network, road segments, and virtual partitions 

and refers to a topological description of road networks. The traditional model structure of a road 
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network at the semantic level is road network-road segments. We refer to further partitions of road 

segments as virtual partitions (Figure 2). Specifically, a virtual partition in geometry refers to an initial 

partition of a road segment at equal geometric intervals, and the partition associates noise values at 

different temporal scales. For example, suppose that noise data were collected every second in which an 

ordinary person can walk a distance of 0.75–0.8 m; then, an initial virtual partition with a spatial 

granularity of 0.75–0.8 m can be generated to match the noise data. Thus, the road segment was 

subdivided into multiple virtual partitions to refine the noise data on a microscopic level. This partition 

further provided the basis for the dynamic estimation of noise values on the same road segment, which 

helped to identify spatial-temporal differences in noise values on the segment. 

The spatial matching hierarchy helps to integrate dynamic noise information in a linear measure  

(e.g., virtual partition) into base road networks and refers to the process of spatial matching of the 

locations at which noise data were collected with their adjacent road segments (virtual partition). 

Considering the noise data near the road as the data source, the spatial relationships between dynamically 

collected noise data and the nearest roads must be established. The first step was to build a cylindrical 

buffer zone with the central line of the road (virtual partition) as its axis and the width of the road as its 

radius. The next step was to perform buffer analysis (which is the most commonly used method in the 

GIS field) to establish the spatial inclusion relation between the locations at which the noise data were 

collected and the cylindrical buffer zone. Thus, it enabled multiple sets of noise information to be 

associated with any portion of a linear road segment. In addition, invalid data (e.g., if the distance is too 

far from the buffer zone of the road central line) could be removed to reduce the memory burden.  

Stage II: Estimation of the Noise Level at Multi-Temporal Scales  

Noise information found at the same location can be a noise value at one time stamp or a set of values 

during a time period, which could be used to estimate the noise values at different temporal scales, such 

as seconds, minutes, hours, workdays, months, and years. To estimate each virtual partition of a road 

segment (Figure 3), the noise level at a given time period can be calculated by combining noise 

contributions from the participatory measurements and the initial traffic volume of the road segment 

using the following equation: 

୘ܮ = 10 × log	( ଵே೅ × (∑ 10ಽ೔భబ௡௜ୀଵ + (்ܰ − ݊) × 10ಽ೏೐భబ )), dB(A) (1)

The equation used here is derived from the ISO 9612:2009. Noise levels on different timescales for 

all virtual partitions were estimated accordingly. Here, LT is the predicted noise level for a specific period 

of time (T), and T refers to the different scales (e.g., hours, days and months). NT refers to the ideal total 

counts of noise acquisition during a given time period; it can be calculated as the time period divided by 

the time intervals of the dynamic acquisition of noise measurement. n refers to the actual total counts of 

the data measurement during the given time period. However, it only takes valid measurements into 

account. Li refers to the value of the noise measurement at the time i, where i = 1,2,3,…, NT. Lde refers 

to the default value for the noise data. It was used to fill in the gaps of data collection, i.e., when no data 

were collected at a specific time. Lde could be obtained from the initial noise database (see Section 4 for 
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more details), which was calculated using the traffic volume of the road segment, or derived from actual 

measurements obtained in fieldwork. 

 

Figure 3. The process of dynamic estimation of noise levels at multi-temporal scales. 

Stage III: Dynamic Segmentation of Road Segments in Different Time Periods 

The final stage of the calculation process was to arrive at the actual partition of the road segment at 

different time periods, which formed the dynamic segmentation of each road segment based on merging 

of adjacent virtual partitions via a comparison of the noise values at the relevant temporal scale. 

According to the description of a perceptible change in noise under normal conditions [33], we selected 

the minimum perceptible difference (3 dB(A)) as the justified threshold value to partition the estimated 

noise values. The actual partition process is described in the algorithm presented in Table 1: 
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Table 1. The algorithm to determine the set of actual partitions in a road segment. 

Algorithm 1 to determine a set of actual partitions in a road segment 

Function Determine_actual_partitions 
Input: V = [V1,V2,V3,…Vn]; P = [P1, P2, P3,…Pn]; Min_sup = minimum perceptible difference 
of noise value; i = 1; m = 1; Atemp = (P1,V1) 
Begin 

while ( i less than n) 
 if (|Vi - Vi+1| less than or equal to Min_sup) 

if (both |maximum noise value in Atemp -Vi+1| and |minimum noise value in 
Atemp -Vi+1| less than or equal to Min_sup ) 

push (Pi+1,Vi+1) into Atemp; 
i = i + 1; 

else 
push (Pi+1,Vi+1) into Atemp; 
m = m + 1; 
i = i + 1; 

 End if 
 else 

push (Pi+1,Vi+1) into Atemp; 
m = m + 1; 
i = i + 1; 

 End if 
Assign Atemp to Am; 

End while 
End function 
Output: A= [A1,A2,A3,…Am] 

As shown in Figure 3 and Algorithm 1, a set of virtual partitions in one road segment is indicated by 

P = [P1, P2, P3, …, Pn]. A noise set, which is expressed as V = [V1, V2, V3, …, Vn], was then built using 

the selection of noise values in a required time period. The temporary aggregation Atemp was used to 
establish an actual spatial aggregation, which has to be initialized as (P1,V1)by the first virtual partition 

P1 before the comparison of the noise values can be performed. As output, the set of actual partitions to 

be established is represented as A = [A1, A2, A3, …, Am]. 

Furthermore, the dynamic merging of neighboring virtual partitions was a repeated process. First, 

based on the temporary aggregation, the next virtual partition Pi+1 and its associated noise value Vi+1 was 

selected as targets to be merged. The value Vi+1 was then compared with the value Vi of the last 

neighboring virtual partition Pi and with the maximum and minimum value of all noise values of virtual 

partitions in Atemp. The next neighboring virtual partition Pi+1 was combined into the current temporary 

aggregation Atemp if the difference between the two values was less than Min_sup. Otherwise, an actual 

spatial partition Am was established, and a new temporary aggregation Atemp was initialized by (Pi+1, Vi+1). 

This process was repeated until merging of the virtual partitions on the entire segment was completed.  

In this manner, the above process supported the dynamic partitioning of road segments according to 

the noise values at a given temporal scale. Detailed noise data sets for a given time period may be directly 

extracted and used as inputs for simulation-based noise mapping. 



Sensors 2015, 15 2274 

 

 

4. Experimental Results and Discussion 

The main aim of this study was to collect and analyze participatory noise data that supported noise 

simulations and mapping. Using the methodology presented in the previous section, we first performed 

measurements and data processing to collect noise profiles, which were then fed into a simulation as the 

ground truth. Next, we evaluated the simulation results and noise analysis in terms of reconstruction 

accuracies. For example, using the campus of The Chinese University of Hong Kong as a case study, the 

main road segments were selected to monitor the dynamic noise data, and 20 participants joined the 

distributed measurements of noise data to cover the main road segments in the study area. For the noise 

map simulation, we used Cadna/A [5], which is a professional noise simulation software that is 

compatible with the GIS data, as the simulation platform. 

4.1. Data Collection and Dynamic Processing 

Two-step data collection processes were performed during the experiment. We built a data server 

based on the open-source AirCasting [34] platform to facilitate the recording, localization and 

visualization of real-world noise measurements from volunteers (Figure 4). The data server was 

supported by a noise database, which initially stored the default noise values of the road segments to 

minimize biases in noise estimation caused by gaps in data collection. The default noise values were 

classified into four types of timescales (hours, days, months and years) and calculated as the average 

traffic volume for each timescale on main road segments, which were usually used to calculate traffic 

noise in cases of insufficient data sources.  

 

Figure 4. Participatory noise information stream for the main road networks collected by 

volunteers via the CUHK noise server. 
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Furthermore, a dynamic collection process of noise data was performed on the CUHK campus by 20 

participants using their personal mobile phones with an app named “ISEISense”. The app is based on 

the AirCasting Android client, which is an open-source platform for recording, mapping, and sharing 

health and environmental data using smart phones. The widespread coverage in space and time has made 

smart phones a suitable vehicle for the collection of noise data. To facilitate the measurements in this 

experiment, we embedded our calibration algorithm in the ISEISense app to directly obtain accurate 

sample data. Once installed in the smart phones, ISEISense collects local sound level by the internal 

sensors (i.e., microphones) on the phone. The collected data can be directly sent to the CUHK noise 

server via a 3G connection during the measurement session, or via WiFi at the end of the entire 

measurement session to reduce the energy consumption (to increase battery life). In the experiment, the 

time intervals for dynamic acquisition of noise measurements were 5 s, and the corresponding virtual 

partition was set to be 5 × 0.8 m. Each decibel measurement from the participants at the time intervals 

was subsequently matched to an adjacent virtual partition and stored in the noise database via the  

noise server.  

4.2. Position, Estimation, and Dynamic Aggregation 

At a deeper level, Figure 5 shows an example of the noise estimation of each virtual partition in which 

all of the noise values received within a specific time period were involved. By choosing the time 

intervals of the dynamic acquisition of the noise measurement to be 5 s, the noise values of each virtual 

partition could be dynamically estimated for the time periods of interest, such as peak hours or during 

the daytime. Taking the virtual partitions of road segment 15 as an example, DE is the reference noise 

level, 74 dB, which was calculated using the traffic volume of road segment 15 from 5:00 p.m. to  

6:00 p.m. Thus, DE was used as an alternative to estimate noise data when there was no feedback from 

the participants during this time period. To estimate the noise value for time periods of one minute and 

one hour, NT and Li were determined by taking the following time intervals in Equation (1): 12 in a  

1-m period, and 720 in a 1-h period. The corresponding noise values of each virtual partition were thus 

dynamically estimated for time periods of one minute and one hour (see Figure 5). 

Dynamic aggregation was further performed by comparing the noise values of adjacent virtual 

partitions and merging the noise values when the difference in their noise values was less than the 

threshold value (3 dB). This aggregation process generated different results according to the timescale 

at which the noise values were collected. For example, the dynamic partition of road segment 15 

generated eight and five real partitions at timescales of one hour and one day, respectively (see Figure 6). 

To evaluate the accuracy of the noise estimation for different numbers of participatory measurements, 

we selected eight typical locations to compare the noise value between the estimation and the  

time-averaged field measurements, which were performed in two typical time periods of 8:00 a.m. to 

9:00 a.m. and 5:00 p.m. to 6:00 p.m., for at least 30 min on 7 May 2013. The relative error between the 

measured and estimated values of each position at the two time periods of interest are shown in  

Figure 7. Analysis of the results revealed that, independent of the number of participatory measurements, 

the relative error was small (less than 7% (5 dB)), which demonstrated that the accuracy of the estimation 

was determined by the participatory noise data. With an increase in the number of participatory noise 

measurements, the relative error will decrease to a very small level; for example, two relative error values 
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were approximately 0.4% for location 3 and 0.3% for location 6 during the corresponding time period. 

Thus, the estimated value can provide a credible overview of the actual situation when more participatory 

noise measurements contribute to the calculation [24]. 

 

Figure 5. An example noise estimation for virtual partitions on road segment 15 in two 

periods of interest: one minute and one hour. 

 

Figure 6. Demonstration of dynamic partitioning of the road segment on two different timescales.  
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Figure 7. Comparison between the measured and estimated noise levels for each virtual 

partition at eight fixed locations. 

4.3. Simulation-Based Noise Estimates 

Based on the noise values of each dynamic aggregation of road segments during a specific time 

period, noise simulation and analysis was performed using the Cadna/A platform. The noise simulation 

examples corresponded to the noise 1.2 m above ground. From the simulation results, the following 

observations were made. 
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The first observation was that simulations without participatory noise data tended to neglect the local 

noise characteristics. This was particularly true for the noise difference found in Figure 8a,b, where 

Figure 8a was generated based on the average traffic volume over one hour and Figure 8b was 

determined by the participatory noise data during the relevant time period of one hour. For the noise 

difference D1, a campus shuttle bus stop appeared as an important noise source that was not considered 

in the simulations shown in Figure 8a. Conversely, Figure 8b showed more changes in the noise 

distribution near the road segment by considering this as an actual noise source, thus revealing a relative 

difference in noise value of greater than 5 dB. In addition, the noise difference D2 exhibited an exception 

at the road intersections of the main campus bus road with high traffic volume. This was because the 

noise of the road intersection was the collective noise contribution from multiple road segments with a 

number of passing vehicles, which were difficult to identify using an instantaneous measurement at one 

fixed location. 

 

Figure 8. Noise simulation (a) based on average traffic volume and (b) based on the 

participatory noise data during a time period of one hour. 

Second, using participatory noise data with different spatio-temporal scales revealed extra noise 

disturbance on the same road segment. The simulation results based on the participatory noise values of 

the main road segments for two different time periods (e.g., within one day and within one hour) are 

illustrated in Figure 9a,b. By comparing the noise difference for the same road segment, segment 15, 

Figure 9a demonstrates similar noise characteristics without significant noise fluctuations during a time 

period of one day. In comparison, we observed that more detailed noise differences were clearly 

recognizable within the time period of one hour in Figure 9b. We observed that the noise values near 

road segment 15 exhibited multiple significant differences of 6 dB, 4 dB, 3 dB, and 4 dB. These 

differences were mainly due to more incidental sounds, such as traffic jams, which were recorded using 

participatory measurements in this road segment on the timescale of one hour. Thus, additional details 

regarding traffic-related noise dynamics, such as incidental sounds, which were received from 

participants with high granularity in space and time, have a positive contribution to the analysis of noise 

pollution caused by local traffic sources. 
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Figure 9. Simulation results for the noise distribution in a local area of the CUHK campus. 

(a) One day and (b) one hour. 

5. Conclusions  

This study presents an integrated methodology to dynamically organize participatory noise data and 

to refine noise information on a linear road segment at different temporal scales. It demonstrates that a 

participatory and people-centric approach to noise monitoring can be used as a rational spatio-temporal 

data foundation to support noise simulations. In the proposed method, the dynamic organization and 

management of noise data are based on an analysis of participatory sensing-based noise monitoring, and 

it simultaneously takes road networks and spatio-temporal aggregation aspects into account. The results 

can be fed into the simulations as the ground truth to improve noise mapping. Some of the more 

important aspects of our method can be summarized as follows: 

(1) Volunteered noise data collected by participants were spatially matched to the adjacent road 

segment, which was subdivided into multiple virtual partitions to refine the noise value at a 

microscopic level. Noise estimation at the spatial level of virtual partition with different temporal 

scales enables multiple sets of noise information to be associated with any portion of a linear road 

segment, further facilitating the construction of a spatio-temporal noise database. 

(2) Dynamic partitioning of road segments according to noise estimation at a given temporal scale is 

realized via merging of adjacent virtual partitions by comparing the noise values for a specific 

time period. Such a dynamic aggregation process can help to identify spatial-temporal differences 

in noise values on the same road segment. Furthermore, the data sets maintained the consistency 

of noise differences, and the time periods of interest can be extracted and used as inputs for 

simulation-based noise mapping on the relevant timescales. 

(3) Combining professional noise simulation with volunteer noise monitoring to improve geo-spatial 

understanding further explores a new approach to filling in the gap between participatory sensing 

and professional simulation, which is a sustainable strategy to enable every citizen to contribute 

to a collective effort to map and monitor noise pollution. 
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Importantly, the proposed methodology does not include all factors that have or might have an effect 

on participatory sensing-based noise simulations. We primarily assumed that each participant collected 

and sent noise data near the road and measured noise when the phone was held in a reasonable position. 

In fact, there are still some challenges for the current noise assessment via participatory measurements 

due to the participants’ measurement density and the combination of different noise sources that 

contribute to the overall acoustical environment. In addition, although the method was used to 

distinguish truthful sources from volunteered observations in participatory sensing [35], filtering out 

faulty values, estimating accuracy, and encouraging volunteer contributors using large amounts of 

volunteer data are also difficult tasks. Thus, our further efforts aim to identify more detailed semantic 

information about the source, context or accidental nature of noise [36]. This type of semantic 

information will be recorded in the process of obtaining the measurements, which are vital to generate 

noise maps that are more useful and meaningful for end users, particularly citizens. 
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