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Abstract: In developed countries, public health systems are under pressure due to the increasing
percentage of population over 65. In this context, homecare based on ambient intelligence technology
seems to be a suitable solution to allow elderly people to continue to enjoy the comforts of home and
help optimize medical resources. Thus, current technological developments make it possible to build
complex homecare applications that demand, among others, flexibility mechanisms for being able
to evolve as context does (adaptability), as well as avoiding service disruptions in the case of node
failure (availability). The solution proposed in this paper copes with these flexibility requirements
through the whole life-cycle of the target applications: from design phase to runtime. The proposed
domain modeling approach allows medical staff to design customized applications, taking into
account the adaptability needs. It also guides software developers during system implementation.
The application execution is managed by a multi-agent based middleware, making it possible to
meet adaptation requirements, assuring at the same time the availability of the system even for
stateful applications.

Keywords: AAL systems; homecare; adaptability; availability; stateful components; domain modeling;
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1. Introduction

Developed countries are suffering a demographic change as a result of the growing number of
older people as well as an increase in longevity [1–3]. Elderly suffer from typical age-related diseases
demanding expensive medical care that is pressuring public health systems. Governments, conscious
of this problem, are funding research projects aiming at providing new ways of medical care [4–7].
Indeed, issues like extending healthy life expectancy, improving quality of life, and maintaining
autonomy and independence, are part of the term “active ageing” that was adopted by the World
Health Organization in the late 1990s [8]. In this context, home-based care solutions seem useful
to provide personalized care, improve comfort, autonomy, confidence and safety of the residents,
optimizing, at the same time, medical resources [2,9,10].

During the last years, Ambient Assisted Living (AAL) systems have emerged as an adequate
technological support for elderly and disabled to enhance their quality of life avoiding social
isolation [11–15]. AAL systems have been studied by several authors with different purposes, from
energy efficiency or comfort optimization to dealing with safety or recognizing elderly activity [16–22],
as well as for home care [11,14]. In the particular case of home care for elderly, smart homes are

Sensors 2015, 15, 31939–31964; doi:10.3390/s151229899 www.mdpi.com/journal/sensors



Sensors 2015, 15, 31939–31964

equipped with sensors, actuators and other appliances, whereas patients are provided with medical
sensors and medical staff with personal computers, mobile phones, or PDAs. The captured data are
analyzed in order to be aware of the continuous evolution of the patients and the environment, as
well as for early detection of alarming situations (alarm triggering). This is also the case in homecare
applications where mechanisms to define and process the sensing and processing of biomedical and
environmental signals are needed. However, sometimes a simple alarm warning might not be enough,
and flexibility to evolve as patient status and its environment do is also necessary, indeed often without
direct external intervention (adaptability). This might imply starting new applications, stopping, or
even modifying existing ones. Thus, to achieve the goal of adaptable monitoring of elderly, applications
must be context-aware being able to modify their behavior according to changes on their context.

Besides, these applications are commonly executed in distributed and heterogeneous
environments, and mechanisms for managing widespread and specific devices with different
capabilities (from embedded devices to those with high processing capacities) are necessary. As
they supervise the health of patients, their response must be efficient in order to react as quickly
as possible to dangerous situations, so a suitable resource management system is needed, not only
because it is essential for dealing with the limitations of embedded systems, but also to ensure efficiency.
Preventing service disruptions is also mandatory in order to avoid information losses, especially in
emergency cases. Consequently, availability must be guaranteed in case of failure in processing nodes
or sensor devices. Finally, other critical aspects are privacy, confidentiality and integrity of the data
about patients (safety and security).

Therefore, AAL systems for the elderly raise several challenges for developers that have to be
taken into account at the requirements analysis and design phases, and that have to be ensured at
runtime [23–25]. There are several works that deal with safety, privacy and security issues related
to data storage, processing and transmission. Message encryption using Public Key Infrastructure
(PKI) and Secure Socket Layer (SSL) [26], authorization and authentication mechanisms [27,28], and
the development of security frameworks [29,30] or safety policies [31] are the most usual solutions.

On the other hand, there are also middleware systems that help an application to interact or
communicate with other applications or hardware through networks. These kinds of middleware
systems are commonly built over a framework layer which solves ubiquity challenges. Examples of
such frameworks are Open Services Gateway Initiative (OSGi) [32], Remote Procedure Call (RPC) [33],
Object Request Broker (ORB) [34], Reflection [35] or Foundation for Intelligent Physical Agents
(FIPA) [36] compliant frameworks.

Self-adaptive systems are commonly defined in the literature as those capable of automatically
modifying themselves in response to changes in their operating environment [37]. This requires
self-awareness and context-awareness, i.e., the system must be aware of its own state by means of
monitoring both, existing resources and its context. Nevertheless, most of them are ad-hoc solutions
that assume stateless applications and, as far as authors know, they do not offer means for defining the
application evolution to context changes.

This paper focuses on these issues, adaptability and availability, identifying the needs of the
target applications and offering appropriate mechanisms to meet both requirements at the different
phases of the application life cycle. In particular, mechanisms for defining, based on the medical
expertise, how the application must evolve to context changes as well as mechanisms to manage the
application at run-time, assuring that the application is available in case of device failure even for
stateful applications. This latter is achieved by means of a multi-agent based middleware (MAS).

Previous works of authors are related to applying modeling techniques for developing
service-based applications without the necessity of a central orchestrator [38,39]. Additionally, the
preliminary idea of the multi-agent based middleware proposed in this work was presented in [40].
With respect to these previous works, this paper contributes a domain modeling approach that allows
systems definition from different points of view. The user view (medical staff) defines, using concepts
from the area of expertise, the monitoring of patients and their environment, including the adaptation
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of the applications to context changes (patient or environment). The software view guides the software
developer in the design and implementation of the components required for providing the medical
care specified in the user view. The paper also extends the preliminary middleware to manage events
signaling special situations and the associated actions to be taken. Finally, application availability
is assured by taking advantage of the mobile nature of agents. This is a generic approach as the
middleware offers generic agent templates to be used to define any application that evolves with
its context.

The remainder of this paper is as follows: Section 2 presents some related work on both
adaptability and availability in home care AAL systems. Section 3 identifies the challenging
requirements demanded by homecare applications. This section also includes a brief description
of the proposed solution that consists of a domain modeling approach and a MAS middleware. In
Section 4 the modeling approach for defining the application dynamic behavior is presented while
Section 5 presents the MAS-RECON middleware that provides a set of agent types for implementing
flexible homecare applications as well as mechanisms to manage their execution. Section 6 is dedicated
to the assessment of the proposal based on the implementation of a healthcare demonstrator and some
experimental tests. Finally, Section 7 outlines the most important conclusions and future work.

2. Related Work

This section comprises some research work dealing with the focus of the paper, i.e., adaptability
and availability in homecare applications for elderly.

As far as authors know, the majority of works in the literature lack adaptability mechanisms, as
they focus on alarm triggering in case of danger, asking for medical assistance or warning the patient.
In this context, some works provide closed solutions that can be configured by the final user such
as [41]. Other works provide means for application design aiming at alarm identification [28,42–46]
or at the specification of the responses [47,48], which commonly correspond to warning or alarm
triggering. For instance, the Millennium Home System [47] allows defining how to select the best
mode of interaction with the user, and whether the resident or an external service have to be warned.
In this context, one of the easiest ways of covering a broad range of situations and responses is the use
of the event-condition-action (ECA) paradigm [49]. How ECA rules allow defining the actions that
have to be executed when certain events are detected is presented in [48].

With respect to alarm identification there exist different approaches in the literature. For example,
the CommonSens system [42] proposes an event language to describe events, and the Necesity
project [43] presents a rule-based classifier that determines if a situation is normal or abnormal. Some
authors make use of modeling methodologies [50] as they allow representing a system at different
abstraction levels, hiding irrelevant technical details [28,44,45]. In this sense, the specification and
verification approach in [44] combines UML diagrams and formal methods for establishing time
requirements associated to events. These design approaches have something in common; they focus
on software developers. On the contrary, but also based on modeling techniques, there are works
that incorporate domain experts in the system design and development as in [45] where physicians
define the conditions to trigger the alerts to display in a view, or in [28] where they model the care
process and nurses manually initiate the different actions related to an alarm. The CAALYX system [46]
proposes a special purpose language for caretakers to define the clinical rules. These rules detect
health alteration by means of observation templates that are customized for patients in the so-called
observation patterns. Among the analyzed works, the CAALYX system might be the most similar to the
work presented in this paper. However, as far as authors know, it is neither possible to automatically
start the execution of new observation patterns as a result of an alert (dynamic adaptation), or to relate
changes on the environment with the monitoring of patients.

Related to implementation issues, there is a substantial body of literature on self-adaptive systems
based on reconfigurable middleware systems. As previously stated, this kind of middleware systems
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are commonly built over a framework layer which solves ubiquity challenges simplifying component
management, update and communication.

The THOMAS middleware [27] combines multi-agent technology and service orientation,
offering registration mechanisms for services, their implementations and organizations. It allows
the organizational structure to be dynamically modifying by creating new ones, or by adding and
removing members. However, this capability is restricted to some concrete roles. In the CARISMA
project [35], self-adaptation is tackled by defining profiles as fixed sets of actions the middleware should
take when a specific event happens. Another approach is based on the so-called sentient objects [51]
which are able to take decisions and perform actions. Actions to be performed as a response to context
changes can be statically defined as part of the middleware at design time [52], or they can be built at
runtime [53,54]. Nevertheless, these approaches are not fully generic as they are presented as part of
an application domain and therefore they represent an ad hoc solution to a concrete problem. On the
contrary, the iLAND project [55] proposes a general-purpose middleware for real-time systems with
time-bounded reconfiguration capabilities. However, it only supports sequential stateless applications
and it does not provide support for managing context events.

Application availability even in case of device failure is usually managed at the application
level, and therefore the application state is implicitly managed by itself. This is the case of the
architectures defined in [27,56] offering redundant service providers. The service oriented component
model described in [57] provides location independent peer to peer (P2P) communications between
components. The GAL platform [58] also defines services as reusable blocks and availability is assured
by means of redundancy on services. In the iLAND middleware [55], availability is supported by
creating several implementations related to a service. Therefore, the formers present application aware
recovery and the latter only supports stateless services recuperation in case of a node failure.

3. Flexibility Requirements for Home Care AAL Systems

For a better understanding of the requirements identified in this section, the next paragraphs
describe some use cases related to an old people’s home. These use cases have been documented in
and inspired by some literature works related to heart rate, blood pressure, oxygen saturation and
body temperature monitoring [59–63]. They illustrate simple examples of real use cases being simple
enough to represent the flexibility demands of this type of applications.

Use Case 1 (UC1)—Body temperature monitoring. After a surgical operation, the body temperature
of a patient is measured four times a day. These values are stored for further analysis. Additionally, if
the temperature is over a concrete threshold (according to the patient particularities), the medical staff
has to be warned in order to supervise a possible infection.

Use Case 2 (UC2)´Heart rate monitoring. In order to detect a possible heart attack, the pulse
rate of a patient is monitored every 10 min. However, if the heart rate trend indicates an abnormal
increase (according to the patient particularities), apart from warning the medical staff, the acquisition
frequency must be increased for a more detailed monitoring.

Use Case 3 (UC3)—Fire detection. In a nursing home, monitoring the physical environment is
crucial. In case of fire, collecting information about health of patients might help emergency services
to make decisions on arrival. Thus, buildings are usually equipped with fire detectors and upon the
detection of a fire new health monitoring tasks must be launched for every patient, such as pulse rate
and oxygen saturation level monitoring.

Use Case 4 (UC4)—Blood pressure monitoring. The main objective of this use case is to monitor
the blood pressure of a patient, four times a day. However, as it is presented in [62], blood pressure
measures are only relevant if the patient is relaxed. This situation can be checked by means of its pulse
rate. Therefore, before taking a blood pressure reading it is necessary to supervise the pulse rate of the
patient (one measure every 30 s) until it is relaxed or a maximum waiting time is exceeded. Of course,
if the pulse rate or the blood pressure is out of range, medical staff has to be warned.
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As it can be concluded from these examples, target applications have three main objectives:
(1) monitoring; (2) early recognition; and (3) rapid and suitable reaction. To match these goals, context
information is captured by means of sensors that monitor vital functions (all use cases) and acquire
environmental measures (UC4), taking into account that each measurement must be performed at
the right frequency (temperature is taken every six hours in UC1 whereas heart rate is measure every
10 min in UC2). The processing of these data enables a continuous monitoring of the patient health
and their environment, being possible to foresee risky situations and to provide the most suitable
assistance in case of emergency. Furthermore, actions for acquiring biomedical sensor measurements
and related processing must be customized for every particular elder, although there are similarities
among many of them. Indeed, there exist medical guidelines that give support to medical professionals
in making general decisions on the treatment of a patient, which, in the end, varies from patient to
patient. For instance, pulse measurement can be always carried out in the same manner, whilst a
concrete pulse value has a different meaning according to various factors such as the patient age,
physical activity, ambient temperature, etc.

Target applications supervise dynamic systems that can evolve to dangerous situations.
For instance, the pulse rate of a patient increases in case of heart attack. In these situations, besides the
usual monitoring and alarm detection, a reaction to the alarm must be defined. Warning medical staff,
as in UC1, is the easiest response which is already performed by the works described in the related
work section. However, sometimes the application has to evolve in response to relevant changes on
its context. As a result, it could be necessary to change the acquisition rate as in UC2 (in case of a
possible heart attack), or to initiate the processing of new biomedical values as it is stated in UC3
(new monitoring tasks have to be launched after fire detection) and UC4 (blood pressure monitoring is
started). Sometimes, as in UC4 it is necessary to stop current actions (heart rate monitoring is stopped
after patient is relaxed).

Finally, continuous monitoring implies to assure application availability even in case of node
failure. Furthermore, service recovery has to be application unaware, that is, the application design
has not to be altered to match this requirement. Special attention has to be paid to the particular
case of those services whose result depends on previous executions (the so-called stateful services).
For example, in the UC4 (blood pressure monitoring), several subsequent pulse rates must be analyzed
in order to assure the relaxed condition. When a node executing this analysis fails, the recovery process
implies restoring the previous pulse rate values. In summary, the main requirements demanded by the
target applications are collected in Table 1.

Table 1. Requirements demanded by the target applications and their relation with the proposed
use cases.

Requirement Identifier Requirement Description Use Cases that Represent It

R1
Personalized sensing and processing

Support for different sensors,
customized processing and thresholds. All

R2
Distributed and heterogeneous

environments

Integration of distributed sensors and
heterogeneous platforms (resources). All

R3
Activation and execution types Actions triggered by time or by event. All

R4
Adaptability

Context changes awareness:
modifying timing properties,

launching/stopping applications . . .
UC2, UC3 and UC4

R5
Availability

If a device fails, application must
remain unaffected. All

In order to meet the requirements identified above, this paper proposes to divide a monitoring
action into a set of measuring and processing tasks that are customized according to the particular
health problems of the patient. These tasks can be executed in distributed and heterogeneous devices
and have to be interconnected to achieve the monitoring goal. With this purpose, this paper proposes a
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system architecture that consists of a domain modeling approach and a multi-agent based middleware,
the so-called MAS-RECON middleware.

The domain modeling approach guides the specification of applications and the implementation
of the corresponding components. It has two stakeholders, medical professionals and software
developers, and therefore it has been divided in two domains: the user view and the software view.
The definition of the user view is the responsibility of the medical professionals as they define the
customized treatment for every patient. It consists of a set of interconnected tasks in order to provide
the required medical service, which includes the monitoring, alarming situation detection and reaction.
On the other hand, software developers are the responsible for the software view which is based on the
previous one. It comprises the set of components in charge of acquiring and processing the biomedical
and environmental signals. These components are connected following the logic established by
the medical staff. Therefore, software developers implement the required medical services and the
application logic to connect them. In a sense, the modeling approach allows the medical professionals
to specify the software developers what to do and how to do it, by using concepts close to its area
of expertise.

The MAS-RECON middleware extends the Java Agent DEvelopment (JADE) framework [64]
and manages the execution of applications. In order to implement the application code, software
developers are provided with code templates that have to be filled in with the functional specification
of the user view. At runtime, the proposed middleware architecture together with the logic added to
the code templates and the negotiation capabilities of agents are the means to support the flexibility of
applications and fault tolerance. The next sections detail the proposed domain modeling approach
and middleware architecture.

4. Domain Modeling Approach for Application Specification

In order to reach a correct and full-customized health monitoring, it is necessary to incorporate
domain experts in the system definition and development. With this purpose, this section describes a
domain modeling approach that allows defining the whole application abstracting the implementation
issues. As previously mentioned, two different but related domains have been identified: the user
view and the software view. More precisely, the software view generalizes the user view by extending
existing concepts with new properties and by adding new concepts.

4.1. User View

Medical professionals and maintenance staff provide the information related to the user view
that is constituted by a set of concepts and relationships among them. These concepts allow defining
the functional requirements (R1, R2 (Table 1)), the timing requirements (R3) and the dynamism (R4)
needed for the health monitoring of patients and the supervision of the environment, from the medical
professionals perspective. Availability requirement (R5) is application unaware and thus, it is not
covered by the modeling.

4.1.1. Functional Requirements (R1, R2)

This view defines the health monitoring of every patient and the supervision of the environment
by means of the Scenario concept. Figure 1 illustrates the concept of Scenario through the specification
of a nursing home (System concept) with three patients (Scenarios).

Health monitoring has to be customized to each patient. Therefore, physicians have to identify
which biomedical variables to monitor and how to process them, using the Application concept. For
example, as it is depicted in Figure 1, the special monitoring for emergency situations described in
UC3 is defined for every patient. “Patient 1” represents a resident without any relevant health problem.
Its temperature is monitored as it has been operated on. “Patient 2” is related to a resident with
hypertension. Thus, its blood pressure has to be controlled as it is explained in UC4. Finally, “Patient
3” refers to a resident with heart disease (UC2).
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three patients.

The monitoring of a biomedical or environmental variables involves several tasks (AppComponent
concept), including: data acquisition at concrete frequencies from sensors (or extracted from a
repository in bulk); and processing activities to obtain useful data for the medical staff. Medical
professionals have to describe these tasks (name and providedServiceDesc properties) from which
software developers implement the needed software components (again, AppComponent concept).
For example, in order to check the body temperature, four tasks are necessary: one for temperature
acquisition (once a day), another for storing these measures in a repository, other one to check if the
captured values are out of the normal range of the resident, and the last one to warn the medical staff
in case of detecting an abnormal situation.

4.1.2. Timing Requirements (R3)

Non-Functional requirements are collected as properties related to the previous concepts. Indeed,
specifying the timing requirements of every monitoring is essential (timingProps of the Application
concept). More precisely, it is necessary to identify when the monitoring has to be activated (activation
properties) and how it has to be performed after activation (execution properties). For example, in
the case of “Patient 2” blood pressure has to be measured four times a day which implies that it has
to be periodically activated every 6 h. However, after activation its pulse rate has to be periodically
monitored every 30 s until relaxing (periodic execution), whereas blood pressure is measured just once
(one-shot execution). Additionally, there are also configuration parameters (configParam property)
such as the patient identifier that allow the customization of the health and environment monitoring.

4.1.3. Adaptability (R4)

Lastly, the Event concept allows medical professionals and maintenance staff to identify relevant
context changes that demand a reaction. Therefore, they have to detail how to detect every relevant
situation and how to react to them. Note that, as it is collected in [65], the context term may have
very different meanings. In this work, it refers to the health status of a patient and/or the state of the
physical environment. Detecting a context change is the result of data processing. For example, in the
heart rate monitoring described in UC2, an abnormal increase of the heartbeat is considered a relevant
context change (OutOfRange event in Figure 1). In the same manner, it is essential for UC3 specifying
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under which circumstances the captured environmental signals (smoke, temperature, etc.) are related
to a fire (Fire event in Figure 1). In UC4, the instant at which the patient relaxes is relevant (Relaxed
event in Figure 1). This is detected after processing several pulse rates, between its maximum heart
rate (HRmax) and its resting heart rate (HRrest).

On the other hand, specifying how to react against a relevant context change comprises the actions
to be performed after its detection (Action concept). There are several types of actions and every one
refers to an Application, the target of the action from now on. For instance, in UC2, after detecting
a risky situation, it is necessary to increase the acquisition frequency (Modify action). Therefore, the
target of the action is the monitoring itself. In Figure 1 this fact is represented by a purpled line that
starts on the OutOfRange event and which points to the monitoring itself. However, as it is also
depicted in Figure 1, once a patient is relaxed (i.e., the Relaxed event is triggered) the actions are to
finish pulse rate monitoring (Destroy action) and to start blood pressure monitoring (Create action).
Note that in these examples, after detecting a context change of a patient, the actions performed are
related to monitoring tasks of the same patient. But sometimes the actions drawn from a context
change goes beyond the patient itself, that is, context changes are propagated (TxScnEvent concept).
This is the case of the fire detection that requires the starting of a particular emergency monitoring for
all the patients at the nursing home, as it is illustrated in Figure 1 (Fire_Tx). Therefore, a scenario can
propagate events and it can also receive events propagated by other scenarios (RxScnEvent concept).
The latter also has associated actions whose target application belongs to the scenario itself.

4.2. Software View

The software view inherits the user view and extends it to define the tasks specified by the medical
professionals. In this context, an Application is defined as a set of components (AppComponent
concept) that cooperate to achieve application tasks (R1, R2). Therefore, at the software view an
application component represents a set of monitoring activities (service unit, from now on), together
with the application logic (which data has to be sent, when and to which components) and the
event-triggering logic (detection of relevant context changes and reaction), previously defined at the
user view. A service unit requires a set of input parameters to offer its service and it provides a
set of output parameters after its execution. From now on, component parameters and service unit
parameters are interchangeably used (Parameter concept). Figure 2 illustrates the CheckHRTrend
component belonging to UC2. It detects if the heart rate evolves to exceed the normal range of
the “Patient 3” (isOut parameter). It requires a pulse value (Pulse parameter) and the time instant
(TimeStamp parameter).
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Application components are also characterized by the timing properties and configuration
parameters (R3). For example, a periodic pulse rate monitoring means that the component in charge
of the sensor reading has to be periodically executed, but other components will be executed on
demand, i.e., after data reception. Additionally, it is also necessary to indicate if the service unit
requires additional initialization or finalization actions, and if its execution depends on the result of
previous executions (stateful component).

Application components cooperate by exchanging all the data necessary to provide their service,
i.e., by connecting the input parameters of a component with the output parameters of its predecessors.
With this purpose, components are provided with an input port (InputPort concept) and/or an output
port (OutputPort concept), linked through connectors that collect the exchanged data (DataConnector
concept). Thus, ports encapsulate the interactions with the service unit and with other components.

More precisely, the input port is in charge of receiving data from predecessors, providing the
service unit with the necessary input parameters. Similarly, the output port collects the output
parameters resulting from the service unit execution, delivering them to the follower components.
Every input parameter received by an input port through a data connector has a peer connection
with the corresponding output parameter sent by an output port through it. It is important to remark
that software developers have to check that both data-types are compatible in order to set these
connections (DataConnection concept). The CheckHRTrend component depicted in Figure 2 has an
input port to receive its inputs through the incoming data connector whose source is the Acquisition
component, as it is illustrated in Figure 3. Similarly, it has an output port to send part of the provided
output parameters to a subsequent component, through an outgoing data connector whose target
is the Warning component. Data connections are established between the output parameters of
the Acquisition component and the input parameters of the CheckHRTrend component, as well
as between the input parameters of the Warning component and the output parameters of the
CheckHRTrend component.
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Figure 3. Definition of the application for heart rate monitoring.

Cooperation among components can be leaded by certain logic, which implies that interface
compatibility must be considered from a global point of view. In particular, two different output logic
types have been identified (logic property related to the OutputPort concept): Default and Customized.
The Default logic implies that the outputs of the service unit are always sent to all followers. In the
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example of Figure 3, the acquired pulse values are always sent to be stored (Storage component) and
to be analyzed (CheckHRTrend component).

In order to take into account other possible cases, for example when data are delivered under a
condition, the customized logic has been defined. This logic is represented by the DataLogic concept
that is expressed by means of a UML activity diagram associated to the output port. The ‘Initial Node’
corresponds to the current component. “Control flows” are based on expressions containing output
parameters of the component. And every “Activity Final Node” refers to a subsequent component.
In the example presented in Figure 3, when heart rate tendency is abnormal, medical staff is warned
through the Warning component. This logic is depicted in the “Data Logic” activity diagram attached
to the output port of the CheckHRTrend component.

All the concepts introduced up to now allow expressing the R1, R2 and R3 requirements. On the
one hand, they enable the definition of health monitoring customized to patients with the associated
timing properties. On the other hand, combining measurements and processing is met as applications
are decomposed in components that can be executed in different nodes.

In order to consider the adaptability needs derived from relevant context changes (R4 requirement),
the proposed software view extends the user view founded on the idea of the ECA rules. It provides
mechanisms for defining how to detect a relevant context change and how to react to it, following
the specifications of medical professionals. The detection of context changes is part of the processing
(service unit) a component performs, giving the result in any of its output parameters. Thus, the
component has an event port (EventPort concept) with an activity diagram associated, represented by
the EventLogic concept. This activity diagram is similar to the one for data logic, but in this case the
“Activity Final Node” represents the event to trigger when a context change is detected. In Figure 3,
there is an “Event Logic” diagram associated to the event port of the CheckHRTrend component. It
represents that a risky trend of the heart rate triggers the OutOfRange event.

The Action concept that represents the actions triggered by events has been also extended. In
the Create action, some of the new application components can be started with an initial execution
state which is obtained from the execution state of a component of the current application (stateInfo
property). In the Modifiy action the new timing properties of the application have to be indicated.
Note that some of these actions must be executed following a concrete order (sequence property)
whereas others can be executed as decided by the middleware.

4.3. Meta-Model

All the concepts described in the previous sections, as well as the relationships and restrictions
among, them are presented in Figure 4. Concepts are depicted by means of rectangles. Relationships
are classified into four groups: (1) composition (black diamond). For example, a scenario for a patient
is composed by a set of health monitoring applications; (2) extension (white arrow). For instance, the
Create action extends the abstract Action by adding new properties; and (3) dependency, to state that a
concept must be aware of another. For example, the logic for event triggering (EventLogic) is based on
the output parameters of the application component; and (4) association, to reference other concepts.
For instance, actions are associated to applications. Finally, restrictions are represented by means of
the multiplicity associated to the relationships among concepts.
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Figure 4. Meta-model of the domain modeling approach for application specification.

5. MAS-RECON Middleware

This section presents the MAS-RECON middleware, a multi-agent based middleware in charge
of managing the execution of homecare applications for the elderly modeled in the previous section.
The domain modeling approach allows medical professionals to specify the functionality of these
applications and their adaptability needs to evolve to context changes. Therefore, the middleware
must provide mechanisms for implementing the functionality (meeting R1, R2, R3 requirements), by
managing the execution (synchronous and on demand) and communication of application components.
It must also provide flexibility mechanisms to enable the adaptation at runtime (R4 requirement). This
is met through the event concept implementation, and to assure application unaware availability in
case of node failure (R5 requirement. In particular, the proposed availability mechanism is based on a
negotiation process among the nodes for finding the most suitable node to hold a new instance of a
failed component.
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Taking all these demands into account, Figure 5 depicts the proposed middleware architecture
founded on the JADE framework. JADE is a software framework that facilitates the development
of interoperable intelligent multi-agent systems. The JADE framework has been extended with the
new modules depicted at the upper part of Figure 5 in order to meet the requirements identified in
Section 3. (1) a Middleware Manager (MM) which is the main system orchestrator; (2) an Application
Manager (AM) module per application, in charge of managing the life-cycle of its components as well
as their execution state; (3) a Node Agent (NA) module per node that provides runtime information
about the node that is useful for availability support; (4) an Event Manager (EM) module per event
that manages all its related actions. Each middleware module is implemented by an agent running in
the multi-agent system.
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5.1. Functional and Timing Requirements (R1, R2 and R3)

The JADE framework is a FIPA compliant agent framework fully developed in the Java
programming language. The FIPA foundation promotes agent-based technology and the
interoperability of the FIPA standard with other technologies. A FIPA compliant infrastructure
must support agent management by means of the following modules (see bottom part of Figure 5):
the Directory Facilitator (DF), the Agent Management System (AMS), and the Agent Communication
Channel (ACC). According to the FIPA specification, there must be at least one DF agent in the platform,
which supplies the yellow pages where agents can register offered services or look for required services.
The AMS manages the agent creation, removal and migration. The ACC supports interoperability
within and across different platforms. Finally, the so-called Internal Platform Message Transport
(IPMT) provides a message routing service for agents on a particular platform.

The domain modeling approach allows distribution as applications are defined as sets of
interconnected components that comprise the provided service, the logic to connect them and the
logic for event triggering. In this context, the underlying JADE framework allows fulfilling the R2
requirement (distributed and heterogeneous environments) as every component instance is an agent
running on the system and agents are mobile in nature. Additionally, as Java is platform independent
and JADE can run even in embedded devices, the proposed middleware supports different types of
nodes with different capabilities, from embedded devices such as mobile phones and sensors to those
with high processing capacities.

Additionally, as these distributed agents cooperate by exchanging messages, three FIPA compliant
ontologies have been defined in order to support communications among agents: (1) Data ontology
for message exchange containing the data necessary to provide a medical service or environment
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supervision, such as sensor values and processing results; (2) Command ontology for control
commands that allow agents or technicians interact with the middleware modules and vice versa;
(3) State ontology for updating the execution state of an agent (value of relevant variables).

The MM module manages information about the whole system which is collected in the so-called
System Repository. The hierarchical structure of this repository is presented in Figure 6. It contains
runtime information about the running applications, the triggered events and booted nodes. This part
of the repository is distributed throughout the corresponding middleware modules. It also contains
design information including the physical nodes and the data coming from the software view.

Physical nodes are the hardware devices where the instances of application components run. This
includes access to sensors, actuators and processing units. Every node contains an instance of the NA
module which provides physical information (core number, storage and memory capacity, network
speed, CPU score and platform) and runtime information (CPU usage, free memory) about the node.
A NA registers itself automatically at boot time, providing the MM with its resource capabilities
(highlighted in yellow at Figure 6). They also perform the negotiation process when it is required by
the AM.
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Figure 6. Structure of the System Repository at the Middleware Manager (MM) module.

Software developers are the responsible for registering the information related to the application
itself: the system, the scenarios, the applications that belong to each scenario and their components.
Events and the actions to be performed have to be also registered. Two types of events have been
considered: internal events (InternalEvent) and propagated events (PropagatedEvent). Internal
events belong to a scenario, and their actions refer to applications of the same scenario: Event
concept in Figure 4 and the events received by the scenario and that have been propagated by other
ones (RxScnEvent concept in Figure 4). In the middleware, the events propagated among scenarios
(TxScnEvent concept in Figure 4) are composed by the set of internal events associated. For example,
in the nursing home system depicted by Figure 1, the FireTx event is a propagated event, whereas
OutOfRange, Relaxed, FireRx_P1, FireRx_P2 and FireRx_P3 are internal events.

Additionally, the structure of the System Repository takes into account that a component can
be implemented in several ways (CompImplementation). Note that it is also possible to restrict the
nodes where the instance of a component implementation, component instance or agent from now
on, can be executed (constraint). For instance, the software developer may use different platforms or
libraries, restricting the available nodes to execute them The need of a concrete sensor only accessible
from a node is another example of constraint. This way a task of the user view is linked to a specific
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node, through a component of the software view. It is important to remark that when adding a new
node to the system new component constraints should be registered, if needed. Moreover, the skeleton
code of these component instances has been fixed in order to match the R1 (personalized sensing and
processing) and R4 (application unaware availability) requirements. More precisely, every component
instance must implement the FSM represented in the left part of Figure 7, having the following states:Sensors 2015, 15, page–page 
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Figure 7. Finite State Machine (FSM) and its Java implementation. 
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Figure 7. Finite State Machine (FSM) and its Java implementation.

‚ Boot: during this FSM state, the agent waits until its start conditions are met. This allows executing
the required initialization actions and synchronized start of agents. When the start conditions are
met, the agent switches to the Running FSM state.

‚ Running: in this FSM state, the agent is offering its functionality related to a medical
service. Besides, every cycle the execution state is stored at the corresponding AM, for
availability purposes.

‚ Negotiation/Paused: when a component failure is detected, the AM forces the agent to this FSM state.
‚ End: during this FSM state the agent finishes its execution which includes the required

finalization actions.

The skeleton code derived from this FSM and implemented in Java is also depicted in the right
part of Figure 7. Additionally, application components are provided with a control interface through
which they receive control commands. The software developer has to customize this skeleton code for
every application component founded on the software view of the modeling approach. In particular,
if the component requires initialization actions a new Java class that extends the Boot FSM state by
including all the needed actions has to be implemented. For example, the pulse oximeter sensor used
in the demonstrator must be initialized. Similarly, if the component requires finalization actions a new
Java class that extends the End FSM state with these actions has to be implemented. The Running FSM
state has to be always customized in order to include the medical service offered, the data logic and
the event triggering logic. Therefore, another Java class has to be developed. With this purpose, two
templates have been defined according to the activation mode of the agents (R3 requirement):

(1) Periodic: this template is based on the TickerBehaviour class of JADE. It is used for components
that execute the service periodically. Therefore, every cycle they run their functionality, send
results, if any, update the execution state and delay until the next activation.

(2) On demand: this template is based on the CyclicBehaviour class of JADE. It is used for components
that execute the service after the reception of a data message. Therefore, they wait for all incoming
messages, run the functionality, send results, if any, and update the execution state.
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For example, in UC2 depicted in Figure 3, the component in charge of the pulse reading is
executed every 10 min (periodic), but the component in charge of warning the medical staff is executed
just after receiving input parameters (on demand).
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Figure 8. Customization process of the Running FSM state for the CheckRelaxed component.

As an example, Figure 8 presents the customization of the Running FSM state related to
the CheckRelaxed component. This component belongs to the Check Relaxed application (UC4,
see Figure 1). It receives two input parameters, a pulse value (Pulse) and the measurement instant
(TimeStamp). It analyzes the new value together with several previous ones in order to determine if the
patient is relaxed or not. Therefore, it provides four output parameters: the average pulse (avPulse),
the last measurement instant (TimeStamp), a flag for patient relaxation (isRelaxed), and a flag that
indicates if the waiting time has been exceeded (isTimeOut). When the patient relaxes it triggers
the Relaxed event (event logic). When the waiting time is over, medical staff is warned (data logic).
In summary, the customization process of the Running FSM state comprises the following steps:

(1) If the component has an Input Port, code for data reception has to be included. Every Data
Connector of the modeling approach that ends in the input port is related to a data message
received from a previous component. The required input parameters have to be extracted from
these messages according to the input logic type defined and the Data Connections established.

(2) The code for service unit execution is always added. It depends on how the software developer
has implemented this functionality.

(3) If the component has an Output Port, code for data transmission has to be inserted. Every Data
Connector of the modeling approach that starts in the output port is related to a data message
sent to a subsequent component. The output parameters obtained as a result of the service unit
execution have to be grouped according to the Data Connections established, composing all
the necessary output messages. Additionally, if the output part has a Data Logic attached, the
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associated activity diagram has to be parsed in order to write the necessary conditional statements
for data delivery.

(4) If the component has an Event Port, the code for event triggering has to be added. Similarly, the
associated activity diagram has to be parsed to include the conditions that have to be filled to
trigger every event. If the event is propagated through scenarios the event included in this code
is the corresponding TxScnEvent.

(5) If it is a stateful component, the code for updating its execution state at the corresponding AM
has to be included.

At runtime, the execution of the instances of these developed components is managed by the AM
module. The MM deploys as many AM instances as launched applications. Each AM is in charge
of supervising the execution of the components associated to an application (R3 requirement). This
includes several tasks:

‚ Components startup, which consists of selecting the appropriate node to hold the component
instance, by means of a negotiation process.

‚ Management of the execution state related to stateful components.
‚ Management of the component life-cycle. It is aware of the current FSM state of every component

instance, and it may force it to pass to a concrete FSM state, if necessary.
‚ Management of component failure detection, due to a node failure, for example.

5.2. Adaptability (R4)

In order to tackle the adaptability needs (R4 requirement), the events registered in the System
Repository are supervised by an EM module. The MM deploys an EM instance for each event. It
performs the actions established for the event and it supervises they follow the required order, if
necessary. Note that the interaction between a component instance and the EM is through method
invocations at the source code. For instance, Figure 9 presents how the EM related to the Relaxed event
(depicted in Figure 1) supervises its associated actions. When the checkRelaxed001 component instance
detects that the patient is relaxed, it triggers the Relaxed event. This event triggers two actions: one for
launching the blood pressure monitoring and the other one for stopping the pulse rate monitoring,
both through the corresponding AM. As an example, the figure shows how the AM of Blood Pressure
application (AM_BloodPressure) starts one of its component instances (bAcquisition002), and how the
AM of the Check Relaxed application stops one of its component instances (checkRelaxed005).
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Figure 9. Sequence diagram related to the Relaxed internal event.

Similarly, Figure 10 describes how propagated events are attended. In this case, the fireDetector001
component instance detects a fire and thus, it triggers the Fire event. This event is generated in the
Environment scenario and propagated to the other three scenarios. As a result, three internal events
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are triggered, Fire_Rx_P1, Fire_Rx_P2 and Fire_Rx_P3 (see Figure 1), each triggering a Create action
for launching the emergency monitoring of the corresponding patient. As it is illustrated in the figure,
applications are started through the corresponding AM as in Figure 9.Sensors 2015, 15, page–page 
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Figure 10. Sequence diagram related to the Fire propagated event. 
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Figure 10. Sequence diagram related to the Fire propagated event.

The benefits of the event manager module are twofold. On the one hand, it optimizes the
use of system resources, as upon an event triggering an invocation to the middleware is issued
in order to create/destroy/modify applications which in the end implies allocating/de-allocating
the corresponding resources. As a result, resources are allocated just when needed. On the
other hand, the domain modeling approach provides application independency within scenarios
as they are only related through events. Scenarios independence is also supported as they can be
connected through propagated and/or received events. At runtime, the EM module implements
this independence by executing the actions related to the triggered event. As a result, adding new
monitoring applications or adding a new scenario (a new patient) to an already running system does
not modify the implementation of the system. Instead, the system extension implies registering the
new applications/scenarios and the corresponding events, if necessary, as well as the implementation
of the new components.

5.3. Application Unaware Availability for Stateful Applications (R5)

AMs and NAs are the main participants of the middleware support for application unaware
availability (R5 requirement). As commented above, the proposed availability mechanism is based
on finding the most suitable node to hold a new instance of a failed component. Therefore, on the
one hand it is necessary to detect component failures, and on the other hand it is necessary to recover
it. As an example, Figure 11 illustrates the recovery of a stateful component. In particular, it is the
CheckRelaxed component of the Check Relaxed application (it monitors pulse rate, UC4), whose
previous component is the so-called CheckRange.
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Component failures can be detected in two ways: when the sender of a data message detects that
it has not been possible to deliver it, or when a periodic component exceeds the period to refresh its
execution state in the AM. In both cases the corresponding AM is notified and the failed component
instance is labeled as faulty. This avoids attending to the same failure more than once. After, the
AM starts the recovery process. In the example of Figure 11, the checkRange003 component instance
detects a component failure as the data message sent to the checkRelaxed001 component instance has
not been delivered.

A component recovery starts with a negotiation among all the NAs related to nodes that can hold
a new instance. These nodes are selected taking into account the node constraints and the available
implementations of the component, and they negotiate according to the negotiation criteria established
during the registration. The negotiation criteria can be, for example, the highest free memory or the
lowest processor usage. Once there is a winner NA, the AM finishes the negotiation process, and
deploys a new component instance on the winning node, initialized with the last execution state. In
the example, as a result of the negotiation process the checkRelaxed002 component instance is started
with the last execution state updated by the failed checRelaxed001 component instance.

6. Assessment

This section presents the feasibility of the proposed solution in order to cope with the demands
of homecare applications, through its feasibility to deal with the requirements identified. On the one
hand, the proposal design is validated by means of a homecare demonstrator. On the other hand,
its runtime performance is evaluated by means of a set of experimental tests. More precisely, these
tests aim at evaluating the adaptability and availability mechanisms offered by the MAS-RECON
middleware. Finally, the main benefits and limitations are highlighted.

6.1. Homecare Demonstrator

A homecare demonstrator that includes the proposed use cases has been implemented, namely,
the nursing home represented in Figure 1. Therefore, there are three residents: Patient 1 has no
serious health problems; Patient 2 suffers from high blood pressure, so s/he requires blood pressure
supervision four times a day; Patient 3 suffers from heart disease, so s/he is provided with continuous
heart rate monitoring (every 10 min). On the other hand, the building is equipped with a fire detection
system based on the temperature and CO2 concentration.

From the specification point of view, it is a system composed of four scenarios: three patients
and the environment. The Environment scenario consists of an application for fire detection that
triggers the Fire event, if detected. This event is propagated to the other three scenarios. Therefore,
all the patient scenarios receive a propagated event that launches a concrete application for health
monitoring in emergency situations (Emergency Monitoring). In the Patient 2 scenario, the Check
Relaxed application triggers the Relaxed event when the patient is relaxed, launching the blood
pressure monitoring (Blood Pressure application) and stopping itself. In the Patient 3 scenario, there is
an application for pulse rate monitoring.

The prototype demonstrator consists of biomedical and environmental sensors, and processing
units. For health monitoring purposes, the biometric shield for Arduino and Raspberry Pi, the so-called
e-Health Sensor Platform V2.0., was used [66] (see Figure 12). Every patient is provided with a health
sensor shield mounted over a Raspberry Pi. More precisely, it offers a body temperature sensor, a
pulsyoximeter (SPO2) for pulse rate, and a sphygmomanometer for blood pressure. The environment
supervision is performed through temperature and CO2 sensors mounted over a waspmote [67]. The
processing tasks can be executed in four PCs.
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Figure 12. Infrastructure of the healthcare demonstrator: e-Health Sensor Platform V2.0., gas sensors 
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the number of available nodes to hold component instances is incremented. For availability tests the 
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Figure 12. Infrastructure of the healthcare demonstrator: e-Health Sensor Platform V2.0., gas sensors
kit and processing units.

From the implementation and deployment point of view, all the application components have
been developed in Java programming language. There is a repository for recording information about
patients such as personal data (identifier, name, surname, age, sex . . . ) and medical data according to
their health problems. For example, Patient 3 is characterized by her/his maximum heart rate (HRmax),
its resting heart rate (HRrest), and its normal range of body temperature. Furthermore, it also stores the
historic measures of patients. The patient repository has been implemented by means of the native
XML eXist database [68]. The MM, the AM instances and the EM instances run in the same PC. Agents
related to application components that manage biomedical sensors are restricted to the corresponding
Raspberry Pi. Finally, for availability purposes, agents related to the other application components can
be deployed in any of the four PCs.

Taking into account that the use cases illustrate all the requirements identified in Section 3, this
homecare demonstrator allows:

‚ Validation of the Domain Modeling Approach presented in Section 4 as every use case has been
designed and developed following it. Note that in this homecare demonstrator there are neither
real patients nor medical professionals involved.

‚ Assessing the middleware architecture design and the services it offers: adaptability to context
changes (event management), availability (failure detection and negotiation-based recovery),
stateful component management, and registration (system repository).

6.2. Runtime Performance

Runtime performance has been assessed regarding the two main goals of the paper: adaptability
and availability. In particular, adaptability is evaluated in terms of the reaction time to adapt to a
context change (a change on the health status or environment conditions) whereas availability is
assessed according to the recovery time under a failure.

Both parameters are tested by using similar experiments. The starting point is a very simple
and sequential application that captures a sensor value, processes it and shows the result. In both
cases the number of available nodes to hold component instances is incremented. For availability tests
the number of processing tasks is also increased, i.e., the number of components of the application.
However, for adaptability, the number of actions triggered by the event is increased. In order to avoid
that the different processing capacities of nodes interfere the analysis of the results, and taking into
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account that in a real scenario there are many devices with limited resources, all the nodes in the
experiment are Raspberry Pi.

Regarding availability, Figure 13 shows the recovery time of the different tests. This time ranges
from a node failure to the recovery of all the affected component instances. As expected, the recovery
time increases with the number of nodes and components. In fact, the recovery time increases almost
proportionally to the number of nodes, as more nodes participate in the negotiation and due to the
low processing capacities of the Raspberry Pi, this handicaps the negotiation processes. Similarly,
recovery time also augments with the number of application components when more instances are
affected by the node failure. However, taking into account that the worst case is about 2 s and that the
most restrictive application evolves at 30 s (Check Relaxed application), the time delay is acceptable if
compared with the benefits achieved. Additionally, this worst case corresponds to applications whose
component instances can run in five different nodes, which is unusual as two available nodes are
commonly enough.

As far as adaptability is concerned, Figure 13 depicts the reaction time in milliseconds since
an event is triggered until all its associated actions have been performed. For simplicity, all the
actions triggered by the event are Create actions. Therefore, the resulting time includes the startup
of the applications. Again, as expected, the number of nodes and the number of actions increase the
reaction time.
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Figure 13. (a) Availability metrics: recovery time; (b) Adaptability metrics: reaction time.

In order to identify availability limitations another test has been performed in a PC. The same
application of eight components has been created twice: the first time under normal conditions of
CPU load, and the second time after significantly increment the CPU load (up to 80%). As a result,
the availability performance has been negatively affected. Figure 14 depicts the number of threads in
the node (every running agent is a thread). As it is observed, the start time for the same application
increases about a 28% because negotiations among nodes are slower. These metrics have been captured
by means of the VisualVM GPL software.
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Figure 15. Resource usage in terms of memory usage. (a) without event management; (b) with event 

management. 

As it has been previously stated, resource optimization is one of the main benefits of the event 

management. In this sense, resource consumption in terms of memory load has been analyzed by 

means of an application (composed by 18 components) that, after detecting a relevant context 

change, creates other five applications of 18 components. The component instances of these 

applications are deployed in four nodes. Figure 15 compares two different tests (related to two of the 

available nodes). In every graphic, the upper part represents the memory consumption, the orange 

line refers to the Java Virtual Machine (JVM) heap whereas the blue line is related to the memory 

used by the loaded objects (here, the JVM garbage collector activations to free memory are noticed). 

The bottom part depicts the number of threads on the node: 

(a) Without event management: The six applications are started from the beginning. When the first 
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(b) With event management: the first application triggers an event that is managed by an EM module 

that performs five Create actions. In this case, there is an initial amount of memory allocated, and 

after the event triggering, the amount of allocated memory increases. 

These metrics prove that events management improves resource usage, which is very useful 

when resources are limited. However, it implies more reaction time as application components are 

started after event triggering. More precisely, when there is no event management, reacting to an 
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Figure 15. Resource usage in terms of memory usage. (a) without event management; (b) with
event management.

As it has been previously stated, resource optimization is one of the main benefits of the event
management. In this sense, resource consumption in terms of memory load has been analyzed by
means of an application (composed by 18 components) that, after detecting a relevant context change,
creates other five applications of 18 components. The component instances of these applications are
deployed in four nodes. Figure 15 compares two different tests (related to two of the available nodes).
In every graphic, the upper part represents the memory consumption, the orange line refers to the Java
Virtual Machine (JVM) heap whereas the blue line is related to the memory used by the loaded objects
(here, the JVM garbage collector activations to free memory are noticed). The bottom part depicts the
number of threads on the node:

(a) Without event management: The six applications are started from the beginning. When the first
application detects the context change, it sends a data message to the first component of the rest
applications in order to activate them. This implies that memory resources are allocated from the
start. As a result, in both nodes the amount of memory does not change after the start.

(b) With event management: the first application triggers an event that is managed by an EM module
that performs five Create actions. In this case, there is an initial amount of memory allocated, and
after the event triggering, the amount of allocated memory increases.
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These metrics prove that events management improves resource usage, which is very useful when
resources are limited. However, it implies more reaction time as application components are started
after event triggering. More precisely, when there is no event management, reacting to an event by
means of an application creation just involves the synchronized start of all the application components,
as all have already executed the needed initialization actions.

These tests also show the good performance of negotiation mechanisms. In fact, as the negotiation
criterion is the “highest free memory”, all the component instances are similarly distributed among
the available nodes. This is showed in the bottom part of the graphics in Figure 15.

7. Conclusions and Future Work

This paper presents a solution for the design, implementation and management of homecare
applications for elderly. The proposed system architecture consists of a domain modeling approach
and a multi-agent based middleware and it provides mechanisms to tackle their flexibility demands
to adapt their behavior according to changes on their context (patient health status or environment
conditions) and to avoid service disruption.

The use of domain modeling techniques allows defining applications from different points of
views, each gathering the information relevant to it. As a result, the proposed modeling approach
allows medical staff to design a personalized monitoring of the health status of patients and
environmental conditions. It takes into account adaptability needs from the design phase as it
is possible to identify relevant context changes, defining how to detect and how to react to them
(user view). Additionally, it guides software developers in the implementation of all the needed
software components which contain not only the medical service execution but also the logic for data
exchange and the logic for event triggering (software view).

At runtime, multi-agent technology has been adopted to convert components into intelligent
entities. In this context, the proposed MAS-RECON middleware has extended the JADE framework in
order to manage the execution of these applications, providing mechanisms that allow performing
adaptation and that assure availability even for stateful applications. More precisely, the Event
Manager module controls all the actions related to an event. As a result, an optimized resource usage
is achieved. Availability is assured by recovering the execution of the failed component instance in
the most suitable node. This is possible due to the failure detection, stateful recovery and negotiation
mechanisms provided by the Application Manager and the Node Agent modules.

The feasibility of the proposal has been proved by means of a healthcare demonstrator based on a
nursing home. Several representative use cases have been identified and implemented. Experimental
results show that recovery time (availability) and reaction time (adaptability) are affected when
the number of nodes that can hold component instances increase or when the number of actions
triggered by an event increases. Furthermore, supporting adaptability and availability implies an
extra time that is acceptable if compared with the benefits achieved: maintaining application state and
resource optimization.

However, the middleware architecture does not support fault tolerance. For example, if an
AM fails, the runtime data and execution state related to its application components are lost. The
middleware lacks of admission control mechanisms to assure that enough resources are available
as the system grows. Therefore, further work is aimed at exploring the distribution of the system
repository for improving fault tolerance of the middleware modules, and implementing the admission
control. Additionally, proactive mechanisms will be also added in order to match Quality of Service
(QoS) parameters. For example, load balancing mechanisms for achieving energy efficiency at node
level, or unbalancing mechanisms for energy efficiency at system level (using the least number of
nodes). Additionally, as it has been proved in the assessment section, limited resources decrease the
middleware performance due to slower negotiation actions. Thus, future work is also focused on
supporting flexible QoS for non-critical applications. Finally, Model Driven Engineering techniques
will be explored as they allow automating application design and the code generation process.
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