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Abstract: In this paper, we present a reliable and robust biometric verification method based on
bimodal physiological characteristics of palms, including the palmprint and palm-dorsum vein
patterns. The proposed method consists of five steps: (1) automatically aligning and cropping the
same region of interest from different palm or palm-dorsum images; (2) applying the digital wavelet
transform and inverse wavelet transform to fuse palmprint and vein pattern images; (3) extracting
the line-like features (LLFs) from the fused image; (4) obtaining multiresolution representations
of the LLFs by using a multiresolution filter; and (5) using a support vector machine to verify
the multiresolution representations of the LLFs. The proposed method possesses four advantages:
first, both modal images are captured in peg-free scenarios to improve the user-friendliness of the
verification device. Second, palmprint and vein pattern images are captured using a low-resolution
digital scanner and infrared (IR) camera. The use of low-resolution images results in a smaller
database. In addition, the vein pattern images are captured through the invisible IR spectrum, which
improves antispoofing. Third, since the physiological characteristics of palmprint and vein pattern
images are different, a hybrid fusing rule can be introduced to fuse the decomposition coefficients
of different bands. The proposed method fuses decomposition coefficients at different decomposed
levels, with different image sizes, captured from different sensor devices. Finally, the proposed
method operates automatically and hence no parameters need to be set manually. Three thousand
palmprint images and 3000 vein pattern images were collected from 100 volunteers to verify the
validity of the proposed method. The results show a false rejection rate of 1.20% and a false
acceptance rate of 1.56%. It demonstrates the validity and excellent performance of our proposed
method comparing to other methods.

Keywords: biometric verification; palmprint; vein pattern; discrete wavelet transform; image
fusion; support vector machine

1. Introduction

Unimodal biometric verification based on physiological characteristics such as the iris, retina,
face, fingerprint, palmprint, hand geometry, and vein patterns are increasingly demanded for security
systems. However, they have still many challenges, such as limited information, limited feature
representations and weak antispoofing capabilities. Thus, achieving a high accuracy rate in unimodal
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biometric verification remains a challenge. As a result, bimodal biometric verification was developed.
The greatest advantage of bimodal biometric verification is that multiple information points can be
acquired from different modal characteristics.

This paper proposes a biometric verification method based on two physiological characteristics:
the palmprint and palm veins. A palmprint image is rich in line features such as wrinkles,
ridges, and principal lines. A palm vein image contains rich texture features shown in its vein
patterns. The proposed method fuses these two modal images and hence results in richer and
complementary information of one or more biometric characteristics. Many techniques can be used to
perform the fusion, including the well-known discrete wavelet transform (DWT) and inverse discrete
wavelet transform (IDWT). The proposed method uses DWT and IDWT to fuse palmprint and palm
vein images.

Biometric verification methods using palmprint features have been developed over the past
decades. Jain et al. [1] identified 14 different biometric features that could be used to verify hand
shapes by using deformable matching technology. Huang et al. [2] proposed a palmprint verification
technique based on principal lines. These principal lines were extracted using a modified finite
Radon transform, and a binary edge map was used for representation. Han et al. [3] extracted
features such as finger length, finger width, and palmprints to be used as inputs for principal
component analysis. Zhang et al. [4] applied the line-matching idea to print matching. They
transferred palmprints to line sections and used these features to identify people. Lu et al. [5] applied
a Karhunen-Loeve transformation to transform an original palmprint into an eigenpalm, which
could represent the principal components of the palmprint. Then, the weighted Euclidean distance
classifier was applied for palmprint recognition. In another study, texture-based codes such as the
competitive code [6] and the orthogonal line ordinal feature [7] were used to extract the orientation
of lines which exhibit state-of-the-art performance in palmprint recognition. Kong ef al. [8] applied a
two-dimensional Gabor filter to obtain texture information from palmprint images. Two palmprint
images were compared in terms of their Hamming distance of texture information. Zhang et al. [9]
obtained a palmprint feature by using a locality-preserving projection based on a wavelet transform.
Lin et al. [10] presented a palmprint verification method that involved using a bifeature, palmprint
feature-point number and a histogram of oriented gradient. Lu et al. [11] proposed a system of
capturing palm images in peg-free scenarios by using a low-cost and low-resolution digital scanner.
Lin et al. [12] applied a hierarchical decomposition mechanism to extract principal palmprint features
inside the region of interest (ROI), which included directional and multiresolution decompositions.
They used a normalized correlation function to evaluate similarities. Han et al. [13] used four Sobel
operators and complex morphological operators to extract the features of a palmprint, and applied
the backpropagation neural network and template matching with a normalized correlation function
to verify persons.

Compared with the palmprint, the use of palm veins is a relatively new hand-based biometric
trend. MacGregor ef al. [14] were the first to present a system for personal identification using
palm veins. Im et al. [15] employed a charge coupled device (CCD) camera to capture vein pattern
images. Their research focused on implementing fixed-point operations to improve verification
speeds and reduce hardware costs. Mirmohamadsadeghi et al. [16] investigated two new feature
extraction approaches based on a variety of multiscale, local binary patterns and high-order local
derivative patterns to identify the optimal descriptors for palm veins. Lin et al. [17] obtained
multiresolution representations of images with feature points of the vein patterns (FPVPs) by using
multiple multiresolution filters that extracted the dominant points by filtering the miscellaneous
features for each FPVP. Shahin et al. [18] proposed biometric authentication using a fast spatial
correlation of hand vein patterns, and designed a system with a near infrared cold source to provide
back-of-hand illumination. Wang et al. [19] combined support vector machines (SVMs) with a
k-nearest neighbors algorithm and a minimum distance classifier for palmprint and palm-vein feature
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matching. Recently, the effectiveness of finger vein recognition was proved by Liu et al. [20] using a
novel point manifold distance metric.

Bimodal biometrics have been deployed with particular fusion schemes, including sensor-level,
feature-level, and match-score level fusions. Wang ef al. [21] fused palmprint and palm-vein images
and proposed a Laplacian palm representation, which attempts to preserve local characteristics.
Kisku et al. [22] used a few selected wavelet fusion rules to fuse biometric face and palmprint images
at the sensor level. The technique proposed in this paper efficiently minimizes irrelevant distinct
variability in the different biometric modalities and their characteristics by performing the fusion of
biometric images at the sensor level.

The proposed method adopts two biometric modals: the palmprint and palm-dorsum vein.
A function block diagram is shown in Figure 1. The method is composed of five stages: image
acquisition, preprocessing, image fusion, feature extraction, and multiresolution analysis and
verification. In the image acquisition stage, a digital scanner and infrared (IR) camera were applied
to capture palm and palm-dorsum images. The resolution of the digital scanner used in this study
was 100 dpi and that of the IR camera was 320 x 240 pixels. One hundred volunteers were used
to capture 3000 palmprint and 3000 vein-pattern images. The preprocessing stage included palm
region segmentation, the locating of finger webs, and ROI localization. In the image fusion stage,
DWT and IDWT were applied to fuse the two ROI images—the palmprint and vein pattern—into
one new fused image. Iterative histogram thresholding was employed to extract line-like features
(LLFs) from the fused images. The extracted LLFs were analyzed using a multiresolution filter to
obtain the multiresolution representations. Finally, an SVM is adopted to perform the verification
between reference templates and testing images.
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Figure 1. Block diagram of the proposed method.
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The rest of this paper is organized as follows: Section 2 describes the preprocessing procedures,
which include palm region segmentation, the locating of finger webs, and ROI localization and
alignment. Section 3 describes the process of image fusion based on DWT and IDWT. In Section 4, LLF
extraction, iterative histogram thresholding, and multiresolution analysis with the multiresolution
filter are described. The mechanism of verification based on SVM is demonstrated in Section 5.
Section 6 presents the results to verify the validity of the proposed method. Finally, concluding
remarks are presented in Section 7.

2. Preprocessing

Image preprocessing is necessary to attain high accuracy in biometric verification. The main
goal of image preprocessing is to extract the same region from different palm images captured from
the same person known as the ROL Image preprocessing consists of three steps. First, palm region
segmentation separates the background from the palm region. Second, the finger-web locations
are identified as reference points. Finally, the square ROI is cropped and aligned according to the
finger-web points. The details of each step are described in the following subsections.

2.1. Palm Region Segmentation

Figure 2 shows palm images captured by the digital scanner at a low resolution and IR
palm-dorsum images captured by an IR camera. The palm images have a high quality and low
noise. In Figure 2, the images (al)-(a3), (b1)—(b3), and (c1)-(c3) were each captured peg-free from one
person. The proposed method uses an IR camera to capture palm-dorsum images. A crucial property
of IR imaging is that the gray levels of pixels change monotonically according to the temperature
of the object in the image. Since the temperature of a vein is higher than that of the skin, a vein
shows a high gray level in an IR palm-dorsum image which can be distinguished from the low gray
level of skin. Figure 2 shows IR palm-dorsum images captured by the IR camera. In Figure 2, the
images (a4)—(a6), (b4)—(b6), and (c4)—(c6), were each captured peg-free from one person. As shown in
Figure 2, the images contain two parts: the palm region and the black background. For segmenting
the palm region, a histogram can provide valuable information. The histograms of these images
convey a typical bimodal distribution.

Figure 2. Cont.
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Figure 2. (al)—(a3), (b1)—~(b3) and (c1)—(c3) show the palm images captured by a digital scanner;
(a4)—(a6), (b4)-(b6) and (c4)—-(c6) show the IR palm-dorsum images captured by an IR camera.

c6)

Different palm images and IR palm-dorsum images in each column were captured peg-free from
one person.

Figure 3a shows the histogram of the palm image from Figure 2al where the vertical and

horizontal axes represent pixel numbers and gray values, respectively. Although the histogram of

each palm image shows a typical bimodal distribution, a small difference still exists. To determine

a suitable threshold to segment the palm region, an adaptive thresholding process is needed. Many
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techniques of thresholding are possible, including the mode, P-tile, mean value, and Otsu methods.
In our work, the mode method [23] is employed to select the threshold for segmenting the palm
region. The mode method selects the gray value with the local minimum pixel number between the
two gray values with local maxima. As shown in the histogram of Figure 3a where P1 and P2 are the
gray values with the local maximum pixel numbers and B is the gray value with the local minimum
pixel number, B will be selected as the threshold to segment the palm region. With the selected
threshold, the palm region is segmented from the palm image. The resulting binarized image is
shown in Figure 3b. The palm shape is distinctly segmented from the original image, showing that
the mode method can efficiently divide palm images into the palm region and the background.

@ (b) ©

Figure 3. (a) Histogram of the palm image from Figure 2al. The vertical and horizontal axes represent
pixel numbers and grey values, respectively. P1 and P2 are gray values with the local maximum
pixel numbers, whereas B is the gray value with the local minimum pixel number. B is selected as
the threshold to segment the palm region; (b) Binarized image of the palm region segmented using
threshold B, which was selected by the mode method; (c) Resulting image of the binary palm image
from (b) after processing by dilation (twice) and erosion (twice).

After using the mode method to binarize the palm images, many small broken parts in the
boundaries of the palm regions remained, including fingernail and background noises. These
broken parts could cause difficulties in later image processing procedures. Therefore, morphological
operations are adopted to repair the broken parts.

The well-known morphological theory [24] is frequently used in image processing. A
morphological operation explores an image with a template called a structuring element. After
applying the morphological operation, a binary image outputs a new binary image. The value of
the output image is defined by a comparison with the structuring element and the corresponding
neighborhood of pixels. The structuring element is a small binary image, and can be of any shape and
size. There are two major morphological operations: dilation and erosion. After dilation, the holes
enclosed by a single region and gaps between different regions become smaller, and small intrusions
on the boundaries of a region are filled. With erosion, the holes and gaps between different regions
become larger, and small details are eliminated. In general, dilation increases the pixels around the
boundaries of image objects and erosion reduces the pixels. The equations of dilation and erosion are
as follows:

A@B:UBEB(A“‘B) (1)

AOS(-B) = ngep (A —B) ()

where A is the image, B is the structuring element, and 3 is a pixel belonging to B, -B means “not B”.
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The proposed method applies the dilation twice before performing the erosion twice. With these
morphological operations, the palm shape of the image becomes more completed. The broken parts
are repaired and the noise is removed. The result is shown in Figure 3c.

2.2. Locating Finger Webs and ROI Cropping

The palm and IR palm-dorsum images were captured under peg-free scenarios. This increases
user-friendliness but results in varied palm locations and rotation angles across images. Biometric
features (i.e., the palmprint and vein pattern) extracted from the same region in different images
are crucial to increasing verification accuracy and reliability for many biometric recognition systems.
The cropped region is known as the ROIL The ROI must be aligned to the same position in different
palm or palm-dorsum regions to ensure the stability of the extracted features. The ROI also has a
significant influence on the accuracy of verification. However, it is difficult to align the ROI to the
same position in different images without using pegs to constrain the palm during image capturing.
Varied positions and rotation angles can occur in palm and palm-dorsum images. Some examples
of peg-free images captured from one person are shown in Figure 2. These images show that the
position and rotation angle of palm and palm-dorsum regions are different for each image.

Our previous study [10,11] was the first to use the second- and fourth-finger webs as datum
points to automatically locate and align the ROI The two finger webs can replace pegs and determine
the approximate ROL The proposed method possesses two significant advantages. First, it can reduce
the displacement of the ROI to an acceptable range. Second, the range of palm rotation and translation
while acquiring palm images can be eliminated. The finger-web location algorithm here was modified
from our previous study [10,11], the procedures of which are stated briefly as follows:

1.  The inner-border tracing algorithm [23] is applied to determine the palm contours, and the
resulting image is shown in Figure 4a. The process starts from the bottom-left point Ps tracing
counterclockwise along the border of the palm shape until rejoining point Pg. The set of contour
pixels are named P3, Py Py.

2. The middle point of the intersection line formed by the wrist and the bottom line of the palm
image is defined as Wy,.

3. By using Equation (3), the Euclidean distance between each contour pixel and the wrist middle
point W, is calculated. These distances are adopted to construct a distance distribution profile
whose shape is similar to the geometric shape of a palm. Figure 4b shows the distance
distribution profile. The distance profile has five local maximums corresponding to fingertip
locations, and four local minimums corresponding to finger-web locations. After experimenting
with many palm images, this study finds that the four minimum locations are the same as the
finger-web locations regardless of the palm position and rotation angle in each image. With
this characteristic, the four finger webs, FW;, FW,, FW3, and FWy, can be accurately located by
referencing the four local minimums in the distance distribution profile.

4.  Contour- and curvature-based outstretched hand detection is employed to locate finger webs.
The locations of the four finger webs, FW1, FW;, FW3, and FW4, are shown in Figure 5a.

5. Since the rotation angle of the palm region is different in each image, the rotation angle must be
removed. Line FS is formed using finger webs FW, and FW, as shown in Figure 5a. The angle
0 between FS and a horizontal line is calculated using Equation (4). The resulting image rotated
with angle 0 is shown in Figure 5b. Figure 5c shows FS rotated to be horizontal.

6. A square ROl is defined by selecting the second- and fourth-finger webs, FW; and FW,. FWm
is the middle point of FW, and FW,. The square region is determined by the corners Ry, Ry, R3,
and Ry. The top side RyR; is parallel to FS and the distance between them is a quarter length
of the line FW,FW,. R R, is calculated as (3/2) x FW,FWy. The corner R; is then redefined as
the original coordinate (0, 0) of the ROL The located ROI is shown in Figure 5c. The ROI image,
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which is the square region enclosed by corners Ry, Ry, R3, and Ry, is cropped from the palm or
palm-dorsum image.

Di(i) = \/ (X — X5, + (Y —Y,)? ©)

where (Xwar, Ywam) are the coordinates of the wrist middle point Wy, , (Xp;, Yp;) are the coordinates
of the i-th pixel of the contour set, and Dg(i) is the Euclidean distance between the wrist middle point
Wy and the i-th pixel of the contour set.

0 = tan ' [(Yewz — Yrwa)/(Xpw2 — Xpwa)] (4)

where 0 is the angle between line FS and a horizontal line, (Xpy2, Yrw2) are the coordinates of FW,,
and (Xrw2, Yrwa) are the coordinates of FW,.

(b)

Figure 4. (a) Contours of the palm region; (b) Distance distribution profile of the palm
contours constructed using the Euclidean distances between the wrist middle point Wy; and palm
contour pixels.

(b)

Figure 5. (a) Locations of the four finger webs FW, FW,, FW3, and FW,. Line FS is formed by FW,

and FWy. The angle 6 is measured between line FS and a horizontal line; (b) The resulting image
rotated with angle 6; (c) Location of the ROL
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Figure 6. (al)—(a3), (b1)—(b3) and (c1)—(c3) show the ROIs of palm regions cropped from
Figure 2al-a3,bl-b3,c1-c3, respectively; (a4)—(a6), (b4)-(b6) and (c4)—(c6) show the ROIs of IR
palm-dorsum regions cropped from Figure 2a4-a6,b4-b6,c4—c6, respectively.

The ROIs for palm regions are located and cropped. The ROIs for palm regions are normalized to
256 x 256 pixels. The ROIs for palm-dorsum regions are normalized to 64 x 64 pixels. Figure 6 shows
the different ROIs for palm and palm-dorsum regions cropped from Figure 2. The ROIs are located at
almost exactly the same region. Therefore, the problem of varied palm locations and rotation angles
can be solved.

3. Image Fusion Based on DWT and IDWT

Image fusion has been employed in diverse fields such as computer vision, remote sensing,
medical imaging, and satellite imaging. Irrespective of the field, the aim of image fusion is the same
that is to create more useful information from two single images.

DWT is a useful technique for numerical and functional analysis. It has long been used as a
method of image fusion [25], and its practical applications can be found in digital communication,
data compression, and image fusion. A key advantage of DWT over Fourier transforms is that it
captures both frequency and location information. The proposed method fuses images by using DWT
and IDWT with a novel hybrid fusion rule at different decomposition levels in wavelet-based.

For the described DWT, some necessary signals and filters must first be defined. Signal x; is the
input signal. Signal y,, which includes yjo,, and ypgp, is the output signal. Filter /, as expressed in
Equation (5), is a low pass filter that filters out the high frequency of the input signal and outputs
the low frequency signal called approximation coefficients. Filter /i, as expressed in Equation (6), is a
high pass filter that outputs the high frequency signal called detail coefficients. Variables k and n are
the k-th and n-th data of the signal, respectively. The filter outputs are downsampled by two with the
downsampling operator |:

Yiow[n Z k= —ooXi[K]I[2n — K] ()

yhzgh Z k=—o0X 21’1 — k] (6)

The DWT of signal x; is calculated by passing x; through a series of filters. The signal is
decomposed using a low pass filter and a high pass filter simultaneously. The decomposition
is repeated to further increase the frequency resolution, and the approximation coefficients are
decomposed with the high and low pass filters and the downsampling. Figure 7a shows the one-stage
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structure of the two-dimensional DWT where I(—x) and I(—y) are the low pass decomposition
filters, h(—x) and h(—y) are the high pass decomposition filters, and C;;, Crp, Cyr, and Cypy are
the decomposition coefficient matrices. Figure 7b shows the relative locations of decomposition
coefficient matrices in the two-dimensional DWT.

rows columns

I 112 iy) L columns  rows
112 1(x)
Cur It
ht) I(x)
H—r
H

Cun L hiy)

rows columns
C

Ix,y)

(a) (c)
DWT Crr Crr I L IDWT
I(x,y) > — > I(x,y)
) ) Iy Ty »
ChL Chr
(b) (d)

Figure 7. (a) One-stage structure of the two-dimensional DWT; (b) Relative locations of decomposition
coefficient matrices in the two-dimensional DWT; (c¢) One-stage structure of the two-dimensional
IDWT; (d) Relative locations of fusing coefficient matrices in the two-dimensional IDWT.

Once the coefficients are merged, the final fused image is achieved using IDWT. Figure 7c
shows the one-stage structure of the two-dimensional IDWT. The fused image is denoted by I (x, y).
Figure 7d shows the relative locations of the fusing coefficient matrices in the two-dimensional IDWT.
Irr, Ity Iy, and Iy are the fused coefficient matrices.

Wavelet-Based Image Fusion of Palmprints and Vein Patterns

Palmprints have low gray levels in palm images, whereas vein patterns have high gray levels
in palm-dorsum images. To make the gray-level properties of palmprints consistent with those of
vein patterns, the gray levels of the palm images are reversed. Thus, inverted palm images have high
gray-level palmprints with low gray-level backgrounds.

In addition, the ROl sizes for palmprints and vein patterns are different. To address this problem,
palmprint ROIs are decomposed using two-dimensional DWTs three times to obtain first-, second-,
and third-level coefficients with the sizes of 128 x 128, 64 x 64, and 32 x 32 pixels, respectively (see
Figure 8a). Vein pattern ROIs are decomposed using a two-dimensional DWT to obtain the first-level
coefficient with a size of 32 x 32 pixels (see Figure 8b). The size of the third-level coefficient for
the palmprint ROI is the same as the size of the first-level coefficient for the vein pattern ROL The
two-dimensional DWT used in the proposed method is the Haar filter, which includes lowpass filter
I and highpass filter h.

By analyzing the three-dimensional (3D) profiles of the palmprint and vein pattern ROls,
it is revealed that palmprints and vein patterns possess different characteristics. The 3D profile of
the palmprint ROI shows a sudden change in the gray levels of adjacent pixels near the principal
palmprint, which possesses a high frequency as shown in Figure 9a [12]. In contrast, the 3D profile of
the vein pattern ROI demonstrates that the gray levels of the vein pattern varies smoothly. The vein
pattern has a low frequency as shown in Figure 9b [17].
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Coefficient fusion is the key step in image fusion based on wavelets. Many coefficient fusion
rules have been presented including maximum, minimum, average, weighted, down-up, and
up-down [25]. According to an analysis of the 3D profiles for palmprint and vein pattern ROls,
the proposed method introduces a hybrid fusion rule consisting of average and maximum fusion
rules. The hybrid fusion rule applies the average rule to combine the approximation coefficients and
the maximum rule to combine the detail coefficients. The hybrid fusion rule is named the Avg-Max
fusion rule and is expressed as follows:

I (x, y) — Iy (x, y) + Iy(x, y))/2 (x, y) € approximation subband @
SEY= max (1, (x, y), L(x, y)) (x, y) € detail subband

where I (x, y) is the coefficient value of the fused image at pixel (x, y), I(x, y) is the coefficient value
of the palm image, and I(x, y) is the coefficient value of the palm-dorsum vein image.

e

e

(@) (b)

Figure 8. (a) Three levels of DWT in palmprint ROI decomposition; (b) One level of DWT in vein
pattern ROI decomposition.

(a) (b)

Figure 9. 3D profile of palmprint and vein pattern ROIs. The vertical axis represents the gray level
of pixels. The other two axes represent the coordinates of pixels. (a) The profile of the palmprint
ROI shows a sudden change in the gray levels of adjacent pixels near the principal palmprint, which
possesses high frequency; (b) The vein pattern profile demonstrates that the gray levels of the vein
pattern vary smoothly. The vein pattern has a low frequency.
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Since the sizes of the palmprint and vein pattern ROIs are different, the proposed method adopts
the different resolution fusion scheme [26] to fuse palmprint and vein pattern ROIs at the third and
first levels, respectively. The size of the third-level coefficient of the palmprint ROl is the same as the
size of the first-level coefficient of the vein pattern ROI which is 32 x 32 pixels. The proposed method
applies the novel hybrid fusion rule to combine the 32 x 32 coefficients and performs IDWT to fuse
the 64 x 64 image. IDWT is then performed again with the remaining palmprint coefficients. The
final fused 256 x 256 image is shown in Figure 10. We can observe that the fused image retains the
high frequency palmprint and low frequency vein pattern information.

Figure 10. Three stages of IDWT fused image composition.

4. Feature Extraction

4.1. Enhancement of Line Features

Feature extraction is essential for recognition systems. To extract features, the Sobel operator is
employed to enhance the LLFs of the fused ROIs. The Sobel is a well-known filter used to detect the
discrete directional gradient that includes 0, 45, 90, and 135 degrees. The four directional operators
are shown in Figure 11.

1 2 1 1 0 -1 0 1 2 2 1 0
0 0 0 2 0 -2 -1 0 1 1 0 -1
-1 -2 -1 1 0 -1 -2 -1 0 0 -1 -2

Figure 11. Four 3 x 3 Sobel operators in different orientations.
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Figure 12. Example illustrating the result from applying a Sobel operator.

The fused ROlIs are filtered using Sobel operators in the different orientations used to emphasize
the edges in specified directions. For example, the Sobel operator of 0 degrees is used to emphasize
horizontal line edges. The four Sobel operators are applied to convolute each pixel in the fused ROIs
and generate four values. The maximum value from these four generated values is selected as the
gray level of pixels in the enhanced ROI. The enhanced ROI is shown in Figure 12.

4.2. LLF Extraction

Because the line edges of the fused ROIs are enhanced using Sobel operators, it is crucial to
accurately extract the LLFs. The capture of palm and palm-dorsum images at different times induces
a variable environmental condition of different images. Therefore, a fixed threshold is not suitable to
extract LLFs. The proposed method adopts the iterative threshold selection technique [23] to extract
the line feature pixels of enhanced ROIs. The procedures are outlined as four steps as will be briefly
described as follows:

Step1. Randomly initialize the threshold Th(1) (between the range of 0 to 255) to segment the image
into the object and the background.

Step2. Apply Equations (8) and (9) to iteratively compute pp(i) and p,(i) as the means of the
background and object gray levels at the i-th iteration, respectively. The threshold Th(i) used to
segment images into the background and object is determined in Step 3 of the previous iteration

by using Equation (10).
up = >, f(i,j)/Ns ®)
(i,j)ebackground
mo= 2, fEN/N, ©)

(i,j)eobject
where Np and Np denote the pixel numbers of the object and the background, respectively.

Step 3.
SetTh(i + 1) = (up(i) + Ko(i))/2 (10)

where Th(i + 1) is the new threshold for the next iteration.
Step 4.  If Th(i + 1) = Th(i), then terminate; otherwise return to Step 2.

The threshold Tt is thereby determined. The enhanced ROls are thereby transformed into binary
values. Binary images including only LLFs are called line-like images (LLIs). Detailed procedures can
be found in [23].
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4.3. Multiresolution Analysis with a Multiresolution Filter

The multiresolution analysis of signals has been proven effective in extracting local features.
In addition, a multiresolution representation provides an uncomplicated hierarchical structure for
interpreting image information. Information at different resolutions of an image generally represents
different physical structures. A coarse resolution image is viewed as though seeing an object from far
away. It possesses gross information and is less sensitive to noise and disturbances. By contrast, a
fine resolution image provides the capacity for seeing an object at closer distances revealing detailed
information that is more sensitive to noise and disturbances.

The proposed method employs a feature-pass filter, presented as FPF in Equation (11), as a
multiresolution filter to decompose LLIs into multiresolution. Figure 13 shows that with an LLI of
m x m pixels, the LLI is decomposed into n x n nonoverlapping blocks and the resolution of each
block contains (m/n) x (m/n) pixels. The feature-pass filter calculates the number of LLF pixels in each
block as a feature vector. The multiresolution filter proves clearly that it can solve the problem of
offset in the position of the palm across different images.

m/n m/n

FPF™(p,q) = > 3 LLI(x,y) (11)

x=1y=1

where FPF (p,q) is the number of LLF pixels inside each nonoverlapping block of (m/n) x (m/n)
pixels, x and y represent the horizontal and vertical coordinates respectively, and x, ye{ 1,2, ..., (m/n)}.
LLI(x, y) is a binary image with LLFs. At the nth level of resolution, p and q represent the horizontal
and vertical coordinates and p, ge{ 1,2, ..., n}. These numbers are recorded as feature vectors for
later verification.

Figure 13. Example of nonoverlapping blocks.

5. Verification

Support Vector Machine

The SVM is a well-known supervised learning model and a useful scheme for data classification.
SVM essentially searches for the optimal separating hyperplane that is a linear or nonlinear decision
boundary separating two classes and leaves the largest margin between the vectors of the two classes.
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An optimal separation is achieved by the hyperplane that has the largest distance to the nearest
training data point of any class. In general, a larger margin causes a lower generalization error in
the classifier.

The simplest model of an SVM classifier is the maximal margin classifier. It attempts to insert a
linear plane between two classes and to orient this plane such that the margin2/ | lw! | is maximized.
The middle of the margin is named the optimal hyperplane. The data points lie on the boundaries
and those closest to the margin are called support vectors. The equation is expressed as:

i (wlxj+b) > 1fori=1,2,3,...... ,Nand x;je AUB
y
, 1, n (12)
mMin 4 p (E”w” )

where x; is the support vector belonging to class A and B with y;e{—1, 1}, b denotes the location of
the hyperplane relative to the origin, N is the number of support vectors, and 2/ | |w/| | is the margin
between the hyperplane and support vectors.

However, this method is only suitable for two separable classes. If two classes cannot be
completely separated, this method is not feasible. Because real-life classification problems are difficult
to solve using a linear classifier, an improved version with a nonlinear decision surface is necessary.
This can be achieved using the kernel scheme, which applies a nonlinear kernel function to replace
the linear kernel function in Equation (12). Accordingly, the applied kernel function such as linear,
polynomial, Gaussian, or radial basis functions, plays a crucial role in the classification of SVMs. This
is expressed as:

yi (Wl (x;)+b) > 1-&fori=1,23, ...... ,Nandx;e AUB, &> 0

minw,b,g(%wTw) +CYN G i=1,2,3...... N (13)
where ® denotes the function-mapping support vectors x; into a higher dimensional space, ¢ is
the slack variable controlling the misclassification caused by linearly nonseparable classes, and C
represents a parameter controlling the tradeoff between classification errors and the margin in the
training set. Detailed information on SVMs is described in [27].

In this study, the feature vectors of the LLI multiresolution representation are used as the input
test sample for the SVM to verify as genuine or an impostor. In our work, we adopt the well-known
Library for Support Vector Machines (LIBSVM) tool developed by C. Chang ef al. in [28] as the
verification method. The radial basis function, expressed in Equation (14), is used as the kernel
function in the SVM classification process:

K (xi, xj) = exp(—H Xj — Xj Hz/ 20%) (14)

where o is a kernel parameter.

In addition, k-fold cross validation is employed to construct the parameter library with (k — 1)/k
positive training samples of all palm images and with (k — 0)/k negative training samples randomly
selected from the images of other palms. To verify the validity of the proposed method, the remaining
1/k images of a palm are used as positive testing samples and the 1/k images randomly selected from
the images of other palms are used as negative testing samples.

6. Results

The experimental platform is a personal computer with a 64-bit Microsoft Windows 7 operating
system, an Intel(R) Core(TM) i7 CPU 2.80 GHz processor, and 4 GB RAM. The developing tools used
are Microsoft Visual Studio C++ (2010) with OpenCV library and MATLAB 2013a.
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6.1. Data Collection

Experimental data was collected using the digital scanner and the infrared camera. The total
number of palm images is 3000, and the total number of palm-dorsum images is 3000. The palm and
palm-dorsum images were collected from 100 people with each having 30 images captured using the
scanner and infrared camera, respectively. The original size of palm images is 845 x 829 pixels with
256 gray levels, and the original size of palm-dorsum images is 320 x 240 pixels with 256 gray levels.
Figure 14 shows the configuration of the image collection system.

e )
b
A

Figure 14. The configuration of the image collection system.

6.2. Experimental Results

The digital scanner used the capture palmprint images is an Avision FB1200 (Avision Inc.,
Hsinchu, Taiwan). The IR camera used to capture IR palm-dorsum images is Thermo GEAR
G100 that was produced by the NEC Corporation (Tokyo, Japan). The following descriptions are
their specifications:

Digital scanner:

Document feeding mode  Flatbed

Light Source LED

Optical Resolution (dpi)  Up to 2400 dpi

Grayscale mode 8bits output

Color mode 24bits output

Interface USB 2.0

Output Format: JPEG image format
IR camera:

Infrared Detector: Uncooled Focal Plane Array (microbolometer)
Noise equivalent temperature difference (NETD) : 0.08 °C (at 30 °C, 60 frames/s.)
Accuracy: +2 °C or £2% of Reading, whichever is greater
Measuring Range: —40 °C to 500 °C

Spectral Range: 8 to 14 um

Thermal Image resolution: 320(H) x 240(V) pixels

Field of View: 32°(H) x 24°(V) (standard lens F.L. = 14 mm)
Spatial Resolution (IFOV): 1.78 mrad

A /D Resolution: 8 bits

Operating Temperature/Humidity: —15 °C to 50 °C, <90% RH
Output Format: JPEG image format
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In the experimental results, the false rejection rate (FRR) and the false acceptance rate (FAR) are
used as two benchmarks to evaluate the performance of the proposed method. The lower the values
of the FRR and FAR are, the higher the performance is of the proposed method. The FRR and FAR
are defined as follows:

FRR = (NFR/NPT) x 100% (15)

FAR = (NFA/NNT) x 100% (16)

where NPT is the number of positive test samples, NNT is the number of negative test samples, NFR
is the number of false rejections, and NFA is the number of false acceptances.

Figures 15-17 show the verification results of plamprint, vein pattern and fused (palmprint +
palm-dorsum) images, respectively. These three figures exhibit the different performance between
single modal and bimodal biometric. The vertical axes represent the FRR and FAR in Figure 15a,b,
respectively. The horizontal axe represents the k-holds in both Figure 5a,b. The vertical and horizontal
axes of Figures 16 and 17 are defined as same as of Figure 15.

FRR of Palmprint Verification
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Figure 15. FRR and FAR for palmprint verification. (a) FRR of palmprint verification; (b) FAR of
palmprint verification.

Figure 15 shows the FRR and FAR for palmprint verification generated by various block sizes

and k-holds. Figure 15a shows that the FRR generated by the 32 x 32 block size produces the lowest
curve for all k-holds. The lowest FRR for palmprint verification reaches 1.43% for the 32 x 32 block
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size with 8-fold cross validation as shown in Figure 15. In this case, the FAR for palmprint verification
is the lowest at 3.37%.

Figure 16 shows the FRR and FAR for vein pattern verification generated by various block sizes
and k-holds. Figure 16a shows that the FRR generated by the 16 x 16 block size produces the lowest
curve for all k-holds. The lowest FRR and FAR for vein pattern verification are 8.53% and 3.30%,
respectively. The highest performance for vein pattern verification is achieved with the 16 x 16 block
size and 9-fold cross validation as shown in Figure 16.
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Figure 16. FRR and FAR for vein pattern verification. (a) FRR of vein pattern verification; (b) FAR of

vein pattern verification.

Figure 17 shows the FRR and FAR for fused image verification generated using various block
sizes and k-holds. Figure 17a shows that the FRR generated using the 32 x 32 block size produces the
lowest curve for all k-holds. In high-security demand applications, the lowest FRR is needed. The
lowest FRR for fused image verification is 1.20% with a FAR of 1.56%. This performance is achieved
with the 32 x 32 block size and 9-fold cross validation. For convenient and suitable security demand
applications, the lower FAR is needed. The lowest FAR for fused image verification is 1.11% with an
FRR of 1.30%. This performance for fused image verification is achieved with the 32 x 32 block size
and 7-fold cross validation. Figure 18 shows the FRR and FAR of fused images fused by using the
proposed hybrid fusion rule, Avg-Max, and the other fusion rules with 32 x 32 block size and various
k-holds. Figure 18a shows the FRR generated by using the Avg-Max fusion rule is the lowest between
the range from 2-hold to 9-hold. Figure 18b illustrates the FAR generated by using the Avg-Max
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fusion rule is lower than that by using some fusion rules. However, it is not the lowest. The main
reason is the negative training and testing samples are randomly selected from the image database.
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Figure 17. FRR and FAR for fused image verification. (a) FRR of fused image verification; (b) FAR of
fused image verification.
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Comparison with different fusion rules (FAR)
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Figure 18. The FRR and FAR of fused images fused by using the proposed hybrid fusion rule,
Avg-Max, and the other fusion rules with 32 x 32 block size and various k-holds. (a) FRR of fused
image verification with different fusion rules; (b) FAR of fused image verification with different
fusion rules.

The performance of bimodal biometric verifications is not easily compared since there is no
public standard database. However, we summarize some results of verification methods and the
proposed method which fuses palmprint and vein pattern images in Table 1, which shows the
performance of the proposed method is comparable to other verification methods.

Table 1. Comparison of palmprint or palm vein verification methods and the proposed method which
fuses palmprint and vein pattern images.

Database Best Results

Reference Paper
Number of Number of Accuracy FRR (%) FAR (%)

Palm Images Palms Classification Rate (%)
[2] (Dataset 1) 1300 100 0.49 0.50
[2] (Dataset II) 5018 386 0.57 0.57
[4] 100 95.00
[5] 3056 191 1.00 0.03
[10] 9000 300 99.04
[12] 4800 160 99.25 0.75 0.69
[13] 1500 50 98.00 2.00 2.00
[17] 960 30 2.30 2.30
[19]* 1440 120 0.32 0.10
[29] 200 20 97.00
[30] 200 100 91.00
[31] 7200 200 1.64 1.64
[32] 100 99 1.00 0.29
Proposed method 6000 100 98.8 1.20 1.56

* FAR and FRR are estimated from Figure 11 in [19] by eye.

Table 1 indicates that its performance is slightly higher than that of the verification methods
proposed by [4,13,17,29,30]. By contrast, the performance of the verification methods proposed
by [2,5,10,12,19,31,32] is slightly higher than that of the proposed method. Some possible explanations
for this are as follows. Lin ef al. [10] did not discuss FARs in their study. In real-world applications
both FRR and FAR must be low, as a low FRR implies that as few legitimate users as possible
are rejected by a system, while a low FAR implies that as few impostors as possible are falsely
accepted by a system. In [12], Lin et al. extracted multiple features for verification. In practice,
more features produce a higher accuracy rate. The palm images used in Huang ef al. [2] and
Lu et al. [5] were captured using pegs or other devices to constrain the palm position. As such, the
movement of ROIs in palm images was reduced and hence leading to a higher accuracy rate.
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Raghavendra et al. [31] applied multispectral six-band palmprint images for verification. A larger
number of different band images carry more information that can be used for verification and hence
leading to a higher accuracy rate. Vaidya et al. [32] used visible light and near infrared (NIR) cameras
to capture the palmprint and palm vein images, respectively. The sensor material of these two
cameras is complementary metal-oxide semiconductor (COMS). The images size of palmprint and
palm vein images are 1024 x 768 pixels. They are more than that of used images to evaluate the
proposed method. In practice, a larger size image has more information and thus it can achieve a
higher accuracy rate of verification. The reason why Wang et al. [19] report a higher accuracy rate of
verification is similar to that of Vaidya et al. [32]. In additional, the palmprint and palm vein images
used in Wang et al. [19] were captured using docking devices to constrain the palm position. This
substantially improves the recognition performance significantly. The palm vein images used in [19]
and [32] were captured from palm side by an NIR camera.

Table 2. The detailed differences between the two capturing devices and scenarios used in
reference [19] and the proposed method.

Proposed Method Reference [19]
Used image Palmprint image Palm—?r(r);s;em vem Palmprint image Palm vein image
Image captured Palm Palm-drosum Palm Palm
from
. . Near infrared
Capturing device Scanner Infrared camera camera
camera
Captur}ng Peg-free Peg-free Use do'ckmg Use dqckmg
scenarios device device
Sensor material CMOS Microbolometer CMOS CMOS
Sensor type Linear Focal Plane Array Focal Plane Array ~ Focal Plane Array
Sensor spectral 380-750 nm 8-14 um 380-750 nm 750-1000 nm
response
Imaging Detect reflected Detect radiated IR Detect reflected Detect reflected
mechanism visible spectrum spectrum visible spectrum NIR spectrum
Image size 845 x 829 320 x 240 768 x 576 768 x 576

On the contrary, the pal[mprint and palm-dorsum vein image were collected by visible light
scanner and infrared (IR) camera. Each image was captured in peg-free scenarios to improve the
user-friendliness. Visible light scanner and infrared (IR) cameras are two different kinds of capturing
devices. The sensor material of scanner is COMS and that of IR camera is microbolometer. Thus the
physiological characteristics and image size of palmprint and palm-dorsum vein images are quite
different. The differences between the two capturing devices used in the proposed method are much
more than those used in reference [19]. The detailed differences between the two capturing devices
and scenarios used in reference [19] and the proposed method are summarized in Table 2.

7. Conclusions

In this paper, fused images of palmprints and palm-dorsum vein patterns are used to verify
the identity of individuals. The experimental results show that the proposed biometric verification
system is robust and reliable. The findings of this research can help extend bimodal biometric
verification technology to security access control systems and bio-cryptosystems [33,34].

There are five advantages in our proposed method. First, no docking devices or fixed pegs are
needed while acquiring palm images, which makes the personal verification device easier and more
convenient for users. Second, the low-resolution images are used to verify and result in a smaller
database. Third, the threshold values to binarize the original image to the background and palm
region are automatically set. Hence, the palm region is segmented adaptively using the proposed
thresholding technique. Fourth, according to the palmprint and vein pattern characteristics, this
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paper proposes a novel hybrid fusion rule, Avg-Max, to fuse the different coefficients decomposed
by DWT. In addition, the palmprint and vein pattern images are of different sizes, yet the proposed
method combines the different coefficients at different decomposition levels with coefficients of the
same size. Finally, the fused image creates richer and more useful information than each individual
image and the dimensions of the feature vectors are the same as in each individual image.

As with most biometric verification methods, the proposed method has some operational
limitations. Because the IR camera used in this study has a low resolution and sensibility, this
limits the accuracy of biometric verification. A high performance IR camera should be used to
capture high-quality and more discriminative images. Furthermore, there may exist other effective
feature extraction methods that could obtain more information from palm and palm-dorsum images.
In addition, a biometric verification method combining additional biometric features such as palm
geometry, fingerprints, or palm creases could increase verification accuracy. Finally, most biometric
features vary with the age of the person, an improved biometric verification method would be capable
of predicting feature variations to maintain accuracy.
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