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Abstract: Accurate signal-source and signal-reflector target localization tasks via mobile sensory units
and wireless sensor networks (WSNs), including those for environmental monitoring via sensory
UAVs, require precise knowledge of specific signal propagation properties of the environment,
which are permittivity and path loss coefficients for the electromagnetic signal case. Thus, accurate
estimation of these coefficients has significant importance for the accuracy of location estimates.
In this paper, we propose a geometric cooperative technique to instantaneously estimate such
coefficients, with details provided for received signal strength (RSS) and time-of-flight (TOF)-based
range sensors. The proposed technique is integrated to a recursive least squares (RLS)-based adaptive
localization scheme and an adaptive motion control law, to construct adaptive target localization and
adaptive target tracking algorithms, respectively, that are robust to uncertainties in aforementioned
environmental signal propagation coefficients. The efficiency of the proposed adaptive localization
and tracking techniques are both mathematically analysed and verified via simulation experiments.
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1. Introduction

There has been significant research interest in the use of mobile sensory units and wireless sensor
networks (WSNs) in various application areas, including environmental monitoring, especially in the
last two decades. Typical mobile sensory units for environmental monitoring are autonomous vehicles
(AVs) with certain types of sensor loads, and typical environmental monitoring WSNs are coordinated
teams of such AVs, as well as sensor arrays on individual AVs. The main tasks of the environmental
monitoring AVs and WSNs are localizing and state-observing various target objects, including animals,
fire sources, fire fighter units, radioactive and biochemical emission sources and electromagnetic signal
sources [1–4]. A key component in AV-based environmental monitoring is sensor instrumentation and
localization algorithms utilizing these sensors. For localization, sensors are often used in sensor array
or WSN forms. Use of such WSNs on AVs, e.g., UAVs, have various environmental applications, such
as motion tracking, precision agriculture, coastline monitoring, rescue tasks, detecting and tracking
fire, chemical and radioactive sources and pollutants [3–12].

Accurate signal-source and signal-reflector target localization via the aforementioned sensory
units and WSNs requires precise knowledge of specific signal propagation properties of the
environment. Such properties can be modelled by certain diffusion or propagation formulas,
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which involve some environmental coefficients, which are specific to the particular setting and
which may be constant or time/space dependent. Environmental coefficients for radiation tracking
and fire positioning are, respectively, radioactive sensor detection count rate and fire propagation
velocity [6,8,9]. For electromagnetic signal source or reflector localization, typically, received signal
strength (RSS) and time-of-flight (TOF)-based range sensors are used. Modelling of electromagnetic
signal propagation for use by such sensors is more advanced [1,2]. The corresponding environmental
coefficients are the path loss coefficient (η) for RSS and the signal permittivity coefficient (ε) for TOF.

In the literature, some preliminary studies for position tracking of radioactive and fire sources
based on environmental coefficients are introduced in [6,8,9]. However, these studies either provide
some rough data or assume a priori data from measurements on the environmental coefficients, which
are the count rate for a radioactive source and the velocity of the hot gasses for fire localization.
Electromagnetic signal source localization has various environmental monitoring applications,
including surveillance of environmental (UAV, fire-fighter, robot) assist units, surveillance of objects
tagged by electromagnetic signal sources or reflectors, surveillance of environmental intruders and
positioning for rescue tasks [4,5,13,14]. A particular application is in fire-rescue systems, aiming at
recognition and localization of the fire fighters [13,14].

Since localization algorithms are vulnerable to inaccuracies in the knowledge of the environmental
coefficients, various approaches are proposed in the literature for the estimation of these coefficient
or the compensation of uncertainties in the algorithms [15–19]. These approaches in general have
a recursive nature and either still carry a significant amount of inaccuracy or require significant
computational complexity for training and iteration of the estimation algorithms.

In this paper, we propose a more direct and static calculation technique for estimating the
environmental coefficients, the path loss coefficient (η) for RSS and the signal permittivity coefficient
(ε) for TOF, using a range sensor triplet during adaptive localization and tracking of a signal source
by a mobile agent equipped with this sensor triplet. The triplet is designed to have a fixed rigid
geometry where the z-coordinates of the sensors are equidistant. The proposed environmental
coefficient estimation technique is integrated with a recursive least squares (RLS)-based adaptive
localization scheme and an adaptive motion control law, to construct adaptive target localization and
adaptive target tracking algorithms, respectively, that are robust to uncertainties in the aforementioned
environmental signal propagation coefficients. The efficiency of the proposed adaptive localization
and tracking techniques is both mathematically analysed and verified via simulation experiments.

Although the focus of this paper is on the localization of electromagnetic signal sources and
reflectors in the environment and monitoring of objects based on such localization, the techniques
studied in the paper have potential to be applied to the localization of the aforementioned fire source,
radioactive emission source or biochemical source applications, as well.

The rest of the paper is organized as follows: The target localization and tracking problems
of interest are defined, and the TOF and RSS-based range measurement and localization methods
are briefly explained in Section 2. The details of the proposed environmental coefficient estimation
technique are provided in Section 3. Sections 4 and 5 present, respectively, the adaptive localization
and adaptive tracking control designs. Simulation test results are provided in Section 6. The paper is
concluded with some final discussions and remarks provided in Section 7.

2. Distance-Based Localization and Tracking

In this section, we formally state the source localization and tracking problems of
interest and present the considered sensor instrumentation setting. The main principles and
mathematical modelling of RSS and TOF-based distance measurement techniques are presented
in Sections 2.2 and 2.3. The effect of the environment on these techniques is briefly discussed in
Section 2.4. For the methodology, we propose later to overcome the environmental uncertainties, use of
a single sensor unit on the UAV is not sufficient; a sensor triplet, as a minimal sensor array, is required
to be used. Hence, the problem definition in the next subsection assumes the use of a sensor triplet.
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2.1. Localization and Tracking Problems

Consider a moving UAV equipped with sensor triplet S = (S1, S2, S3), where the sensors
are identical and sense the intensity of the signal emitted by a target source located at some
unknown position

pT = [xT , yT , zT ]
T (1)

Note that pT may be time varying. Denote the position of the UAV at time instant t = kTs for
k = 0, 1, 2, . . . , where Ts is the common sampling time used by the UAV sensors and processors, by

p[k] = [x[k], y[k], z[k]]T (2)

and the position vector of each sensor Si by

pi[k] = [xi[k], yi[k], zi[k]]
T (3)

Assume that pi[k] and the target-sensor distance

di[k] = ‖pT − pi[k]‖ (4)

for each sensor Si are available to the processing unit of the sensory UAV. For simplicity, let the UAV
position (body reference point) be defined as that of S2, i.e., let

p[k] = p2[k] (5)

and hence, the target-UAV distance is defined as

d[k] = ‖pT − p[k]‖ (6)

The 3D Localization Problem is to generate on-line estimate p̂T [k] of pT using the measurements
of di[k] and pi[k]. An illustration of the localization task setting is given in Figure 1.
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Figure 1. An illustration of the localization task setting and the proposed sensor array geometry, mobile
sensor triplet unit (MSTU).

In many practical cases, the UAV altitude with respect to the target T, e.g., when T is a ground
target, is maintained constant and/or available for measurement, and the practical localization is to
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find the x and y coordinates of T. Accordingly, the (reduced order) Lateral Localization Problem is
to generate on-line estimate p̂TL[k] of pTL = [xT , yT ]

T using the measurements of di[k] and pi[k] and
knowledge of zT .

The Lateral Tracking Problem is to produce the control input for the UAV, using di and pi
measurements, such that pL[k] = [x[k], y[k]]T asymptotically converges to pTL. For brevity, we skip the
low level dynamic control design, assume perfect tracking of a velocity command and focus on the
generation of the lateral velocity input

vL[k] = ṗL[k] =
dpL
dt

∣∣∣∣
t=kTs

(7)

as the high level kinematic control input only.
Note that, in both of the Localization and Lateral Tracking Problems defined above, pT may

be time varying. Even though it is treated as constant in adaptive localization and tracking control
scheme designs, simulation scenarios with time-varying pT are successfully tested, as demonstrated in
Section 6.

2.2. RSS-Based Techniques

RSS is a distance measurement technique based on the signal power (or strength) measured
by a receiver located at the sensor [1,20]. In a generic RSS setting, the target signal source, which is
required to be localized, emits a signal with original power PT . The power PS received by S follows an
exponential decay model, which is a function of PT , the distance dT between S and T and a coefficient
η modelling the signal propagation behaviour in the corresponding environment, called the path loss
coefficient (exponent). The widely-used corresponding mathematical model is

PS = Kl PTd−η
T (8)

where Kl represents other factors that include the effects of antenna height and antenna gain. Kl is often
considered to be log-normal and is often ignored in algorithm design leading to the simplified model

PS = PTd−η
T (9)

The RSS technique often provides cost savings over deploying localization-specific hardware,
and all current standard radio technologies, such as Wi-Fi and ZigBee, provide RSS measurements.
However, RSS can have multi-path effects that include shadowing, reflection, diffraction and refraction
due to unpredictable environmental conditions, particularly for indoor applications [21]. In modelling,
these effects are also lumped and included in the coefficient Kl of Equation (8).

2.3. TOF-Based Techniques

In TOF-based techniques, each sensor is composed of a transmitter unit, a receiver unit and
a precision timer. The transmitter emits a signal, which is reflected by the target T and received
by the receiver; and the time of flight, i.e., the time elapsed between the signal’s emission and
receiving of its reflection, is used to deduce the distance between the sensor and the target T.
The environmental characteristics are summarized in the electromagnetic (e.g., radio-frequency (RF))
signal propagation velocity

v =
c√
ε

(10)

where c is the speed of light and ε denotes the (relative) permittivity coefficient.

31128



Sensors 2015, 15, 31125–31141

Range is calculated by multiplying this propagation velocity and the measured TOF value.
The corresponding mathematical model [22] can be formulated as

tF =
2dT
vave

= dT
√

ε̄ (11)

where:
ε̄ =

4ε

c2 =
4

v2
ave

Here, it is assumed that the TOF sensor emits a signal at tD = kTS with a sampling period TS > 0
and stores the TOF tF value when the signal is received back at time t[k] = kTS + tF[k]. TS is chosen
large enough to enable TOF measurements to satisfy tF[k]� TS for any k.

The value of the TOF tF above can be measured using the phase of the received narrow-band
carrier signal or via direct measurement of the arrival time of a wide-band narrow pulse [23].
The TOF-based technique, in general, requires strict time synchronization for the target and the
receiver(s) [1].

2.4. Effect of the Environment

Information about the path loss exponent η for RSS-based techniques and the relative permittivity
ε for TOF-based techniques have a vital effect on the measurement [15]. In many practical settings,
these parameters are unknown and even variable in some due to the influences of variances on the
weather conditions, human behaviour and the actuator effect at the anchor nodes. It is shown that
using the wrong data on the path loss coefficient, η, has a huge effect on the accuracy of the position
estimate [18].

Finding accurate estimation of these parameters is studied in the literature [16–19]. Most of
the relevant works follow recursive algorithms involving training by data off-line or two-step
on-line coefficient estimation and localization based on the estimate coefficients [16,17]. The off-line
identification approaches require a large amount of training data for producing accurate estimates
of the coefficients. The two-step on-line iterative approaches, on the other hand, may not lead to a
successful level of accuracy during the joint coefficient estimation and localization process. The work
in [15,18], for example, proposes iterative methodologies for the RSS case to obtain the unknown target
location and path loss coefficient of the environment simultaneously in 2D with lower complexity.
The iteration in these methodologies has the iterative steps of estimating the position of the target for
the latest estimate of the path loss coefficient, calculating the corresponding RSS estimate and RSS
estimate error and the application of an LS-based search for iterating the path loss coefficient estimate
in order to minimize the RSS estimate error. During this process, upper and lower bounds for the path
loss coefficient are assumed to be known.

A more systematic RLS procedure to simultaneously estimate the target position and the
environmental coefficient is proposed in [22], for a TOF setting. In this work, a linear parametric
formulation of the estimation problem, having a separate lumped parameter vector for both the
unknown position and the unknown environmental coefficient (average signal propagation velocity
during TOF), is derived, and an RLS algorithm is designed for this formation. The RLS algorithm
proposed in [22] is an automatic recursive algorithm not requiring any heuristic search, has guaranteed
convergence properties and has tunable design coefficients for tuning transient performance trade-off
between faster convergence and reduced sensitivity to measurement noise, as superior properties
compared to [15,18]. Yet, since it solves the same essential simultaneous minimization problem, there
is no loss of estimation accuracy.

In an attempt to separate the target position estimation and environmental coefficient estimation
problems and to advance the estimation accuracy level, henceforth, we propose a geometric sensor
array technique for the environmental coefficient estimation problem in this paper. In Section 3,
we present this technique, which overcomes the aforementioned issues via static or instantaneous

31129



Sensors 2015, 15, 31125–31141

calculation based on certain geometric relations. The required additional cost is the use of triplets
of sensors at the nodes of the WSN or the sensory mobile agent of interest in place of single sensor
units. We later provide comparative simulations in Section 6, to demonstrate the performance of the
methodology, compared to that of [22], noting the relation with the works [15,18] mentioned above.

3. The Coefficient Estimation Technique

Consider the 3D and Lateral Localization Problems defined in Section 2.1. These problems are
defined assuming the availability of distance measurements di[k], bypassing how di[k] are produced
processing the actual measurements of RSS or TOF by the sensor triplet S = (S1, S2, S3). In this section,
we present our proposed geometric technique to produce the estimates of di[k] using the available RSS
or TOF measurements, which is equivalent to estimation of the path loss coefficient η for RSS or the
signal permittivity coefficient ε, noting the model Equations (8)–(11).

In our design, we assert the geometric formation of the sensor triplet S to be maintained as rigid,
such that S1, S2 and S3 are aligned in the z direction with constant spacing z̄, as depicted in Figure 1.
That is, let the position of Si at step k for i = 1, 2, 3 be given by

pi[k] = [x[k], y[k], zi[k]]
T (12)

where z1[k] = z[k] + z̄, z2[k] = z[k] and z3[k] = z[k]− z̄ for some constant z̄. Note that the spacing z̄ is
known, since it is a design constant.

At each step k, note that

d2
1 − d2

2 = (z + z̄− zT)
2 − (z− zT)

2 = z̄2 + 2z̄(z− zT) (13)

d2
3 − d2

2 = (z− z̄− zT)
2 − (z− zT)

2 = z̄2 − 2z̄(z− zT) (14)

Adding Equations (13) and (14), we obtain

d2
1[k]− 2d2

2[k] + d2
3[k] = 2z̄2 (15)

We propose the use of Equation (15) for the estimation of the environmental coefficient, η[k] for
RSS or ε̄[k] for TOF. The time dependence of these coefficients comes mainly from time variations in the
position of S (and pT if the target is not stationary) and, hence, the time variation in the environment
between T and S.

More specifically, in the case of TOF, using Equation (11), Equation (15) can be rewritten as

t2
F1[k]
ε̄[k]

− 2
t2
F2[k]
ε̄[k]

+
t2
F3[k]
ε̄[k]

= 2z̄2 (16)

and, hence

ε̄[k] =
t2
F1[k]− 2t2

F2[k] + t2
F3[k]

2z̄2 (17)

Similarly, in the case of RSS, using Equation (9), for each sensor Si we have

PT
PSi

= dη
i (18)

where PSi denotes the signal power received by Si. Hence, Equation (15) can be rewritten as

f (η̄) = ζ
η̄
1 − 2ζ

η̄
2 + ζ

η̄
3 = 2z̄2 (19)

where ζi =
PT
Psi

and η̄ = 2
η .
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In the RSS case, although we cannot obtain a closed form solution for the coefficient η (or η̄) similar
to Equation (17), pre-calculated look-up tables for Equation (19) can be used (if preferred, together
with some iterative accuracy fine-tuning methods) to solve Equation (19) for η̄. A detailed formal study
of such a design is out of the scope of this paper. However, for an ad hoc solution, one can observe
that, in Equation (19), ζ1, ζ2, ζ3, 2z̄2 are known/measured numbers, and η̄ is the only unknown. For a
UAV tracking a ground target, we have PS1 < PS2 < PS3 < PT , since d1 > d2 > d3. Hence, we have
ζ1 > ζ2 > ζ3. Further, typically, 2 ≤ η ≤ 5. Therefore, 0.4 ≤ η̄ ≤ 1. For typical settings, f (η̄) in
Equation (19) is monotonic with no local minimum in the interval 0.4 ≤ η̄ ≤ 1. Applying a three-step
grid search, with six equal intervals of a size of 0.1 in the first step and 10 equal intervals of sizes 0.01
and 0.001 in the second and third steps, respectively, η̄ can be calculated with an error tolerance of
±0.001. Such search is real-time implementable, and better results can be obtained using more steps.

4. Adaptive Source Localization Scheme

In this section, an RLS-based adaptive source localization scheme is designed to perform the
target localization tasks of the 3D Localization Problem and the Lateral Localization Problem defined
in Section 2.1. The adaptive localization scheme is to generate the estimate p̂T [k] of pT using the
information of pi[k], which is obtained by the self-positioning system of the UAV together with the
geometric relation Equation (12) and di[k], which is obtained using the proposed technique in Section 3.
Similarly to [22], the unknown target position vector, p̂T , is treated as constant in the design, and the
influence of the drifting of the target is analysed later. The adaptive localization scheme is designed
as an RLS algorithm with a forgetting factor [22,24] based on a linear parametric model, separately
derived for each of the 3D Localization and Lateral Localization Problems, in the sequel.

4.1. 3D Localization

We first study solution of the 3D Localization Problem. To derive a linear parametric model for
this problem, from Equations (4) and (5), we have

d2[k] = (p[k]− pT)
T(p[k]− pT)

= ‖p[k]‖2 + ‖pT‖2 − 2pT
T p[k] (20)

Evaluating Equation (20) at steps k and k− 1 and taking the difference, we obtain

d2[k]− d2[k− 1] = ‖p[k]‖2 − ‖p[k− 1]‖2 − 2pT
T(p[k]− p[k− 1]) (21)

which can be written in the linear parametric model form

ζ[k] = pT
Tφ[k] (22)

where φ[k] and ζ[k] are defined as

φ[k] = p[k]− p[k− 1] (23)

ζ[k] =
1
2

(
‖p[k]‖2 − ‖p[k− 1]‖2 − (d2[k]− d2[k− 1])

)
(24)

Based on the linear parametric model Equations (22)–(24), various estimators can be designed
to produce the estimate p̂T of pT . Next, we design an on-line RLS estimator based on the parametric
model Equations (22)–(24). Following the design procedure in [24], we obtain the following RLS
adaptive law with a forgetting factor and parameter projection:
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p̂T [k] = Pr ( p̂T [k− 1] + Γ[k]φ[k]ε[k]) (25)

ε[k] = ζ[k]− p̂T
T [k− 1]φ[k] (26)

Γ[k] =
1

β f

(
Γ[k− 1]− Γ[k− 1]φ[k]φ[k]TΓ[k− 1]

β f + φ[k]TΓ[k− 1]φ[k]

)
(27)

where ε[k] is the (measurable) output estimate error, Γ[k] is the 3× 3 dynamic adaptive gain matrix
(called the covariance matrix), 0 < β f < 1 is the forgetting factor coefficient and Pr(.) is the parameter
projection operator used to satisfy p̂T3 = ẑT ∈ Rz, where the target attitude is assumed to be known
a priori to lie in the range Rz = [zT,min, zT,max]. Initial covariance matrix Γ[0] = Γ0 is selected to be
positive definite, which guarantees together with Equation (27) that Γ[k] is positive definite for all k.

4.2. Lateral Localization

The Lateral Localization Problem is a relaxed form of the 3D Localization Problem, reducing its
parametric model order by one. To derive the reduced order linear parametric model, we rewrite
Equation (22) as

ζ[k] = pT
Tφ[k] = pT

TLφL[k] + zTφz[k] (28)

where φL[k] and φz[k] are defined as

φL[k] = pL[k]− pL[k− 1] (29)

φz[k] = z[k]− z[k− 1] (30)

Using the available information of φz[k], we obtain the reduced order linear parametric model

ζL[k] = pT
TLφL[k] (31)

where ζL[k] is defined as

ζL[k] =
1
2

(
‖p[k]‖2 − ‖p[k− 1]‖2 − (d2[k]− d2[k− 1])

)
− zT(z[k]− z[k− 1]) (32)

In the design of on-line RLS estimator for the reduced order parametric model Equation (31), we
do not need the parameter projection for the z-coordinate any more. Further, the model order is two
instead of three. Hence, the RLS adaptive law for this case is redesigned as follows:

p̂TL[k] = p̂TL[k− 1] + Γ[k]φL[k]εL[k] (33)

εL[k] = ζL[k]− p̂T
TL[k− 1]φL[k] (34)

ΓL[k] =
1

β f

(
ΓL[k− 1]− ΓL[k− 1]φL[k]φL[k]TΓL[k− 1]

β f + φL[k]TΓL[k− 1]φL[k]

)
(35)

where 0 < β f < 1 is the forgetting factor coefficient, as before, and the adaptive gain (covariance)
matrices ΓL[0] = ΓL0 and, hence, ΓL[k], for all k > 0 are 2× 2 and positive definite.

4.3. Stability and Convergence of the Adaptive Localization Laws

The adaptive localization law Equations (25) and (33) are discrete-time RLS algorithms with a
forgetting factor (and parameter projection). Such algorithms are studied in detail in [24]. It is also
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established there and in the references therein that, for 3D localization, if φ[k] is persistently exciting
(PE), viz., if it satisfies

lim
K→∞

λmin

(
K

∑
k=0

φ[k]φT [k]

)
= ∞ (36)

or if the 3× 3 matrix
k0+l−1

∑
k=k0

φ[k]φT [k]− α0l I (37)

where I is the identity matrix and λmin(·) denotes the minimum eigenvalue, is positive semi-definite
for some α0 > 0, l ≥ 1 and for all k0 ≥ 1, then p̂T [k]→ pT as k→ ∞. The geometric interpretation of
the above PE condition is that the UAV is required to avoid converging to planar motion, i.e., to avoid
p[k] converging to a certain fixed 2D plane.

Similarly, for 2D localization, if φL[k] is PE, then p̂TL[k] → pTL as k → ∞; with the geometric
interpretation that the UAV is required to avoid converging to linear motion, i.e., to avoid pL[k]
converging to a certain fixed 1D line.

5. Adaptive Tracking Control

In this section, our proposed control scheme for the Lateral Tracking Problem defined in
Section 2.1 is presented. Similarly to Section 4, the required information of pi[k] and di[k] is
obtained on-line using the self-positioning system of the UAV together with the geometric relation
Equation (12) and the proposed environmental coefficient estimation technique in Section 3,
respectively. The adaptive tracking control scheme is designed following a discrete-time version
of the approach in [25].

The lateral tracking objective of Section 2.1 is considered as assigning a tracking control law to
generate the lateral velocity vL[k] based on estimate p̂T [k] of the unknown target position to achieve

lim
k→∞

dL[k] = 0 (38)

where
dL[k] = ‖pL[k]− pLT‖ =

(
d2[k]− (z[k]− zT)

2
)1/2

(39)

is available for measurement and, hence, can be used as a variable in the control law. In the design of
the proposed adaptive target tracking control scheme, with the block diagram provided in Figure 2,
we follow a certainty equivalence approach similar to [25], integrating three modular tools:

(i) The adaptive localization scheme of Section 4 to produce on-line estimate p̂T [k] of target
position pT .

(ii) A motion control law fed by the estimate p̂T [k] in place of unknown pT to generate the lateral
velocity vL[k], aiming to drive the estimated lateral distance ‖pL[k]− p̂LT [k]‖ to zero.

(iii) A low amplitude periodic auxiliary control signal to be augmented to the motion control law to
satisfy the PE condition needed for guaranteeing the convergence of the location estimate p̂T [k]
to pT .

In the design of Modules (ii) and (iii), we adopt and discretize the continuous-time adaptive target
pursuit design in [25] to form the following discrete (augmented) motion control law:

vL[k] =
p̂TL[k]− p̂TL[k− 1]

Ts
− βc(pL[k]− p̂TL[k]) + f (dL[k])va[k] (40)

to be applied to the motion dynamics, using zero order hold, as

ṗL(t) = vL(t) = vL[k], for kTs ≤ t < (k + 1)Ts (41)
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where βc > 0 is the proportional control gain,

va[k] = va(kTS) = aσ

[
sin aσkTs

cos aσkTs

]
(42)

is the periodic auxiliary control signal with frequency aσ, and f (·) is a strictly increasing and bounded
function that is zero at zero and satisfies f (dF) ≤ dF, ∀dF > 0. The function f (·) is used to attenuate
the auxiliary signal amplitude as the UAV gets closer to the target T.

Figure 2. Block diagram of the proposed adaptive lateral target tracking control scheme.

Based on the analysis provided in [25], we observe the properties of va(t) summarized in the
following lemma:

Lemma 1. The auxiliary signal va defined in Equation (42) satisfies the following:

(i) There exist positive T1, αi > 0, such that for all t ≥ 0, there holds:

α1‖va(0)‖2 I ≤
∫ t+T1

t
va(τ)va(τ)

>dτ ≤ α2‖va(0)‖2 I.

(ii) For every θ ∈ <2, and every t > 0, there exists t1(t, θ) ∈ [t, t + T1], such that θ>va(t1(t, θ)) = 0.
(iii) For all t ≥ 0, ‖va(t)‖ = ‖va(0)‖ = aσ.
(iv) There exists a design constant aσ, such that the discrete time signal va[k] = va(kTs) is PE.

Proof. (i) is a direct corollary of Lemma 8.1 of [26]. (ii) and (iii) are direct corollaries of, respectively,
Theorem 5.1 and Lemma 3.1 of [25]. (iv) follows from (i) and (iii).

Lemma 1 and classical arguments of the discretization of continuous-time dynamic systems lead
to the validity of the boundedness and convergence results in Theorems 4.1 and 4.2 of [25] for our case,
as well, as summarized in the following proposition:

Proposition 1. Consider the closed-loop adaptive tracking control system composed of the adaptive law
Equation (33), the motion control law Equation (40) and the motion dynamics Equation (41). Assume that
βc > σ̄′ for the upper bound σ̄′ defined in Lemma 1. Then, there exists a sufficiently small sampling time Ts,
such that all of the closed-loop signals are bounded and pL[k] asymptotically converges to pTL.

6. Simulations

In this section, we perform simulation testing of the proposed adaptive localization and target
tracking schemes. First, we consider a scenario where the UAV is equipped with a TOF-based
range sensor triplet. In all of the simulations, the actual average permittivity is taken to be εave = 5
considering solid objects and air humidity in the signal propagation paths for TOF sensors. The vertical
spacing for the sensor triplet S = (S1, S2, S3) is chosen as z̄ = 10 cm, and the common sampling time is
selected as Ts = 1 s.
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The task of the UAV is to estimate the location pT of (and track) a certain target T. For this
task, the UAV uses the localization algorithm Equation (25), and in order to guarantee estimation
convergence per the discussions at the end of Section 4, it follows a PE path, i.e., a path satisfying φ to
be PE. As such a PE path, we consider the following path, whose x and y coordinate components are
plotted in Figure 3:

x(t) = 500 cos(0.1t) + 50 m (43)

y(t) = 300 cos(0.2t) m (44)

z(t) = 5 sin(0.1t) + 39 m (45)

x (m)
-600 -400 -200 0 200 400 600

y
(m

)

-300

-200

-100

0

100

200

300

Figure 3. Lateral trajectory (x(t), y(t)) (m) (or (x[k], y[k])) of the UAV.

We consider the following design parameter selections for the localization algorithm Equation (25):

β f = 0.9 (46)

Γ[0] = I (47)

p̂T [0] = [0, 0, 0]T m (48)

We consider two cases for the target position pT in the following two subsections. As a
continuation of the discussion at the end of Section 2.4, we compare the results using our prosed
algorithm with the results using the simultaneous location and permittivity coefficient estimation
scheme of [22] (for the same setting). As opposed to the proposed approach in Section 3, which gives
very accurate results instantaneously, in the simulation of the scheme of [22], permittivity coefficient
estimation is done recursively together with the target location estimation. The initial permittivity
coefficient estimate for this recursive estimation is chosen as ε̂ave[k] = 10.

6.1. Stationary Target Localization

First, we consider a stationary target located at

pT = [100, 75, 8]T m (49)
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The localization results for this case are plotted in Figures 4 and 5. In Figure 4, we compare the
results using our prosed algorithm with the results using the simultaneous location and permittivity
coefficient estimation scheme of [22] (for the same setting).
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Figure 4. Location estimate p̂T [k] and estimation error e[k] = ‖ p̂T [k]− pT‖(m) for the stationary target
case. (b) The scaled version of (a) to provide the details of the convergence characteristics for the
proposed scheme.

It is clearly seen in these figures that, using the prosed design, all of the coordinates of
the position estimate p̂T [k] rapidly converge to their actual values, leading the estimation error
e[k] = ‖ p̂T [k]− pT‖ to converge to zero. The estimates converge significantly faster than those using
the design of [22], with significantly smaller overshoot/undershoot. One can further enhance the
performance of localization by fine-tuning the design parameters given above.
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Figure 5. Lateral coordinate estimates (x̂T [k], ŷT [k]) (m) for the stationary target case.

6.2. Drifting Target Localization

As a second scenario, we consider a slowly drifting target T with position

xT(t) = 0.1t + (2 sin(0.05t) + 100) m

yT(t) = 0.05t + (2 sin(0.05t) + 75) m

zT(t) = (0.5 sin(0.01t) + 8) m

and hence, velocity

VT = [(0.1 + 0.1 cos(0.05t)), (0.05 + 0.1 cos(0.05t))

(0.005 cos(0.01t))]T m/s

The localization results for this case are plotted in Figures 6 and 7.
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Figure 6. Lateral coordinate estimates (x̂T [k], ŷT [k]) (m) for the drifting target case.
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As can be seen in these figures, convergence characteristics are comparable to the stationary target
case; however, due to the motion of the target, perfect convergence is impossible as long as the velocity
vT of the target is not known a priori. The estimation accuracy, however, is significantly better, and the
estimates converge significantly faster than those using the design of [22], with significantly smaller
overshoot/undershoot.
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Figure 7. Location estimate p̂T [k] for the drifting target case. (b) The scaled version of (a) to provide
the details of the convergence characteristics for the proposed scheme.

6.3. Drifting Target Tracking

Next, we consider the tracking problem for the scenario considered in the previous subsection.
The target motion is the same. The motion control law designs are selected as βc = 3, aσ = 0.01.
The simulation results are shown in Figure 8. We can easily see that the pL[k] values converge to p̂TL[k],
as well as pTL[k] values. The simulation results demonstrate that the tracking task of the target is
achieved. Better tracking performance can be obtained by fine-tuning the adaptive localization and
target tracking control design terms.
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Figure 8. Lateral tracking control for a drifting target for the simplified motion dynamics model
Equation (41).
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To further examine the ignored actuator dynamics and disturbance effects, the simulation above
is performed for the following modified version of the motion dynamics model Equation (41):

ṗL =
1

τas + 1
[vL] + wv (50)

vL(t) = vL[k], for kTs ≤ t < (k + 1)Ts (51)

where 1
τas+1 is the transfer function of the actuator dynamics with time coefficient considered to be

τa = 0.2 (s), and wv is a band limited white noise with power 0.1, representing further motion control
disturbances. The simulation results shown in Figure 9 demonstrate that the results are comparable to
those in Figure 8.
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Figure 9. Lateral tracking control for a drifting target for the detailed motion dynamics model
Equation (50).

7. Conclusions

In this paper, a geometric cooperative technique has been proposed to instantaneously estimate
permittivity and path loss coefficients in electromagnetic signal source and reflector localization and
tracking tasks, focusing on environmental monitoring applications. The details of the technique are
provided for RSS and TOF-based range sensor settings. The use and performance of the technique are
analysed and demonstrated on its integration with a discrete time RLS-based adaptive localization
and target tracking control schemes. A set of UAV-based target localization and tracking simulation
scenarios are provided to demonstrate the effectiveness of the integration of the adaptive localization
and tracking schemes and the proposed coefficient estimation technique. The proposed technique
involves only static instantaneous calculation based on a certain geometric relation and, hence, provides
a computationally efficient way to solve the localization problems in environments with unknown
permittivity and path loss coefficients, compared to the other relevant techniques proposed in the
literature.

Ongoing and future follow up research directions include more formal analysis of various
localization and tracking schemes using the proposed coefficient estimation technique, applications in
other domains, such as biomedical monitoring [27], and real-time implementation and experimental
testing. Implementation and testing of such a system can be considered in two layers, the hardware
layer and the software layer. For the hardware layer implementation, a sensor triplet unit, as described
in Sections 2.2 and 2.3, together with onboard CPU and communication (to broadcast the on-line
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localization/tracking information) units at the mobile agent, which can be mounted on the surveillance
UAV. The software layer implementation will include the low level coding of the proposed algorithms,
which are all real-time implementable, and further embedded software for the CPU interface with
sensor and communication units. The setup for this architecture can be constructed using standard
hardware units and software, such as those used for the experiments in [28,29].
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