
Article

Multiple Temperature-Sensing Behavior of Green
and Red Upconversion Emissions from Stark
Sublevels of Er3+

Baosheng Cao, Jinlei Wu, Xuehan Wang, Yangyang He, Zhiqing Feng and Bin Dong *

Received: 7 September 2015; Accepted: 1 December 2015; Published: 10 December 2015
Academic Editor: Vittorio M. N. Passaro

School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600, China;
bscao@dlnu.edu.cn (B.C.); mrwu888@live.cn (J.W.); xhanwang@tom.com (X.W.); yyhe@dlnu.edu.cn (Y.H.);
fzq@dlnu.edu.cn (Z.F.)
* Correspondence: dong@dlnu.edu.cn; Tel.: +86-411-87656135; Fax: +86-411-87656331

Abstract: Upconversion luminescence properties from the emissions of Stark sublevels of Er3+ were
investigated in Er3+-Yb3+-Mo6+-codoped TiO2 phosphors in this study. According to the energy
levels split from Er3+, green and red emissions from the transitions of four coupled energy levels,
2H11/2(I)/2H11/2(II), 4S3/2(I)/4S3/2(II), 4F9/2(I)/4F9/2(II), and 2H11/2(I) + 2H11/2(II)/4S3/2(I) + 4S3/2(II),
were observed under 976 nm laser diode excitation. By utilizing the fluorescence intensity ratio
(FIR) technique, temperature-dependent upconversion emissions from these four coupled energy
levels were analyzed at length. The optical temperature-sensing behaviors of sensing sensitivity,
measurement error, and operating temperature for the four coupled energy levels are discussed,
all of which are closely related to the energy gap of the coupled energy levels, FIR value, and
luminescence intensity. Experimental results suggest that Er3+-Yb3+-Mo6+-codoped TiO2 phosphor
with four pairs of energy levels coupled by Stark sublevels provides a new and effective route
to realize multiple optical temperature-sensing through a wide range of temperatures in an
independent system.
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1. Introduction

Optical temperature-sensing devices have been widely researched to promote their application
in electrical power stations, oil refineries, coal mines, and fire detection, as they have been
shown to overcome the interference of strong electromagnetic noise, hazardous sparks, or corrosive
environments inaccessible to traditional temperature-measurement methods such as thermocouple
detectors [1–5]. Sensors built based on the fluorescence intensity ratio (FIR) technique have attracted
particular attention due to their ability to reduce dependence on measurement conditions and
improve accuracy and resolution. FIR functions independent of fluorescence loss or fluctuations in
excitation intensity can be applied to fluorescence systems in which two closely spaced energy levels
with separations of the order of thermal energy are involved, following a Boltzmann-type population
distribution [1,6,7]. Optical temperature sensors using the FIR technique are mainly focused on
fluoride and oxides matrixes [8–14]. The fluoride matrixes possesses higher fluorescence efficiency
and lower excitation power; however, the maximum operating temperature is usually low. On the
contrary, the oxides matrices can operate at high temperature, although the fluorescence intensity
is lower.

Upconversion emissions of rare earth ion-doped materials are typically utilized to realize
FIR measurement because of the large amount of coupled energy levels in many rare earth ions
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and the easily accessible upconversion luminescence with near-infrared radiation from low-cost,
commercially available diodes. Xu et al. [8], for example, reported the FIR of Ho3+ using two blue
emissions from coupled energy levels of 5G6/5F1 and 5F2,3/3K8 and found that Ho3+-Yb3+-codoped
CaWO4 possessed higher absolute sensitivity due to a larger energy gap between the thermally
coupled 5G6/5F1 and 5F2,3/3K8 levels of Ho3+ ions. The paired energy levels of 3F2 and 3F3 in
Tm3+ ions have also been used to investigate temperature-dependent red upconversion emissions
and corresponding FIR properties [9]. The FIR properties of green upconversion emissions ascribed
to paired energy levels of 2H11/2 and 4S3/2 in Er3+-doped materials, in particular, have been quite
widely studied [10–14].

In addition to the intrinsic thermally coupled energy levels of rare earth ions, the pair energy
levels of Stark sublevels can also be thermally coupled and used to investigate FIR versus temperature
characteristics [15–18]. Baxter et al. [17], for example, used the coupled energy levels of 2F5/2(a)
and 2F5/2(b) by Stark split of 2F5/2 levels in Yb3+ ions to study FIR properties of Yb3+-doped silica
fiber. Feng et al. [18] investigated the FIR properties of Er3+-doped fluoride glass using coupled Stark
sublevels of 4S3/2(1) and 4S3/2(2) in Er3+ ions.

In this study, four thermally coupled energy levels of Er3+ ions based on the Stark sublevels were
simultaneously observed in Er3+-Yb3+-Mo6+-codoped TiO2 phosphors. FIR properties of the four
coupled energy levels from green and red emissions in Er3+-Yb3+-Mo6+-codoped TiO2 phosphors
were studied as a function of temperature in the range of 307–673 K. The effects of the energy
gap of thermally coupled energy levels, FIR value, and upconversion emission intensity on the
sensitivity and accuracy of the optical temperature sensor are discussed in an effort to explore
potential developments in optical temperature-sensor technology based on different FIR routes in
an independent system.

2. Experimental Section

The sol-gel method was used to prepare Er3+-Yb3+-Mo6+-codoped TiO2 phosphors. The rare
earth nitrates Er(NO3)3¨ 5H2O (99.99%) and Yb(NO3)3¨ 5H2O (99.99%) were purchased from Aladdin.
Other chemicals including Iso-Propanol (i-PrOH), n-butyl titanate (Ti(OBu)4), acetylacetone (AcAc),
and concentrated nitric acid (HNO3) were purchased from Sinopharm Chemical Reagent Co., Ltd.
(Shanghai, China). All chemicals are of analytical reagent and were used without any further
purification. i-PrOH was first added as a solvent to modified titanium(IV) n-butoxide by facilitating
a chelating reaction between Ti(OBu)4 and AcAc under agitation for 1 h at room temperature. Next,
a mixture of deionized water, i-PrOH, and HNO3 was slowly added into the solution. The mixed
solution was stirred for 6 h to form a clear and stable sol. The molar ratios of Ti(OBu)4, AcAc, H2O,
and HNO3 were 3:3:6:1. Finally, Er, Mo, and Yb ions were introduced by adding Er(NO3)3¨ 5H2O,
(NH4)6Mo7O24¨ 5H2O, and Yb(NO3)3¨ 5H2O in the molar ratio of 2:2:20:100 for Er:Mo:Yb:Ti. The
codoped sols were dried at 373 K for 8 h to remove the solvent. The xerogels were then heated at
a rate of 4 K/min and maintained at the sintering temperature of 1073 K for 1 h, then cooled to room
temperature in the furnace. The sintered 2 mol % Er3+–20 mol % Yb3+–2 mol % Mo6+-codoped TiO2

phosphors were finally milled into powders for structural analysis and spectral measurement.
The phase structures of Er3+-Yb3+-Mo6+-codoped TiO2 phosphor samples were analyzed

by SHIMADZU XRD-6000 X-ray diffractormeter (XRD) with Cu-Kα radiation. A homemade
temperature control system, which was composed of a small stove and an intelligent
digital-display-type temperature control instrument, was used to adjust sample temperature from
307 to 673 K, at measurement and control accuracy of about ˘0.5 K. Temperature-dependent
upconversion emissions from each sample were focused onto a Jobin Yvon iHr550 monochromator
and detected with a CR131 photomultiplier tube by 976 nm laser diode (LD) excitation. The LD pump
current varied from 0 to 2 A, and the spectral resolution of the experimental set-up was 0.1 nm.
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3. Results and Discussion

Figure 1 shows XRD patterns of the Er3+-Yb3+-Mo6+-codoped TiO2 phosphor samples. The
XRD pattern observed was characteristic of the anatase phase of TiO2 (JCPDS No. 21-1272) and
the face-centered cubic phase of Yb2Ti2O7 (JCPDS No. 17-0454) referenced below. There was no
diffraction peak of Mo compounds, and the main diffraction peak shifted toward small angles,
indicating Mo6+ stochastically located at the interstitial sites of the matrix lattice as a solution element.
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4I15/2 transitions of Er3+ ions, respectively. Each transition (2H11/2 → 4I15/2, 4S3/2 → 4I15/2, and 4F9/2 → 4I15/2) 

was divided into two emission peaks, which indicated 2H11/2, 4S3/2, and 4F9/2 levels of Er3+ split into 
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pump current increased from 0.8 to 2.0 A, the position and number of upconversion emission peaks 
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Figure 2. Upconversion emissions spectra of Er3+-Yb3+-Mo6+-codoped TiO2 with different pump 

currents. Inset shows corresponding upconversion emission intensity ratios versus the pump current. 

Figure 1. XRD pattern of Er3+-Yb3+-Mo6+ codoped TiO2.

Figure 2 shows the upconversion emission spectra of Er3+-Yb3+-Mo6+-codoped TiO2 under
different pump currents. Green and red upconversion emissions were observed in the wavelengths
of 500–540 nm, 540–580 nm, and 620–710 nm, corresponding to 2H11/2Ñ

4I15/2, 4S3/2Ñ
4I15/2, and

4F9/2Ñ
4I15/2 transitions of Er3+ ions, respectively. Each transition (2H11/2Ñ

4I15/2, 4S3/2Ñ
4I15/2,

and 4F9/2Ñ
4I15/2) was divided into two emission peaks, which indicated 2H11/2, 4S3/2, and 4F9/2

levels of Er3+ split into three coupled Stark sublevels of 2H11/2(I)¨ (HI) and 2H11/2(II)¨ (HII), 4S3/2(I)¨ (SI)
and 4S3/2(II)¨ (SII), and 4F9/2(I)¨ (FI) and 4F9/2(II)¨ (FII), respectively, due to the effect of crystal field
environment on Er3+ ions. As the LD pump current increased from 0.8 to 2.0 A, the position and
number of upconversion emission peaks did not change, whereas the intensity of green and red
emissions markedly increased due to the increase in excitation power.
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The inset in Figure 2 shows the upconversion emission intensity ratios of HI/HII, SI/SII, FI/FII,
and (HI + HII)/(SI + SII) versus the pump current. All intensity ratios of HI/HII, SI/SII, FI/FII and
(HI + HII)/(SI + SII) increased alongside the pump current, implying that the nonradiative processes
of Er3+ in Er3+-Yb3+-Mo6+-codoped TiO2 phosphor can partially transform pump energy into heat
energy, therefore elevating the phosphor temperature. The temperature variation induced by
increasing the pump current caused changes in the intensity ratio [19]; this suggests that the
temperature-dependent intensity ratio for the four coupled energy levels of HI/HII, SI/SII, FI/FII,
and (HI + HII)/(SI + SII) can be utilized for optical temperature sensing.

Figure 3 shows a schematic energy level diagram of the Er3+-Yb3+-Mo6+-codoped TiO2

phosphors under 976 nm LD excitation. The upconversion mechanism of Er3+ after the addition of
Mo6+ was reported in a previous study on the sensitization of the Yb3+-MoO4

2´ dimer to Er3+ [20–22].
Through a cooperative sensitization process in the Yb3+-MoO4

2´ dimer, two excited Yb3+ ions
nonradiatively transfer their energy to MoO4

2´. This process is followed by a high excited state
energy transfer (HESET) to the 4F7/2 level of Er3+ ions. After nonradiative relaxations from 4F7/2 to
the Stark sublevels of HI, HII, SI and SII, green upconversion emissions are produced by transitions
of HI/HII/SI/SIIÑ

4I15/2. The nonradiative relaxation from SII to FI and FII levels and subsequent
transitions of FI/FIIÑ

4I15/2 generate red emissions.
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Figure 3. Schematic energy level diagram of Er3+-Yb3+-Mo6+-codoped TiO2 phosphors under 976 nm
LD excitation. Wavy arrows indicate nonradiative relaxation.

In order to distinguish the effects of temperature from the pump current on the intensity
ratio (Figure 2), the upconversion emission properties of Er3+-Yb3+-Mo6+-codoped TiO2 were
measured under different temperatures. Figure 4 shows the upconversion emissions spectra of
Er3+-Yb3+-Mo6+-codoped TiO2 at measured temperatures between 307 and 673 K. Changes in
temperature had no influence on the bands of green and red emissions from 2H11/2/4S3/2Ñ

4I15/2
and 4F9/2Ñ

4I15/2 transitions of Er3+ between 500 to 580 nm and 620 to 700 nm, respectively; the
intensity varied with temperature, however. The inset in Figure 4 shows the intensity of green and
red emissions and the intensity ratio of green to red emissions as a function of temperature. The
intensity of red emissions decreased with increasing temperature, in accordance with the classical
theory of thermal quenching. Temperature-dependent intensity of the red emissions can be expressed
as follows [23]:

I pTq “
I p0q

1` Aexp p´∆E1{kTq
(1)
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where T is the absolute temperature, and I(T) and I(0) are the fluorescence intensities at temperatures
of T and 0 K, respectively; ∆E1 is the activation energy, k is the Boltzmann constant, and A
is a constant. The temperature-dependent intensity of red emissions fits well to Equation (1),
where ∆E1(FI+FII) = 0.074 eV.

Conversely, the intensity of green emissions increased with increasing temperature, which does
not satisfy the classical theory of thermal quenching, likely due to the increased Yb3+ absorption
cross-section at elevated temperatures [22,24]. A general theoretical description of the green
upconversion emission can be given by [22]:

Igreen “ B
„

1´ exp
ˆ

´
hν

kT

˙´2
(2)

where B is a constant, and hν is the phonon energy participating in the multiphonon-assisted
excitation. The dependence of green upconversion emissions on temperature fits well to Equation (2).
The Igreen/Ired value increased with temperature, causing the color to turn from red to green with
elevated temperature.
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where Iupper, Ilower, Nupper, and Nlower are the fluorescence intensity and number of ions for the upper 

and lower thermalizing energy levels, respectively; ΔE is the energy gap between two coupled levels, 
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temperature T. Figure 5 shows FIR plots of (HI + HII)/(SI + SII), HI/HII, SI/SII, and FI/FII as a function of 

Figure 4. Upconversion emissions spectra of Er3+-Yb3+-Mo6+-codoped TiO2 at different temperatures.
Inset shows the integrated intensity of green and red emissions and the intensity ratio of green to red
emissions as a function of temperature. The solid lines for the temperature-dependent intensity of red
and green emissions are fitting curves by Equations (1) and (2).

According to previous research [1], the relative population of two “thermally coupled”
energy levels with separation of the order of thermal energy follows a Boltzmann-type population
distribution, causing variation in the transitions of two closely spaced levels at elevated temperature
if pumped through a continuous light source. After populations are thermalized at two closely spaced
levels, the FIR of upconversion emissions (R) related to the transitions of both levels can be written
as follows:

R “
Iupper

Ilower
“

Nupper

Nlower
“ Cexp

ˆ

´∆E
kT

˙

(3)

where Iupper, Ilower, Nupper, and Nlower are the fluorescence intensity and number of ions for the
upper and lower thermalizing energy levels, respectively; ∆E is the energy gap between two coupled
levels, and C is a constant relative to the degeneracy, emission cross-section, and angular frequency
of corresponding transitions. Equation (3) suggests that FIR is related to the energy gap ∆E and
temperature T. Figure 5 shows FIR plots of (HI + HII)/(SI + SII), HI/HII, SI/SII, and FI/FII as a function
of inverse absolute temperature from 307 to 673 K. The inset shows corresponding upconversion
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emission intensity and the intensity ratio relative to temperature. The experimental data fits well to
Equation (3). Energy gaps ∆E of the four coupled energy levels of (HI + HII)/(SI + SII), HI/HII, SI/SII,
and FI/FII are calculated in Table 1. The decreased intensity of two red emissions with elevated
temperature, shown in the inset of Figure 5d, can also be fitted to Equation (1). The activation energy
of FI and FII levels is calculated as ∆E1FI = 0.069 eV and ∆E1FII = 0.080 eV, which is consistent with the
average activation energy of (FI + FII) level (∆E1(FI+FII) = 0.074 eV) shown in Figure 4.
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Table 1. Energy gap of coupled energy levels ∆E, pre-exponential factor C, maximum sensitivity Smax,
temperature of maximum sensitivity Tmax and upconversion emission intensity for the four coupled
energy levels of (HI + HII)/(SI + SII), HI/HII, SI/SII and FI/FII.

Coupled Energy Levels (HI + HII)/(SI + SII) HI/HII SI/SII FI/FII
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For optical temperature-sensing applications, it is crucial to know the rate at which the FIR
changes with temperature, known as the absolute sensitivity Sa, which is expressed as follows [1]:

Sa “
1
R

dR
dT

“
∆E
kT2 (4)

Equation (4) makes clear that the appropriate selection of two thermally coupled energy levels
with a suitable energy difference ∆E is very important. Larger ∆E benefits absolute sensitivity
and accurate measurement of emission intensity, due to the decrease of fluorescence peak overlap
originating from the two individual thermally coupled energy levels. Knowing this, the absolute
sensitivity Sa when using coupled energy levels of (HI + HII)/(SI + SII) (with the largest possible
∆E = 0.0558 eV) is higher than those using the other three coupled levels, as shown in Table 1. The
energy gap ∆E must be not too large, though, or thermalization no longer occurs.

Considering practical applications, it is extremely useful to be aware of variations in sensitivity
with temperature. Relative sensitivity Sr is expressed [25]:

Sr “
dR
dT

“ R
∆E
kT2 (5)

Compared to absolute sensitivity Sa, relative sensitivity Sr is dependent on not only energy gap
∆E, but also the intensity ratio FIR. Equation (3) indicates that larger FIR causes larger C. Thus, larger
∆E and FIR (or C) contribute to higher Sr. Table 1 also shows pre-exponential factor C values for the
four pair energy levels (HI + HII)/(SI + SII), HI/HII, SI/SII, and FI/FII. The coupled energy levels of
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(HI + HII)/(SI + SII) processed larger relative sensitivity Sr than those of HI/HII, FI/FII, or SI/SII. Sr

as a function of temperature for the four coupled energy levels calculated by Equation (5) is shown in
Figure 6, in accordance with the above results in the measured temperature range 307–673 K.
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Figure 6. Relative sensitivities Sr as a function of temperature for the four coupled energy levels of
(HI + HII)/(SI + SII), HI/HII, SI/SII and FI/FII. Closed symbols are the experimental data and the lines
are the theoretical values calculated by Equation (5).

Maximum sensitivity Smax and temperature Tmax, at which the sensor has maximum sensitivity
Smax, are of utmost importance because these two parameters indicate the highest sensitivity
properties and optimum operating temperature range of optical thermal sensors. According to
Equation (5), Smax and Tmax can be calculated by dSr{dT “ 0 as follows:

Smax “
0.54C
∆E{k

(6)

Tmax “
1
2

∆E
k

(7)

Equation (6) indicates that a larger pre-exponential factor C and smaller energy difference ∆E
of coupled energy levels help to increase Smax. Equation (7) shows that Tmax is relative to the
energy difference ∆E, in which the sensor with a larger ∆E has a higher Tmax. Smax and Tmax for
the four coupled energy levels are shown in Table 1. The highest Tmax was found for (HI + HII)/
(SI + SII) coupled energy levels used for thermal sensing, due to a larger ∆E. The relatively larger
C and smallest ∆E in FI/FII coupled energy levels used for thermal sensing resulted in the highest
sensitivity Smax.

Temperature measurement error can be calculated using the relation [8,26]:

∆T “ ∆R
kT2

R∆E
“

∆R
Sr

(8)

Larger Sr and smaller ∆R imply better accuracy. As shown in Figure 6, larger Sr at a higher
temperature for coupled energy levels of (HI + HII)/(SI + SII) led to a better accuracy in the high
temperature range. Likewise, better accuracy can be expected in the low temperature range using
HI/HII, SI/SII and FI/FII coupled energy levels for thermal sensing.
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The separation of two coupled energy levels ∆E should be large enough to avoid overlap of the
two fluorescence emissions and to produce efficient luminescence for feasible and accurate intensity
measurement. The efficient luminescence of Er3+-doped materials also contributes to the ready
detection of luminescence and ∆R accuracy, where only low excitation power is needed. Table 1
shows where (HI + HII)/(SI + SII) coupled energy levels had the highest accuracy of all samples, due
to a larger ∆E and the strongest luminescence intensity; conversely, SI/SII coupled energy levels had
the lowest accuracy, evidenced by a smaller ∆E and the lowest luminescence intensity, which are
altogether consistent with the results shown in Figure 5.

4. Conclusions

The green and red upconversion emissions by transitions of Er3+ Stark sublevels were observed
in Er3+-Yb3+-Mo6+-codoped TiO2 phosphors in this study. There are four coupled energy levels of
Er3+ ions due to the effect of the crystal field environment on Er3+, each of which was utilized
to study temperature-dependent upconversion emission properties. Based on the FIR technique,
the optical temperature-sensing behaviors of sensing sensitivity, measurement error, and operating
temperature for the four coupled energy levels were discussed in detail, with all closely related to the
energy gap of the coupled energy levels, FIR value, and luminescence intensity. High sensitivity
and negligible error are obtainable through the use of different coupled energy levels for optical
sensing, throughout a wide range of temperature in an independent system. The utilization of
coupled energy levels by Stark split is a new and effective method in the realization of multiple
optical temperature measurement.
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