
Article

DOA Estimation under Unknown Mutual Coupling
and Multipath with Improved Effective Array
Aperture

Yuexian Wang *, Matthew Trinkle and Brian W.-H. Ng

Received: 29 September 2015; Accepted: 2 December 2015; Published: 8 December 2015
Academic Editor: Vittorio M. N. Passaro

University of Adelaide Radar Research Centre, School of Electrical and Electronic Engineering,
The University of Adelaide, Adelaide, SA 5005, Australia; mtrinkle@eleceng.adelaide.edu.au (M.T.);
brian.ng@adelaide.edu.au (B.W.-H.N.)
* Correspondence: jwang@eleceng.adelaide.edu.au; Tel.: +61-8-8313-8314; Fax: +61-8-8313-4360

Abstract: Subspace-based high-resolution direction of arrival (DOA) estimation significantly
deteriorates under array manifold perturbation and rank deficiency of the covariance matrix due
to mutual coupling and multipath propagation, respectively. In this correspondence, the unknown
mutual coupling can be circumvented by the proposed method without any passive or active
calibration process, and the DOA of the coherent signals can be accurately estimated accordingly.
With a newly constructed matrix, the deficient rank can be restored, and the effective array aperture
can be extended compared with conventional spatial smoothing. The proposed method achieves
a good robustness and DOA estimation accuracy with unknown mutual coupling. The simulation
results demonstrate the validity and efficiency of the proposed method.
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1. Introduction

In array signal processing, direction of arrival (DOA) estimation of incident signals is an
important research issue. Many high-resolution methods based on the orthogonality of subspaces
have been studied extensively over the years, such as MUSIC [1] and ESPRIT [2]. Most of these
algorithms assume that the array manifold is known and the signals are uncorrelated. However, these
two prerequisites are not always guaranteed in practice as mutual coupling between the elements is
an intrinsic characteristic of antenna arrays and multipath propagation caused by reflective surfaces
are very common in urban areas, both resulting in a failure of subspace-based methods [3,4].

In electromagnetic engineering, the mutual coupling matrix can be calculated using techniques
such as finite element or method of moment techniques [5–7]. However, these calculation depends
heavily on the physical shape of the antennas and are specific for each antenna array. It is thus
often preferable to carry out a joint estimation of the mutual coupling matrix and signal DOA from
a signal processing perspective. Weiss and Friedlander [3] proposed an iterative algorithm that
compensates for mutual coupling and gain and phase perturbations, in uniform linear and circular
arrays. Subsequently, Sellone et al. proposed another iterative method, which alternatingly minimises
a cost function with respect to two complex valued symmetric Toeplitz matrices and a complex
Hermitian Toeplitz matrix [8]. Compared with the method proposed in [3], this method is less
sensitive to the array perturbations and can get an effective DOA estimate without a preliminary
estimate in many cases. However, the computational complexities of both are high because the
non-linear multidimensional search process is random in nature.
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More recently, several DOA estimation algorithms which are not sensitive to mutual coupling
have been developed [9–11]. By setting a group of sensors as auxiliary sensors, the DOAs can be
directly estimated without compensating for mutual coupling. Moreover, the result can be refined
iteratively by estimating the mutual coupling coefficients for compensation. The main advantage
of these methods is that no iteration is required but the aperture is reduced by making some
sensors auxiliary.

All the algorithms reviewed above are only effective in a scenario where the incident signals are
uncorrelated to each other and do not undergo multipath propagation. In a typical wireless communication
system where multipath propagation is unavoidable, these algorithms may not be effective.

To tackle these two thorny issues, a class of auto-calibration methods, which are able to estimate
the mutual coupling coefficients and DOAs of coherent signals jointly, has been addressed in [12,13].
In [12], the mutual coupling coefficients and coherent DOAs can be estimated jointly in an alternating
manner, but this results in a large computational complexity for the nonlinear multidimensional
search and is not applicable in some systems due to the requirement of pilot symbols. A noniterative
optimisation method is given in [13] to estimate the DOAs of mixed signals which include coherent
signals, but the mutual coupling coefficients have to be estimated from uncorrelated signals first.
Hence, it may not be effective when there are only coherent signals. Recently, a spatial smoothing
scheme studied in [14] estimates the DOAs of coherent signals and is insensitive to unknown mutual
coupling, but only the forward smoothing was considered and the conjugate information contained
within the signals was not utilised. More recently, Toeplitz matrix reconstruction directly in data
domain [15] showed good performance for real-time applications in decorrelating coherent signals
without mutual coupling compensation, but at the cost of halving the effective array aperture which
is very limiting in practice.

In this correspondence, we propose a new matrix reconstruction method which is insensitive to
mutual coupling and has an improved aperture after rank restoration. The main differences between
our method and the methods in [14,15] lie in:

1. Our method exploits the conjugate of the received data for the purpose of rank restoration,
which gives rise to more degrees of freedom (DOF) as well as an extended aperture, while both
the algorithms in [14,15] ignore such information, which significantly restricts the identifiability
of DOA estimates.

2. Our method makes use of all entries of the covariance matrix of the middle subarray, and
the performance in terms of estimation resolution will thus be improved, whereas the spatial
smoothing technique adopted in [14], only averages the covariance matrices of the subarrays
but does not take advantage of the cross correlations between them, and thus the estimation
performance will be compromised to some extent.

3. Our approach offers a clear advantage in how it adapts to changes in the number of signals,
whereas the method in [15] has a fixed number of DOF regardless of the number of signals.

These differences combine together so that our method can offer better estimation performance
than existing techniques that incorporate forward-only averaging.

The rest of the paper is organised as follows. In Section 2, the signal model when coherent
signals and mutual coupling coexist is presented. In Section 3, we develop a preprocessing strategy
to estimate the DOAs of the coherent signals which is blind to the mutual coupling effects and does
not require array calibration. In Section 4, simulation results show the validity and efficiency of our
proposed method. Finally, some concluding remarks are given in Section 5.

Throughout this paper, the notations that will be used are listed as follows. The operators (·)T ,
(·)∗, (·)H , (·)−1, E[·], ‖ · ‖F, d·e, and b·c denote the operation of transpose, conjugate, conjugate
transpose, inverse, expectation, the Frobenius norm, ceiling, and flooring of a decimal number,
respectively. The symbol diag{z1, z2} represents a diagonal matrix with diagonal entries z1, z2 and
blkdiag{Z1, Z2} represents a block diagonal matrix with diagonal entries Z1, Z2. The symbol rank(Z)
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denotes the rank of a matrix Z. The symbol Z(a : b, c : d) denotes a constructed submatrix by the
entries from rows a to b and columns c to d of Z, and the symbol Z(a, b) denotes the entry in the a-th
row and b-th column of Z.

2. Problem Formulation

Consider a number of N narrowband far-field coherent signals impinging on a uniform linear
array (ULA) with M identical omnidirectional sensors. Assume that these signals are classified
into K groups, which result from K statistically uncorrelated far-field sources sk(t), k = 1, 2, · · · , K
with Pk multipath signals for each source. In the k-th coherent group, the signal coming from
direction θkp, p = 1, 2, · · · , Pk corresponds to the p-th multipath propagation of the source sk(t),
and the complex fading coefficient is αkp. It is readily seen that the total number of coherent signals
satisfies N = ∑K

k=1 Pk. Considering the effect of mutual coupling between the array elements, the
corresponding M× 1 array output vector is then given by

x(t) =
K

∑
k=1

Pk

∑
p=1

Ca(θkp)αkpsk(t) + n(t)

= CAΓs(t) + n(t) (1)

where a(θ) =
[
1, ej 2πd

λ sin θ , · · · , ej 2π(M−1)d
λ sin θ

]T
∈ CM is the steering vector with λ and d

being the wavelength of carrier signal and the spacing between adjacent elements, respectively,
C denotes the mutual coupling matrix (MCM), A =

[
A1, · · · , AK

]
with Ak =

[
a(θk1), · · · , a(θkPk

)
]
,

Γ = blkdiag{α1, · · · , αK} with αk =
[
αk1, · · · , αkPk

]T
containing attenuation information of the k-th

coherent group, s(t) =
[
s1(t), · · · , sK(t)

]T
, and n(t) is white Gaussian noise with the power σ2

n for
each entry. Besides, we assume that the array manifold A is unambiguous, i.e., the steering vectors
{a(θi)}N

i=1 are linearly independent for any set of distinct {θi}N
i=1.

As described in [3,12–15], it is often sufficient to consider the ULA coupling model that has just
finite non-zero coefficients, and a banded symmetric Toeplitz matrix can be used to model mutual
coupling. To elaborate on the structure of the MCM, we consider the coupling effects to the i-th
element shown in Figure 1 as a instance, where Si,u = c|u−i|A(u, :)Γs(t), 1 ≤ i, u ≤ M, is the coupling
contribution from the u-th sensor to the i-th sensor with c|u−i| being the mutual coupling coefficient. It
is known that the effect of mutual coupling between two sensor elements is inversely related to their
distance and can be ignored when the separation is more than a few wavelengths. More precisely,
we assume that when the distance between two sensors is more than Pd where d is the inter-element
spacings in a uniform linear array, the mutual coupling coefficient can be approximated as zero. We
also assume that the mutual coupling coefficients only depend on the distance between two sensor
elements. Based on these assumptions, the observed output at the i-th sensor can be expressed as

xi(t) =
i+P−1

∑
u=i−P+1
1≤i,u≤M

Si,u + ni(t)

=
[
01×(i−P), cP−1, · · · , c1, 1, c1, · · · , cP−1, 01×(M−i−P+1)

]
AΓs(t) + ni(t) (2)

where ni(t) is the additive noise at the i-th sensor. Considering mutual coupling for all the M sensors
and stacking x1(t), x2(t), · · · , xM(t) in a column, one obtains Equation (1) where
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C =



1 c1 · · · cP−1 0

c1 1 c1 · · · . . .
... c1 1 c1 · · · cP−1

cP−1 · · · . . . . . . . . .
...

. . . · · · c1 1 c1

0 cP−1 · · · c1 1


= Toeplitz

{[
1, c1, · · · , cP−1, 01×(M−P)

]}
(3)

with 0 < |c1|, |c2|, · · · , |cP−1| < c0 = 1.
From Equation (1), the array covariance matrix is given by

Rx = E[x(t)xH(t)] = CAΓRsΓHAHCH + σ2
nIM (4)

where Rs = E[s(t)sH(t)] = diag{σ2
1 , · · · , σ2

K} is the signal covariance matrix, and IM represents an
M×M identity matrix. In the case of finite snapshots, the array covariance matrix can be calculated
as R̂x = 1

L ∑L
t=1 x(t)xH(t), where L is the total number of snapshots.
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Figure 1. Mutual coupling to the i-th element of a uniform linear array.

3. DOA Estimation without Mutual Coupling Calibration

3.1. Mutual Coupling Circumvention

Referring to [9–11], we know that the middle subarray, defined as the middle M − 2P + 2
elements, is insensitive to mutual coupling, and its actual steering vector is equivalent to an ideal
one (i.e., no coupling effect) scaled by a scalar. In order to combat signal coherency as well as effect
of unknown mutual coupling in the ULA, we only make use of the output of the middle subarray
by virtue of their steering vector. All other elements are defined to belong to auxiliary subarrays as
shown in Figure 2. Inspired by [9], a selection matrix J is defined as

J =
[
0(M−2P+2)×(P−1), IM−2P+2, 0(M−2P+2)×(P−1)

]
(5)

and the covariance matrix of the the middle subarray is then given by

R̃x = JRxJH = JCAΓRsΓHAHCHJH + σ2
nJJH

= C̃AΓRsΓHAHC̃H
+ σ2

nIM−2P+2 (6)
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where

C̃ =


cP−1 · · · 1 · · · cP−1 0 · · · 0

0 cP−1 · · · 1 · · · cP−1 · · · 0
...

. . . . . . · · · . . . · · · . . .
...

0 · · · 0 cP−1 · · · 1 · · · cP−1

 . (7)

P+1 M-P+1 M-P+2 MM-P+32 PP-11

auxiliary  subarray middle  subarray auxiliary  subarray

Figure 2. Allocation of the middle subarray and auxiliary subarray.

According to the selected MCM and signal models above, one has the following
parameterisation for joint estimation of MCM and DOAs:

C̃a(θ) =


cP−1 + · · ·+ βP−1 + · · ·+ cP−1β2P−2

cP−1β + · · ·+ βP + · · ·+ cP−1β2P−1

...
cP−1βM−2P+1 + · · ·+ βM−P + · · ·+ cP−1βM−1



=
(

cP−1 + · · ·+ βP−1 + · · ·+ cP−1β2P−2
)


1
β
...

βM−2P+1


= µ(θ)ã(θ) (8)

with µ(θ) = cP−1 + · · ·+ βP−1 + · · ·+ cP−1β2P−2, β = ej 2πd
λ sin θ , and ã(θ) =

[
1, β, · · · , βM−2P+1]T . It

should be noted that generally µ(θ) in Equation (8) is assumed to be nonzero. Hence, the covariance
matrix of the middle array in Equation (6) can be rewritten as

R̃x =
[
ã(θ1), ã(θ2), · · · , ã(θN)

]
diag{µ(θ1), µ(θ2), · · · , µ(θN)}ΓRs

× ΓHdiag{µ(θ1), µ(θ2), · · · , µ(θN)}H
[
ã(θ1), ã(θ2), · · · , ã(θN)

]H
+ σ2

nIM−2P+2

= ÃDΓRsΓHDHÃH
+ σ2

nIM−2P+2

= ÃΓ̃RsΓ̃
HÃH

+ σ2
nIM−2P+2 (9)

where Ã =
[
ã(θ1), ã(θ2), · · · , ã(θN)

]
, D = diag{µ(θ1), µ(θ2), · · · , µ(θN)}, and Γ̃ = DΓ is still a N× K

block diagonal matrix. This indicates that the middle subarray, which involves M− 2P + 2 sensors,
is insensitive to mutual coupling but is still affected by signal coherency.

3.2. DOA Estimation of Coherent Signals

In this section, we will propose a rank restoration algorithm using an improved matrix
reconstruction technique for DOA estimation of coherent signals in the presence of unknown
mutual coupling.

Here a new matrix from the i-th row of R̃x is constructed as
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B(i)

,


R̃x(i, m) R̃x(i, m + 1) · · · R̃x(i, m + q− 1) R̃∗x(i, 1) R̃∗x(i, 2) · · · R̃∗x(i, q)

R̃x(i, m− 1) R̃x(i, m) · · · R̃x(i, m + q− 2) R̃∗x(i, 2) R̃∗x(i, 3) · · · R̃∗x(i, q + 1)
...

...
. . .

...
...

...
. . .

...
R̃x(i, 1) R̃x(i, 2) · · · R̃x(i, q) R̃∗x(i, m) R̃∗x(i, m + 1) · · · R̃∗x(i, m + q− 1)

 (10)

where q = M− 2P + 3−m. From Equations (1) and (9), the received signal x̃i(t) at the i-th element
of the middle array is

x̃i(t) =
K

∑
k=1

Pk

∑
p=1

µ
(

θkp

)
αkpβi−1

kp sk(t) + ni(t), i = 1, 2, · · · , M− 2P + 2 (11)

where βkp = ej 2πd
λ sin θkp and ni(t) are the white Gaussian noise at the i-th sensor.

Then, the (i, j)-th entry of R̃x can be expressed as

R̃x(i, j)

= E
[

x̃i(t)x̃∗j (t)
]

= E

[(
K

∑
k=1

Pk

∑
p=1

µ
(

θkp

)
αkpβi−1

kp sk(t) + ni(t)

)

×
(

K

∑
k=1

Pk

∑
p=1

µ∗
(

θkp

)
α∗kpβ

−(j−1)
kp s∗k (t) + n∗j (t)

)]

=
K

∑
k=1

Pk

∑
l=1

β
−(j−1)
kl µ∗ (θkl) α∗klσ

2
k

Pk

∑
p=1

µ
(

θkp

)
αkpβi−1

kp + σ2
nδi,j (12)

where δi,j is the Kronecker delta. Substituting Equation (12) into the matrix in Equation (10) allows
B(i) to be written as

B(i) =
[
AcΦ1−mb(i), AcΦ−mb(i), · · · , AcΦ2−m−qb(i), Acb(i), AcΦb(i), · · · , AcΦq−1b(i)

]
+
[
Ki, Li

]
= Ac

[
Φ1−mb(i), Φ−mb(i), · · · , Φ2−m−qb(i), b(i), Φb(i), · · · , Φq−1b(i)

]
+
[
Ki, Li

]
= AcG(i) +

[
Ki, Li

]
(13)

where Ac = F
[
ã(θ1), ã(θ2), · · · , ã(θN)

]
, F =

[
IM−2P+3−q, 0(M−2P+3−q)×(q−1)

]
, b(i) =[

b11(i), · · · , b1P1(i), · · · , bK1(i), · · · , bKPK (i)
]T

, bkp(i) = σ2
k µ∗

(
θkp

)
α∗kp ∑Pk

l=1 µ (θkl) αkpβi−1
kl ,

G(i) =
[
Φ1−mb(i), Φ−mb(i), · · · , Φ2−m−qb(i), b(i), Φb(i), · · · , Φq−1b(i)

]
with Φ =

diag
{

β11, · · · , β1P1 , · · · , βK1, · · · , βKPK

}
, Ki, Li ∈ Rm×q, and their entries are defined as

Ki(u, v) =

{
σ2

n , u− v + i = m

0, otherwise
, Li(u, v) =

{
σ2

n , u + v = i + 1

0, otherwise
, respectively.

It is known that the effect of having only a finite number of snapshots, especially when the
number is small, may cause biased estimates of subspaces. To further restore the rank and make the
matrix reconstruction method more robust against the effects of noise and finite snapshots, all the
M− 2P + 2 rows of R̃x are then exploited to construct the following square matrix
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R̄ =
M−2P+2

∑
i=1

B(i)BH(i)

= Ac

(
M−2P+2

∑
i=1

G(i)GH(i)

)
AH

c +
M−2P+2

∑
i=1

(
KiKH

i + LiLH
i

)
(14)

It can be readily verified that ∑M−2P+2
i=1

(
KiKH

i + LiLH
i
)
= ηIm where

η =

{
2(m− 1)σ2

n , m > q

2qσ2
n , m ≤ q

(15)

Defining Rd , Ac

(
∑M−2P+2

i=1 G(i)GH(i)
)

AH
c , then R̄ = Rd + ηIm.

Next we examine whether the rank of Rd has been restored sufficiently to resolve all N incident
coherent signals.

Proposition 1. When m ≥ N + 1 and 2q ≥ Pmax, rank(Rd) = N for K groups of coherent signals, where
Pmax = max{P1, P2, · · · , PK}.

Proof: Since Ac is unambiguous and m > N, one has rank(Ac) = N. It is easy to identify that
rank(Rd) = rank

(
∑M−2P+2

i=1 G(i)GH(i)
)

. Referring to the Lemma 1 in [16], we know that given

H ∈ CI×J , the diagonal matrix Q has no identical entries on the diagonal, and rank (H) = r < I,
then rank

([
H, QH

])
= r + 1. Substituting back into our problem, we find that the diagonal entries

of Φ are not the same as each other, and rank (b(i)) = 1, and thus rank
([

b(i), Φb(i)
])

= 2.

If Lemma 1 is applying successively to the submatrices in G(i), one has a) if 2q ≥ N, then
rank (G(i)) = N; b) rank (G(i)) = 2q, otherwise. If the latter holds, according to the assumption
that the K coherent groups are uncorrelated to each other, R̃x has K linearly independent rows.
Therefore, rank (Rd) = rank

(
∑M−2P+2

i=1 G(i)GH(i)
)

= min{2qK, N}. As 2q ≥ Pmax, one has
2qK ≥ KPmax ≥ N, and rank(Rd) = N eventually.

Remark 1. The parameter m plays a significant role in rank restoration since it determines the array’s DOF
and effective aperture. We consider two extreme cases to discuss the choices of m. If m = M − 2P + 3− d Pmax

2 e,
i.e., m achieves its upper bound, then one barely restores the rank deficiency with the minimum number of
columns of B(i), but this may result in some signals being undetected, especially at low SNRs or for few
snapshots. On the other hand, If m = N + 1, i.e., m achieves its lower bound, then one restores the rank
deficiency with redundant columns of B(i), but this may cause biased estimates due to the noise subspace being
one-dimensional. Based on our simulation results, the proposed method performs well when m lies between
these two bounds, away from the extremes. However, the optimum choice of m is still an open problem and is
beyond the scope of this paper.

When m > N and 2q ≥ PK, the non-singularity of the smoothed covariance matrix R̄ can be
recovered, then the MUSIC algorithm can be employed to estimate the DOAs of coherent signals.
More specifically, one can perform the eigen-decomposition of R̄ as

R̄ = UsΣsUH
s + UnΣnUH

n (16)

where Σs is a diagonal matrix consisting of the N largest eigenvalues, and Σn is a diagonal matrix
consisting of the m− N smallest eigenvalues. The columns of Us are the eigenvectors corresponding
to the N largest eigenvalues, while the columns of Un are the eigenvectors corresponding to the
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m− N smallest eigenvalues. According to the subspace principle, the columns of Us span the signal
subspace, which coincides with the range space of A, and the signal subspace is orthogonal to the
noise subspace spanned by the columns of Un. Thus,

‖ aH(θi)Un ‖2
F= 0, i = 1, 2, · · · , N (17)

This indicates that the DOAs of the coherent signals can be obtained by finding the N peaks from
the spatial spectrum function

P(θ) =
1

‖ aH(θ)Un ‖2
F

(18)

So far, we have described the proposed algorithm for coherent signal DOA estimation in the
presence of unknown mutual coupling. The major steps of the proposed algorithm are summarised
as follows:

Step 1. Obtain L snapshots of the received signal x(t) at t = t1, t2, · · · , tL, and form the following
matrix as:

x = [x(t1), x(t2), · · · , x(tL)] (19)

Step 2. Calculate the covariance matrix using the above data matrix by

Rx =
1
L

xxH (20)

Step 3. Select the middle array and calculate corresponding covariance matrix R̃x according
to Equation (6);

Step 4. Utilise rows of R̃x to construct the matrix B(i), i = 1, 2, · · · , M − 2P + 2, according
to Equation (10);

Step 5. Construct the overall rank-restored matrix R̄ as Equation (14);
Step 6. Perform the eigen-decomposition of R̄, and obtain the noise subspace Un;
Step 7. Scan the direction over [−90◦, 90◦] with a step size of 0.1◦. Calculate the spacial spectrum

using Equation (18), and obtain the DOA estimates θ1, θ2, · · · , θN .
Although the mutual coupling information for a sensor array is a cumbersome calculation

using electromagnetic simulators and measurement in practice, for some circumstances, such as high
precision applications in satellite navigation and airborne early warning radar, it has to be obtained
and compensated for a-priori. In the presence of known mutual coupling, we should first eliminate
the effects of mutual coupling before applying the matrix reconstruction for rank restoration. To be
specific, the following steps have to be carried out:

Step 1. Perform eigen-decomposition of Rx, one has

Rx = ŨsΣ̃sŨ
H
s + ŨnΣ̃nŨH

n (21)

Since Ũs and CAΓ span the same signal subspace, there holds Ũs = CAΓT where T is a
nonsingular matrix.

Step 2. Reconstruct a covariance matrix by compensating for mutual coupling effects as

Ro = C−1ŨsΣ̃sŨ
H
s

(
CH
)−1

(22)

Then, following the similar Steps 4–7 in the unknown mutual coupling case one can resolve the
coherent signals.
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Remark 2. Once the mutual coupling information is known, one can compensate the coupling effects by
Equation (22), and then the additional information of the auxiliary sensors, which had to be abandoned in the
case of unknown mutual coupling, can now be exploited. Compared with Equation (14) using {B(i)}M−2P+2

i=1 ,
there are more matrices {B(i)}M

i=1 available after mutual coupling compensation, which means that more DOF
and a larger effective aperture can be achieved, and improved estimation performance can thus be expected.
In fact, our method can handle up to M− d Pmax

2 e coherent signals in the presence of known mutual coupling.
The identifiability of DOA estimation for the proposed and comparative methods with unknown mutual
coupling will be discussed in Section 3.3.

3.3. Separable Signal Number

The coherent signals are resolved with an increased effective array aperture compared with
previous techniques. This makes better use of the DOF of the original ULA and allows more signals
to be resolved. This motivates us to discuss the number of separable signals of the proposed method.
Compared with the standard spatial smoothing (SS) technique, which estimates the coherent signals
by averaging subarrays, under unknown mutual coupling [14], the maximum number of signals
estimated by our method can be relaxed. If m > N and 2q ≥ Pmax, the proposed method can estimate
a maximum number of M− 2P + 2− d Pmax

2 e coherent signals since M− 2P + 2 ≥ N + d Pmax
2 e, while

the standard spatial smoothing can estimate at most M− 2P + 2− Pmax coherent signals since Pmax

subarrays are required and M − 2P + 3− Pmax > N. As we can see, the key factor influencing the
number of resolvable coherent signals is the maximum number of signals in one coherent group, in
other words, the larger Pmax is, the better our approach performs. Our approach also has better DOA
estimation accuracy than SS as will be demonstrated by the simulation results in the next section.
The method by Mao et al. [15], referred to as matrix reconstruction in data (MRD), can also achieve
better DOA estimation accuracy than SS, provided that the effective array aperture is the same, but
this comes at a cost of the number of signals which can be resolved. It can resolve at most bM−2P+1

2 c
coherent signals and the array aperture is fixed regardless of the number of coherent sources. The
spatial smoothing techniques are more flexible in this aspect as the number of subarrays and effective
array aperture can be varied. Both the algorithms in [14,15] also ignore the conjugate of the received
data in rank restoration, which significantly restricts the number of resolvable signals in practice.

Table 1 lists the minimum number of array elements required to resolve a given number of
signals by the three methods. For simplicity, we assume that each group has the same number
of coherent signals. We can see that our method can use less array elements than the other two
algorithms, to estimate the same number of signals.

Table 1. Minimum number of array elements required.

Coupling Length Coherent Signals Total Signals Number of Array Elements
Groups Signals in Each Group SS MRD Proposed Method

2 1 2 2 6 7 5
2 2 2 4 8 11 7
3 1 4 4 12 13 10
3 2 3 6 13 17 12
4 1 6 6 18 19 15
4 2 4 8 18 23 16
4 2 6 12 24 31 21
3 3 6 18 28 41 23

4. Simulation Results and Discussion

In this section, a series of numerical experiments under different conditions are conducted to
examine the performance of the proposed method. Simulations are carried out for a 14-element
ULA with half-wavelength spacing between adjacent elements. For simplicity, we assume that all
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coherent signals have identical power σ2
s , and the input SNR is defined as 10 log10(σ

2
s /σ2

n). SS, MRD,
and the proposed method with known mutual coupling dealt with in Equation (22) are chosen for
comparison. The mutual coupling is assumed can be negligible at a distance larger than 1.5λ. Hence,
P = 3 and the mutual coupling coefficients are assumed to be c0 = 1, c1 = −0.1545 + 0.4755j, c2 =

0.1618− 0.1176j. The accuracy of the DOA estimate is measured from 1000 Monte Carlo runs in terms
of the root mean square error (RMSE) which is defined as

RMSE =

√√√√ 1
1000N

1000

∑
n=1

N

∑
i=1

(θ̂
(n)
i − θi)2 (23)

where θ̂
(n)
i is the estimate of θi for the n-th trial, and N is the number of coherent signals. Additionally,

to assess the overall reliability of all the algorithms, the probability of resolution is defined as

Probability of resolution =
Fr

F
(24)

where F is the number of trials, and Fr is the number of successful estimations for which the absolute
DOA estimation errors are within 1◦.

4.1. DOA Estimation of Coherent Signals From One Group

Figure 3 depicts the RMSE of DOA estimates of a group of four coherent signals from
[−26◦,−8◦, 9◦, 30◦]. The fading amplitudes and phases of the coherent signals are [1, 0.8, 0.7, 0.4]
and [25.7◦, 71.17◦, 300.83◦, 128.37◦], respectively. Here, for fair comparison it is first assumed that
the three algorithms have an identical aperture after rank restoration, i.e., m = 5. From this figure,
we can see that as the SNR and the number of snapshots increase, the RMSE of DOA estimation
decreases gradually for all of the methods. The proposed method is significantly superior to MRD
and SS, especially at low SNRs and few snapshots, since more column vectors have been utilised for
rank restoration with the same array aperture, and is only inferior to the one when mutual coupling
is known. Although MRD slightly outperforms SS, both have poor DOA estimation accuracy at
low SNRs and few snapshots, and there is a clear discrepancy between these two and the proposed
method even for snapshot sizes up to 1000 and beyond at 0 dB as shown in Figure 3b.

Figure 4 depicts the probability of resolution of successful estimation versus input SNR and
the number of snapshots for the same scenario as in Figure 3. It can be observed that all methods
attain a 100% successful estimation above 11 dB. As the SNR decreases, the probability of successful
estimation starts dropping for each method at a certain point, known as SNR threshold, until it
eventually becomes zero. With unknown mutual coupling, the proposed method has the lowest SNR
threshold followed by MRD and then SS which has the highest SNR threshold. The performance of
the proposed method when the mutual coupling is known is also shown for comparison. Evidently
the proposed method is superior to the counterparts. When the SNR is fixed at 0 dB, our approach
can achieve 100% probability with unknown mutual coupling above 1800 snapshots. Even if the
number of snapshots is greater than 2000, the MRD and SS algorithms can barely reach 50% success
probability. Consistent with the illustration in Figure 3, MRD has a slightly better performance than
SS in terms of probability of resolution versus SNR and the number of snapshots.

The simulations above demonstrate the performance of all algorithms with an identical aperture
m = 5. As discussed in Section 3.3, the effective array aperture after rank restoration by MRD
is always halved, in other words, the effective array aperture is fixed and cannot adapt to changes
in the number of signals. In contrast, both the proposed and SS algorithm are adaptive to complex
situations, such as multiple coherent groups, allowing a trade off between array aperture and rank
restoration. To evaluate this advantage, we set m = 6 for the proposed and SS algorithm and compare
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them with the fixed array aperture MRD algorithm, i.e., m = 5, while keeping the other configurations
the same as the first scenario.
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Figure 3. Root mean square error (RMSE) of the direction of arrival (DOA) estimates of one group
coherent signals versus (a) SNR when the number of snapshots is 500; (b) the number of snapshots
when SNR = 0 dB. Effective array aperture m = 5.
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Figure 4. Probability of resolution for one group of coherent signals versus (a) SNR when the number
of snapshots is 500; (b) the number of snapshots when SNR = 0 dB. Effective array aperture m = 5.

Figures 5 and 6 show that compared with Figures 3 and 4 the performance of both our approach
and SS meliorates, and our approach is still superior to SS and MRD and approaches to the case
with known mutual coupling, while the SS method has the largest improvement in the accuracy
and reliability. This is mainly because the effective array aperture is improved while keeping the
rank completely restored. This group of simulations fully demonstrates that the proposed and SS
algorithm have a clear advantage over the MRD algorithm, and the fixed aperture imposed by MRD
is not optimal for rank restoration.

30866



Sensors 2015, 15, 30856–30869

−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

SNR (dB)

R
M

S
E

 (
d
e
g
)

 

 

Proposed method

MRD method

SS method

Known mutual coupling

m=6

(a)

100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

3

3.5

4

Number of snapshots

R
M

S
E

 (
d
e
g
)

 

 

Proposed method

MRD method

SS method

Known mutual coupling

m=6

(b)

Figure 5. RMSE of the DOA estimates of one group coherent signals versus (a) SNR when the number
of snapshots is 500; (b) the number of snapshots when SNR = 0 dB. Effective array aperture m = 6
for the proposed and SS method.
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Figure 6. Probability of resolution for one group of coherent signals versus (a) SNR when the number
of snapshots is 500; (b) the number of snapshots when SNR = 0 dB. Effective array aperture m = 6
for the proposed and SS method.

4.2. DOA Estimation of Coherent Signals From Multiple Groups

We consider two groups of five coherent signals from [−36◦,−22◦] and [−10◦, 5◦, 19◦] impinge
on the ULA. The fading amplitudes of the coherent signals are [1, 0.9] and [1, 0.8, 0.6], while the fading
phases are [48.74◦, 121.15◦] and [189.35◦, 35.66◦, 283.56◦], respectively. The total number of signals is
equal to half the elements in the middle array, and thus MRD fails to work. To enable the proposed
algorithm and SS work, we select m = 6, 7 for rank restoration.

Based on the simulation settings, the results of the RMSE versus SNR and the number of
snapshots are depicted in Figure 7. As shown in this figure, the proposed approach performs the
best over the whole range of SNR and the number of snapshots values for coherent signal estimation.
When m = 6, the proposed algorithm with known or unknown mutual coupling is inferior to the
first scenario. One possible explanation is that the fading coefficients in the two scenarios do not have
same level of impact for rank restoration in general. SS has larger estimation errors than our method
as it only exploits of 4 subarrays for rank restoration while our method effectively utilises twice as
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many. When m = 7, both the proposed and SS algorithm achieve a better performance since the
limitation of effective array aperture is relaxed. Although the SS algorithm improves significantly for
m = 7, it is still notably worse than our proposed method.

Next, in Figure 8 we plot the probability of resolution of the two methods by varying the SNR
and total number of snapshots. It can be seen that the proposed approach still outperforms the SS
algorithms for both configuration m = 6, 7. The performance of the SS method improves considerably
when m = 7 but is strictly worse than our method.
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Figure 7. RMSE of the DOA estimates of two groups coherent signals versus (a) SNR when the number
of snapshots is 500; (b) the number of snapshots when SNR = 0 dB. Effective array aperture m = 6, 7.
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Figure 8. Probability of resolution for two groups of coherent signals versus (a) SNR when the number
of snapshots is 500; (b) the number of snapshots when SNR = 0 dB. Effective array aperture m = 6, 7.

5. Conclusions

This paper addresses the problem of DOA estimation when unknown mutual coupling and
multipath coexist. An efficient approach has been presented that first circumvents the unknown
mutual coupling effect using the output of the selected middle array, and then reconstructs the
covariance matrix of the middle array for rank restoration. The proposed method has a better DOA
estimation accuracy than the existing methods and can resolve more coherent signals. This is achieved
due to two main factors. Firstly replacing standard spatial smoothing in the rank restoration step
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by a new matrix reconstruction algorithm takes advantage of the information in the off the main
diagonal entries of the spatial covariance matrix. Secondly the new matrix reconstruction algorithm
for restoring the rank of the coherent signal subspace exploits the conjugate information of the
entries of the covariance matrix. These are ignored by standard spatial smoothing techniques and
can effectively improve the array aperture or equivalently improve the rank restoration. Extensive
simulation results demonstrate the validity and efficiency of the proposed method.
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