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Abstract: Coverage control is one of the most fundamental issues in directional sensor networks. 

In this paper, the coverage optimization problem in a directional sensor network is formulated as a 

multi-objective optimization problem. It takes into account the coverage rate of the network, the 

number of working sensor nodes and the connectivity of the network. The coverage problem 

considered in this paper is characterized by the geographical irregularity of the sensed events and 

heterogeneity of the sensor nodes in terms of sensing radius, field of angle and communication 

radius. To solve this multi-objective problem, we introduce a learning automata-based coral reef 

algorithm for adaptive parameter selection and use a novel Tchebycheff decomposition method to 

decompose the multi-objective problem into a single-objective problem. Simulation results show 

the consistent superiority of the proposed algorithm over alternative approaches. 

Keywords: directional sensor network; coverage control; coral reef algorithm; learning automata; 

multi-objective optimization 

 

1. Introduction 

In recent years, with the development of micro-electromechanical systems (MEMS) directional 

sensor networks (DSNs) have received much attention due to their wide and significant applications [1], 

which offer important economic benefits. A DSN is a wireless network which is equipped with 

directional sensors such as video sensors, ultrasound and infrared sensors. Differing from the sensor 

nodes of the traditional wireless sensor networks (WSN) which have omni-directional sensing ranges, 

the sensing range of DSN sensor nodes are restricted by their directions and specific angular dimensions. 

Since directional sensing and directional communication have great impact on the performance 

of a DSN, several difficulties have emerged in DSN protocol design. One of the most fundamental 

problems is the coverage issue. Although there are extensive amounts of research about the coverage 

problems in WSNs, however, these WSN research results cannot be directly applied to DSNs.  

In this paper, a coverage control algorithm based on a multi-objective optimization method is 

proposed to reduce the power consumption of networks and prolong the lifetime of the network. It 

should be noted that two assumptions which are generally considered in the published papers about 
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the coverage problems of DSNs are relaxed in order to formulate a more realistic DSN deployment 

problem. The first assumption concerns the types of sensor nodes in the DSN. Indeed, in most 

research works, sensor nodes are identical in terms of energy and hardware complexity. We 

consider in the paper a heterogeneous directional sensor network (HDSN), in which each node has 

different sensing radius, communication radius and field of angle. To the best of our knowledge, 

research on the network coverage in HDSNs is less evident. The second assumption is the sensing 

requirement within the monitored area. In most of the published papers, the whole supervised 

region is considered to be of the same importance. In other words, the sensing requirement is 

uniformly distributed within the area [2]. However, this assumption is not always valid for some 

applications. For example, in water quality monitoring, the risky area near the chemical deposits or 

animal/human habitats needs high detection levels, while for other areas a low detection level is 

sufficient. To sum up, the key contributions of this paper are as follows: 

 Firstly, we propose a realistic case study of a coverage algorithm for the placement field 

characterized by a geographical irregularity of the sensed events in a HDSN by ensuring the 

connectivity of the network, reducing the cost of deployment. 

 Secondly, this paper proposes a learning automata-based coral reef algorithm for adaptive 

parameter selection. Learning capabilities are used in the coral reef algorithm to select its 

parameters. As a result, the convergence rate and the search abilities of the algorithm are 

enhanced. Experimental results show the superiority of the proposed algorithm. 

 Thirdly, a novel Tchebycheff decomposition approach is introduced to decompose the 

multi-objective problem into a single-objective problem. Theoretical proofs and numerical 

results indicate the efficiency of the proposed method. 

The rest of the paper is organized as follows: Section 2 reviews some related works on DSN 

deployment issues. Mathematical formulation of the coverage model in HDSN is formalized in 

Section 3. In Sections 4 and 5, fundamentals of the coral reef algorithm and learning automata are 

introduced, respectively. An improved Tchebycheff decomposition method and the proposed 

learning automata- based coral reef algorithm are detailed in Section 6. The experimental results of 

the proposed approaches are given in Section 7. Finally, Section 8 ends the paper with some 

concluding remarks and future research directions.  

2. Previous Works 

As some of the most promising tools, multi-objective optimization algorithms have been 

applied to wireless sensor networks to balance various trade-offs among different conflicting 

objectives. A detailed survey can be found in [3]. By decomposing the multi-objective optimization 

problem into a set of single objective subproblems which are tackled in parallel, the Multi-objective 

Evolutionary Algorithm based on Decomposition (MOEA/D) [4] has been used in coverage optimization 

problems relating to WSNs. In [5], the authors proposed a generalized subproblem-dependent heuristic 

(GSH) and successfully hybridized it with MOEA/D for tackling the multi-objective dense 

deployment and power assignment problem in WSNs. In [6], the authors deal with how to efficiently 

deploy energy-harvesting relay nodes in a WSN. However, it should be noted that the weighted 

Tchebycheff Approach used in the above two papers is very sensitive to the scale of the objectives. 

To correct this situation an enhanced version of the Tchebycheff Approach is proposed in this paper. 

The parameter settings of the evolutionary algorithm have a great impact on the performance of 

the algorithm. The self-adaptive parameters adjustment method is an effective way to improve the 

diversity of the individuals and avoid premature convergence. Since learning automata are adaptive 

decision making devices that run in an unknown environment and progressively enhance their 

performance via a learning process, it has been proved that the method that combines the learning 

ability of the learning automata with the parameter adjustment of the evolutionary algorithm will 

enhance the efficiency of the evolutionary algorithm [7,8]. Inspired by this idea, a learning 

automata-based evolutionary algorithm is proposed to solve our multi-objective problem. 
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In recent years, a considerable amount of work on coverage in directional sensor networks 

(DSNs) has been reported in the literature [9]. In [10], the authors designed two greedy-based 

scheduling algorithms that aim to select the appropriated sensor direction and sensing range in a 

way to meet the requirements of the target coverage problem and at the same time maximize the 

network lifetime. However, the performance of the algorithms is extremely dependent on the 

closeness of the initial candidates to the optimal solution. In [11–14], they all aimed to maximize the 

network lifetime by finding cover sets in each of which the directions cover all the targets. In [15] 

and [16], the authors utilized the geometrical features of a Voronoi diagram to propose a  

distributed Voronoi-based self-redeployment algorithm aiming to improve the overall field 

coverage of directional sensor networks. In [17], the authors proposed heuristic algorithms to solve 

the multiple directional cover set problem. To model an application scene more accurately, Ma et al. 

have proposed a 3D sensor coverage-control model with tunable orientations [18]. In [19], learning 

automata algorithms are employed to find a near-optimal solution for solving the target coverage 

problem in DSNs. However, it should be noted that all the abovementioned algorithms assume that 

the coverage requirement is uniformly distributed within the area, therefore these algorithms cannot 

perform well in real scenarios characterized by the geographical irregularity of the sensed events. To 

solve such a problem, several algorithms were proposed in [20–22]. In [20], Wang et al. proposed to 

choose a minimum subset of directional sensors that is able to satisfy the prescribed priorities of all 

the targets. In [21], the authors proposed a greedy-based scheduling algorithm to find a sequence of 

feasible cover sets in order to prolong the network lifetime. In [22], the authors propose a learning 

automata-based algorithm to organize the directional sensors into several cover sets in such a way 

that each cover set can satisfy coverage quality requirement of all the targets. 

While coverage maintenance protocols for DSNs have been extensively studied in the literature, 

no attempt, however, has been made on tackling coverage problems, energy consumption and 

connectivity problems for DSNs, especially for DSNs with heterogeneous nodes in terms of field of 

angle view, sensing and communication radius. To this end, a multi-objective optimization-based 

coverage control algorithm for HDSNs is proposed to deal with such problems in HDSNs. As the 

performance of this algorithm is sensitive to the proper setting of the parameters, the learning 

capabilities of the learning automata are employed for adaptive parameter selection. Moreover, an 

improved Tchebycheff decomposition method is proposed to assess the solutions obtained from the 

evolutionary algorithm, which can provide a collection of non-dominant solutions in a single run. 

Besides, to our knowledge, no attempt has adopted multi-objective evolutionary algorithms for 

coverage and efficient design issues in HDSNs on the condition of the geographical irregularity of 

the sensed events. Thus, in this paper we deal with the development of an evolutionary 

algorithm-based coverage control protocol that efficiently sets up the minimum number of active 

sensors, while satisfying the coverage and connectivity requirements. Consequently, unwanted 

interference at the MAC layer is avoided and energy consumption is reduced. The characteristics 

optimized by the evolutionary algorithm in this paper include network coverage, network 

connectivity and the status of the sensor nodes (whether they are active or inactive).  

3. Problem Statements 

This section first demonstrates the system models and assumptions based upon which the 

problem is formulated, and then presents the problem formulation.  

3.1. System Model and Assumptions 

The system model and general assumptions are as follows: 

(1) There is a rectangular monitoring area A in which the sensors are placed. In order to reduce 

computational complexity of the problem, A is divided into m × n uniform consecutive small 

grids and each size of grid is 1. 

(2) A DSN is formed by N heterogeneous directional sensors si(i = 1, 2, …, N) in terms of the sensing 

radius, communication radius and field angles of view.  
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(3) The directional sensor nodes are scattered randomly and uniformly within the field. Each 

sensor has only one sensing radius and sensing direction. All the sensors are static after 

deployment and their locations are known. 

(4) If a sensor Sa is within the communication radius of a sensor Sb, then Sb can communicate with 

sensor Sa.  

(5) A target can be sensed by a sensor node if the target is located within the sensing radius and 

field of view of the node. 

(6) The geographical distribution of the sensing events or targets is supposed to be non-uniformly 

distributed within the zone. That is to say, the subareas of the monitoring area are not of the 

same importance. The area where targets or monitoring events appear frequently is called a hot 

spot area. 

3.2. Problem Formulation 

The objective of the coverage control algorithm is to obtain a set of sensor nodes that fulfill the 

following optimization criteria: 

(1) Maximize the coverage rate of area. Since the targets are usually non-uniformly distributed 

in the area, more sensors are needed in some subareas where the targets tend to be clustered around 

to enhance the quality of service for the WSN and fault tolerance of the network. Based upon this, 

we need more sensors to cover any hot spots of the supervised area (often called k-coverage), and in 

the remaining area, we only need to guarantee that there are some sensors which can monitor it. In 

the mathematical description, the coverage rate of the area is defined as the percentage of the 

covered grids over the total grids of A. It is evaluated as follows:  

Max: 

( , )

1

( , )
x y A

c x y

f
W





 

where W is the number of grids in surveillance zone A and c(x, y) is calculated using following equation: 
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x y
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 0

1 grid is achieved coverage requirement
 

where grid (x, y) is achieved coverage requirement means if the grid (x, y) is located within a hot 

spot subarea, the coverage requirement is K-coverage (K > 1); otherwise, the coverage requirement is 

covered by one sensor node. 

(2) Minimize the number of working sensors nodes, or equivalently, minimize the financial cost 

of working nodes, which is defined as: 

Min: 
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where S’ is set of working sensors, and |si| is evaluated in the following way:  
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0 otherwise
 

(3) Maximize the connection status of working nodes, i.e. for each node si (i = 1, 2,…, N) 

belonging to a set of S’, if si is located in the hot area, K-connect (K > 1) is necessary for network 

reliability and fault tolerant; otherwise, in the rest of the monitor area, that is non-hot area, si can 

connect another sensor in the set of S’, that is OK. Connect status of working nodes is denoted as: 

Max: 
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where Cn(si) is the connect status of sensor si and is defined as: 
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1 located within hotspot region and s is - connected ( > 1)i

1 located at non - hotspot region and s is 1 - connectedi

0 otherwise

 

In the above formula, if si is located within the hotspot region and it is k-connected (that means 

it has more than one sensor within its communication radius), then its value of Cn(si) is 1. If si is 

placed within the non-hotspot region and it has only one sensor to directly communicate with, then 

its value of Cn(si) is 1. Except for the cases presented, the value of Cn(si) is 0. 

The problem we aim to solve is multi-objective optimization, which can be described as follows: 

1 2 3( ( ), ( ), ( ))F f f f   max min max  

The problem presented above is a NP-hard problem [23]. Its solution space is as large as 2N. To 

resolve such a combinatorial optimization problem, it is difficult to use an exact method as Branch & 

Bound due to its exponential complexity. In this paper we use a bio-inspired algorithm to solve this 

multi-objective optimization problem.  

4. Original Coral Reef Optimization Algorithm 

The coral reef optimization (CRO) algorithm is a novel bio-inspired algorithm for solving 

optimization problems, which mimics the behaviors of corals’ reproduction and coral reef formation. It 

was originally introduced by Salcedo and his colleagues [24] and thereafter has found a lot of 

applications in the optimization of mobile network deployment problems [25], global solar radiation 

prediction [26], wind speed prediction [27,28], etc. Algorithm 1 summarizes the skeleton of the CRO 

algorithm applied to a combinatorial optimization problem for minimizing one objective function. 

Algorithm 1 The CRO algorithm 

1. Initialize the reef 

2.While not stopCriteria () do { 

3. A fraction of pk coral larvae formed by external reproduction(also called broadcast spawning) 

4. The rest of (1-pk) coral larvae formed by internal sexual reproduction( brooding ) 

5. Larvae setting procedure 

6. Asexual reproduction 

7. Depredation in polyp phase 

8. End while } 

9.Return solution to the problem 

In the CRO implementation there are two main phases [28]:  

Phase 1: Initialization of CRO parameters.  

The purpose of CRO initialization is to set parameters to fill in the algorithm. The main control 

parameters of CRO are presented as follows: coral reef, Λ, consisting of a T × M grid similar to the 

population size in the evolutionary algorithm (EA), the girds are selected randomly and can assign a 

coral or colony of coral, representing a solution to the given problem, the rate ρ0 between the selected 

grids and not selected ones which is an important factor to control the exploration ability of the 

algorithm. The health function f is similar to the fitness of EA. The underlying idea behind CRO is 

that as the reef progresses, the more healthy the corals are (which represents a better solution to the 

mentioned problem), the better the chance they can survive. 
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Phase 2: reef formation. 

The reef formation consists of the following steps: 

(1) Broadcast Spawning (external sexual reproduction): 

a. Choose a fraction of the existing corals pk to become broadcast spawners. The remaining 

ones will be formed by internal sexual reproduction.  

b. Broadcast spawner couples will produce a coral larva by sexual crossover. It should be 

noted that once two corals have been selected to be the parents of a larvae, they are not selected 

any more in Broadcast Spawning phase. 

(2) Brooding (internal sexual reproduction)  

As Step (1) describes, the fraction 1- pk of corals will form in this stage by means of a random 

mutation. The newly produced larvae together with that of larvae formed in Step (1) are released to 

the water. 

(3) Larvae setting  

When all the larvae are formed by broadcast spawning or by brooding, the process of setting 

and growing in the reef will begin. The health function of each larva is evaluated firstly. Then, each 

larvae will settle down in the grid (i, j) of the reef randomly. If the grid is free space in the reef, the 

coral can grow whatever its value of health function. However, if the grid is already occupied by a 

coral, the new larvae will set in the occupied grid only when its health function is better than the 

existing one. A variable κ is defined to represent the maximum number of attempts for the larvae to 

set in the reef before it is preyed on by other animals. 

(4) Asexual reproduction  

According to the values of health function, the existing corals in the reef are rearranged. A 

proportion Fa of the existing corals will copy itself and attempt to settle in a different part of reef by 

Step (3) introduced above. 

(5) Depredation in polyp phase  

In the process of reef formulation, some corals may die. As a result, space is freed up for the 

newly generated corals. The probability of the depredation process is Fd, and only be applicable for a 

proportion Fd of coals with the worst health function values. It should be noted that, Fa+ × Fd ≤ 1, that 

is to say, no overlap between the coral set formed by Step (4) and depredated by Step (5). 

5. Learning Automata 

A learning automaton [29] is considered as an adaptive decision making unit that is  

continually interacting with the environment to learn how to choose an optimal action from its 

action set. The action selected by the learning automaton is evaluated by the environment and a 

reinforcement signal will return as a feedback for the selected action. The automaton uses the 

feedback to update its action probability vector set. By continuing the above process, the optimal 

action from the action-set will be found and the average reward feedback signals received from the 

environment could be maximized [30,31]. The four-tuple {α, β, P, T} can be used to represent a 

learning automaton, where 
2{ , , , }r 1α α α α  is a set of available actions which can be selected  

by the learning automaton. 
1 2{ , , , }rβ β β β  signifies the set of the potential values of the 

reinforcement signal, 
1 2{ , , , }rp p p p  is a state probability vector and each pr associated with the 

selected action αr , T is a learning algorithm used to update the state probability vector 

In the basic learning algorithm, named Linear Reward Penalty Algorithm, the action probability 

vector is updated applying to Equation (1) for favorable responses and Equation (2) otherwise: 

ijjnpnpnpnpnp jjiii  ,)()1()1()](1[)()1(   (1) 
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where r is the cardinality of the action set, a and b are the reward and penalty parameters, 

respectively. 

6. The Proposed Algorithm 

This section details a novel fitness evaluation method for the multi-objective optimization 

problem and the proposed learning automata-based coral reefs algorithm, respectively. It should be 

noted that the underlying idea behind the proposed method might shed light on the design of 

another heuristic method for multi-objective optimization problems. 

6.1. Proposed Tchebycheff Decomposition Approach  

In this subsection, a newly improved multi-objective optimization fitness evaluation method 

based on the Tchebycheff decomposition approach is proposed. Firstly, a few concepts for the 

multi-objective optimization are defined to facilitate our presentation. A general multi-objective 

optimization problem is described as [32]: 

Min: 

1 2

1 2

( ) (( ( ), ( ), , ( )))

. . , (( , , , ))

T

t

n

n

F x f x f x f x

s t x S x x x x



 
 (3) 

where f1(x), f2(x),…,ft(x) are the t objective functions, (x1,x2,…xn) are the n optimization parameters 

and { , }j t 1, 2, S ∈ Rn is the solution space. The definition of Pareto dominance and Pareto 

optimality are presented as follows: 

Definition 1. (Pareto dominance) [33]: Suppose x and y are two decision variables, x is said to dominate y, 

denoted by x y , if and only if )()( yfxf ii   for every { , , }i t 1, 2  and )()( yfxf jj   for at least 

one index { , }j t 1, 2, .  

Definition 2. (Pareto optimality) [33]: Sx *  is said to be Pareto optimal (or non-dominated) if there is no 

another Sx  so that x dominates x*. The set of all Pareto optimal solutions in the decision space is called the 

Pareto optimal Set (PS). 

An improved fitness evaluation based on Tchebycheff decomposition approach is: 
*

* #

# *
1
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where i
λ , *y , #y  are constant values; 

1 2( , , , )i i i i

tλ λ λ λ  is the aggregation coefficient 

vector,
1

1;
t

i

j

j

λ ),,,( **

2

*

1

*

tyyyy   and ),,,( ##

2

#

1

#

tyyyy   are the lower bounds and upper 

bounds of the objective functions, * #, {1,2, , }, { ( )}, { ( )}j j j jj j t y f x y f x   min max . *y  and #y  

are introduced to compare the values of the different objective functions.  

In the improved Tchebycheff approach, let 1,..., W
λ λ  be the aggregation coefficient vectors, 

subproblem i corresponds to the coefficient vector, where 
1

0, 1,..., , 1, 1,...,
t

i i

j j

j

j t i W


   λ λ
. t is the 

number of objectives, and W is the number of subproblems. Population size W (i.e., the number of 

subproblems) and aggregation coefficient vectors 1,..., W
λ λ are controlled by t and an integer H. 

More precisely, 1,..., W
λ λ  are all the weight vectors in which each individual weight takes a value 

from {0/H, 1/H,…,H/H}. Therefore, the number of such vectors is 1

1



 t

tHCW . 
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We use Formula (A) to change them into the same range of value in order to make 

comparisons. The proof of Proposition (A) will be given in Theorem 2. 

Lemma: For 1 2 1 2 1 2, , ( 1,2, , )n

j jy y R y y y y j j t    if and for all , then )()( 21 yTyT ss  . 

Proof: Let us take y1, y2 into the Formula (A), note that the two parts in the right side of the equation 

for the Formula (A) are positive. Therefore, it is easy to get the conclusion that )()( 21 yTyT ss  .□ 

Theorem 1. If x* is an optimal solution for the single objective Problem (A), then x* is the Pareto optimal 

solution for the Problem (1). 

Proof: We will prove it by the contraction method. Suppose x* is not Pareto optimal solution to the 

Problem (1), according to Definition 2, )()( *xfxfx  . From Definition 1, we know, 

)()(},,,2,1{ *xfxfnj jj    and )()( *xfxf jj  . From the Lemma, we can get 

))(())(( *xfTxfT jsjs  , that is to say, x* is not an optimal solution to the Problem (A). Therefore, it 

apparently contradicts the hypothesis that x* is the single objective Problem (A). □ 

Theorem 2. If x* is a Pareto optimal solution to Problem (1), then * * * *

1 2( , , , )t λ λ λ λ  

makes ))(())(( * xfTxfT ss  , wherein * *

1

0, 1
t

j j

j

  λ λ
. 

Proof: We will prove it by the contraction method. Suppose that * *( ( )) ( ( ))s sT f x T f x λ . In other 

words, for λ  *

1 2( , , , ), , ( ( )) ( ( ))n s sx T f x T f x   λ λ λ λ , where 
1

0, 1
t

i i

i

  λ λ . By  

Formula (A), and thus )()(, *xfxfj jj  , that is to say )()( *xfxf  . Therefore, it apparently 

contradicts the hypothesis. □ 

From the theorems presented above, we can see that the optimal solutions to the single 

objective function optimization Problem (A) are the Pareto optimal solutions to the multi-objective 

function. By using Theorem 2, a multi-objective function optimization problem can be changed into 

a single-objective function optimization problem.  

6.2. Proposed Hybrid Learning Automata—CRO Algorithm 

The coral reef algorithm described in Section 4 shows that the parameters of CRO, that is, 

Broadcast Spawning radio Fb and brooding radio 1-Fb play important roles in the 

exploration/exploitation capabilities of the algorithm. In this subsection a new learning automata 

mechanism for adaptive parameter selection for the CRO is given. 

The proposed algorithm, that is the learning automata based coral reefs optimization algorithm 

(LACRO for short), performs like the original CRO algorithm with the auxiliary section at the end of 

the each iteration to select CRO parameters value. In order to enhance the ability of the original CRO 

algorithm, we borrow the idea from the differential evolution [34] and the genetic algorithm to make 

some modifications to the basic process of the CRO algorithm. The great difference between the 

original CRO algorithm and the proposed method lies in that the mutation of the selected brooding 

coral is controlled by the parameter Bd, which is adaptive and adjusted by learning automata 

according by the diversity and evolutionary status of the population. In contrast to the proposed 

algorithm, the fraction of corals that reproduce by brooding is 1-Fb in the original CRO. In addition 

to the parameter of the brooding radio controlled by the learning automata, the parameter of 

Broadcast Spawning radio Fb is also adaptive and adjusted by the learning automata. The details of 

the proposed algorithm are presented as follows: 
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Step 1: Coral reefs initialization. Set the initial parameter values for the coral reef population, 

the learning automata and determine the way of encoding the solution. Considering the 

characteristics of the solved problem, we use the binary code method. A solution to the problem is 

demonstrated in Figure 1, where “1” stands for the sensor which is selected to be in the working 

status, otherwise, the bit is “0”. 

 

Figure 1. Solution representation in LACRO. 

Step 2: Equally discretize two parameters, namely, the value of Fb and Bd, into the m1 distant 

value and m2 distant value, respectively. This method is called the adventurous method [7] which 

allows a parameter to change radically from one end of its range to the other in the consecutive 

iterations and not to be restricted by its previous value.  

Step 3: To equip each parameter with one learning automaton LAi (i = Fb, Bd), in which the 

corresponding actions number is m1 and m2, respectively. During every iteration, LAi (i = Fb, Bd) 

chooses one from its action set, then the corresponding value of the selected action will be set as the 

new value for the parameter. In our proposed method, all the coral reefs have the same values for 

the parameter Fb and Bd. In each iteration the roulette-wheel selection method is used to select the 

corresponding action of each learning automaton.  

The pseudo codes for LACRO are listed in Algorithm 2: 

Algorithm 2. Pseudocode for the proposed LACRO algorithm  

Input: parameters Fb and Bd , success threshold θ , the parameters of learning automata and CRO 

Output: The solutions to the problem 

1. Coral reefs initialization  

2. Equally divide parameter Fb into m1 parts and parameter Bd into m2 parts 

3. Assign 
bFLA  with m1 actions to Fb and the probability of each action is 1/ m1 

4. Assign 
dBLA  with m2 actions to Bd and the probability of each action is 1/ m2 

5. N is the number of coral reefs and N’(t) is the number of coral reefs which their fitness has been improved 

since iteration k−1 

6. While not stopCriteria () do { 

7. Using the roulette-wheel method to select Active Action 
bFp  for 

bFLA and 
dBp for 

dBLA  

8. Select the value of parameter Fb and Bd according to 
bFp and 

dBp , assuming the selected value is fb and bd 

respectively 

9. A fraction of fb coral larvae formed by external reproduction(also called broadcast spawning) 

10. The rest of bd coral larvae formed by internal sexual reproduction( brooding ) 

11. Fitness evaluation of newly produced coral larvae by broadcast spawning and brooding 

12. If 
N

tN )('
 { 

13. Reward the selected action for 
bFLA and 

dBLA according to Equation (1) 

13. Reward the selected action for 
bFLA and 

dBLA according to Equation (1) 

14. Else 

15. Punish the selected action for 
bFLA and 

dBLA according to Equation (2) } 

16. Larvae setting procedure 

17. Asexual reproduction 

18. Depredation in polyp phase 

19. End while } 
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Step 4: Fitness evaluation and learning automata updating. Please see Subsection 6.1 for the 

detailed fitness evaluation method. The learning automata are updated according to the evaluation 

result of parameter selection. It is considered to be a “successful” selection on the condition that the 

fraction of improved coral reef in the previous iteration is greater than the specific threshold. In this 

case, the two learning automata are rewarded; otherwise they are penalized. As a result, the actions 

with greater probability stand a good chance of being selected.  

Step 5: Larvae setting process. 

Step 6: Asexual reproduction process. 

Step 7: Depredation in polyp phase. 

Steps 5–7 are the same as described in Section 4. Please see the relevant parts for detailed 

information. 

Step 8: To determine whether the goal of stopping criteria is achieved. If it is true, return the 

best solution, otherwise, return to Step 4. 

7. Performance Evaluation 

In this section, the performance of the proposed algorithm is investigated. Firstly, performance 

comparison in test functions including single-objective functions and multi-objective functions were 

made. Subsequently, the proposed algorithms were applied to solve the coverage problem of 

directional heterogeneous sensor network. All the algorithms were implemented using MATLAB 

2013b and executed on a computer with a Core i5 2.3 GHz Quad CPU, 4 GB RAM and Windows 7  

64 bit operating system. 

7. 1. Performance Evaluation in Test Functions  

7.1.1. Single-Objective Function 

Three well-studied test functions in benchmarking optimization algorithms, namely Rastrigrin, 

Rosenbrock, and Griewank are used to compare the performances of the LACRO and the original 

CRO algorithm. In all the simulation, the termination criterion is set to 800 iterations. The range of 

values for Fb and bd are [0.75, 0.95] [35] and [0.5, 0.8] [28], respectively. The value of m1 and m2 are 5 

and 6. That is to say, the values of Fb and bd are selected by the learning automata from the set  

{0.75 0.8 0.85 0.9 0.95} and set {0.5 0.55 0.60 0.65 0.7 0.75 0.8}, respectively. The success threshold 

parameter θ is 0.8, and the population size is 300 (H = 23, t = 3, 1

1



 t

tHCW  = 300). The parameters 

in the learning automata are a = b= 0.01 [8]. The parameter of the function dimension D is 30 and the 

details of the test functions are as follows: 
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1
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Every test function has its own characteristics that make it suitable for evaluating the efficiency 

of the proposed algorithm. Rastrigin and Griewank are multimodal functions with many local 

optima that increase in the exponential way with problem dimensions, while Rosenbrock is a 

unimodal function. 

Table 1. Results on three functions based on 10 independent runs. 

Function LACRO CRO 

1f  Mean 0.0531 SD 0.02257 Mean 0.0733 SD 0.0247 

2f  Mean 3.3884 SD 91.8525  Mean 28.4710 SD 0.7326 

3f  Mean 0.1344 SD 0.1446 Mean 0.2578 SD 0.15297 
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Table 1 demonstrates the global mean values and the standard deviation (SD) of the final 

solutions during 10 rounds of simulation. The results in Table 1 show that the proposed LACRO 

algorithm obtains the goal of the best solutions for the testing functions. The comparisons prove that 

the mechanism of the learning automata-based parameters self–adaptive indeed makes the LACRO 

achieve better performance than the original CRO algorithm. It can effectively avoid local optima 

and premature convergence, finding optimal solution accuracy in test multimodal functions.  

Figure 2a–c illustrate the evolution of optimal fitness for two algorithms. As can be seen from  

Figure 2a–c, the proposed algorithm performs better and converses more rapidly than the original 

CRO algorithm. The proposed algorithm LACRO successfully gets the local optimal solution  

(0, 0… 0) in the end. Therefore, the proposed LACRO performs better than CRO in terms of 

convergence speed and final solution. 

  

(a) (b) 

 

(c) 

Figure 2. Comparison of LACRO and CRO. (a) f1 Rastrigrin; (b) f2 Rosenbrock; (c) f3 Griewank. 

7.1.2. Multi-Objective Function 

To better verify the validity of the proposed fitness evaluation method and the performance of 

LACRO algorithm, we carried out a number of experiments on multi-objective function 

optimization. In this subsection, performance metrics for multi-objective optimization are firstly 

introduced. Then three test functions are presented. Finally, the results will be given at the end of 

this subsection. 

(1) Performance metrics 

In our experiments, the following performance index is used: 

Set coverage(C-metric): The C-metric [36] evaluates the rate between dominance of a Pareto 

front over another Pareto front. Assuming that A and B are two approximated Pareto-optimal sets, 

the coverage of two sets C(A, B) is defined as the percentage of the solutions in B that are dominated 

by at least one solution in A, i.e.: 
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The smallest C(A, B) is, the better the A. It should be noted that C(A, B) is not necessarily equal 

to 1 − C(B, A). C(A, B) = 1 means that all solutions in B are dominated by some solutions in A, while 

C(A, B) = 0 implies that no solution in B is dominated by a solution in A. 

(2) Test functions 

We use three widely used bio-objective test instances [37–39] to compare LACRO with the 

original CRO. All these test instances are minimization of the objectives. They are selected based on 

following properties: (i) the maximum value and minimum value of each sub problem in the test 

functions is easy to obtain; (ii) Exact shape and location of resulting PF for these problems are 

known. Table 2 presents the details of the test problems used in the paper. The experiment 

environment is the same as the performance simulation in single objective function section. 

Table 2. Test problems used in this study. 

Problem Objective Functions Domain 
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(3) Results 

The parameter setting of the algorithm is the same as the single-objective test section. In 

formula (A), each individual weight 1 2, , , Wλ λ λ  (W is the population size) takes a value from the 

set of {0/300, 1/300, … , 300/300}. Table 3 describes of the C-metric values of the final approximations 

obtained by LACRO and original CRO. The values in the brackets are the standard deviation of the 

solutions. As can be seen from Table 3, LACRO performs better than CRO in terms of C-metric. 

Taking Function F1 as an example, on average, 97% of the final solutions generated by CRO are 

dominated by LACRO and 89% vice versa. 

Table 3. Average value of C-metric based on 10 independent runs. 

Function C (LACRO, CRO) C (CRO, LACRO) 

F1 0.97 (0, 00005) 0.89 (0, 00042) 

F2  0.59 (0, 00008) 0.5 (0, 00032) 

F3 0.27 (0, 00018) 0.2 (0, 0004) 

7.2. Application to the HDSN Coverage Problem  

7.2.1. Experimental Setup 

In this section, the performance of the proposed algorithm is analyzed and the parameters of 

the algorithm are the same as the previous section in performance evaluation in test functions. The 
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following network parameters are set: m = n = 40, N = 300, sensor parameters are presented in  

Table 4. 

Table 4. Sensor specifications. 

Type  
Sensing 

Radius 
Radius Communication 

Angle of 

View  
Quantity 

1 10  20 π 3  150 

2 15  30 π 2  150 

In order to model the hotspots, we divide the monitor area into a number of squared subareas. 

For each subarea, we assign a number of targets to that subarea according to a bounded Pareto 

distribution. A subarea with a lot of targets can be viewed as a hot spot. Once the number of targets 

in a specific subarea is determined, they are randomly distributed within that subarea. The 

cumulative density function of the bounded Pareto distribution is:  





)(1

)(1
)(

vu

ku
kF




  

where u < k < v, 0 < α < 2 [40]. In this paper, u = 3, v = 100, and α = 1.1, the number of targets and 

subareas are 150 and 36, respectively. Figure 3 illustrates the targets distribution of the clustered 

layout generated by the above-mentioned method. In our experiment, the parameter K, that is 

coverage requirement and connect requirement is in the hot area, which is set 2, otherwise, K = 1 in 

the non- hot area. 

 

Figure 3. Clustered layout of targets (150 targets in a 40 × 40 area). 

7.2.2. Experimental Results and Analysis 

The results generated by LACRO with different generations are illustrated in Figure 4. As can 

be seen from the figure, with the increase in the iteration number, the solutions obtained by LACRO 

approximate optimal, which verify the effectiveness of the algorithm in solving multi-objective 

coverage optimization problems in HDSNs.  
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(a) (b) (c) 

   

(d) (e) (f) 

Figure 4. One of the non-dominated solutions. (a) 300 nodes, initial distribution; (b) the 100th 

generation, 66 nodes, 89.3% coverage rate, full connect value; (c) the 200th generation, 62 nodes, 

90.9% coverage rate, full connect value; (d) the 400th generation, 58 nodes, 91.3% coverage rate, full 

connect value; (e) the 600th generation, 57 nodes, 92.9% coverage rate, full connect value; (f) the 

800th generation, 53 nodes, 95.8% coverage rate, full connect value. 

Experiment 1: Fitness comparison 

This experiment studies the exploration/exploitation capabilities of the algorithms. Figure 5. 

shows the evolution of the average fitness and better fitness with the iteration number. As can be 

seen in the figure, the two curves are noticeably different and the LACRO curve converges more 

rapidly and effectively than the CRO curve, which is strong proof that LACRO has better 

performance than CRO.  

  

(a) (b) 

Figure 5. (a) Average fitness in various generations; (b) Best fitness in various generations. 

Experiment 2: Coverage control performance comparison 

In order to compare the performance of the two algorithms in the HDSN multi-objective 

optimization problem, several experiments are carried out and the results are presented in Figure 6. 

As can be seen from the figure, LACRO can converge more rapidly and obtains better solutions than 

the CRO algorithm in coverage rate, working node number and connect value. Due to the random 

nature of the CRO algorithm, it may “vibrate” in its optimization process as can be seen from 
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Figure 6, especially in Figure 6c. Overall, we can claim that LACRO outperforms CRO in  

these problems. 

 

(a) 

 

(b) 

 

(c) 

Figure 6. (a) Coverage rate f1 in various generations; (b) Ratio of working nodes f2 in various 

generations; (c) Connect value f3 in various generations. 

Experiment 3: Performance evaluation between LACRO and other algorithms 

In order to compare the performance of different approaches, we run the pure random 

algorithm and k-random algorithm [41] where k is equal to 2 and 3, respectively. The results are 

illustrated in Figure 7. We can see clearly that LACRO needs the least amount of sensor nodes to 

ensure full connectivity value and the best coverage rate among the comparison algorithms. Thus it 

is fair to claim that LACRO has better optimization ability and scalability compared to other 

coverage control algorithms and it is much more effective for solving multi-objective coverage 

control problems with large dimension sizes.  
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(a) 

 

(b) 

 

(c) 

Figure 7. (a) Coverage rate f1 vs. node density; (b) Ratio of working nodes f2 vs. node density;  

(c) Connect value f3 vs. node density. 

8. Conclusions and Future Work 

Featured by the geographical irregularity of the sensed events and heterogeneity of the sensor 

nodes, this paper presents a novel multi-objective optimization problem of HDSN which guarantees 

the coverage rate of the monitor area, the financial cost of deployment and the directional sensor 

network communication connectivity. Our proposal is a learning automata-based coral reef 

optimization algorithm (LACRO) which equips the CRO with the ability to create spur-in-time 

responses with better exploration/exploitation capabilities as a result. The CRO parameters are 

selected by the learning automata. The parameters of Fb and Bd are discretized within their permitted 

ranges, and a learning automaton with a finite action set is used for each parameter. An enhanced 

decomposition method based on the Tchebycheff Approach is proposed to decompose the 
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multi-objective problem into some single-objective problems. Experimental results indicate that the 

proposed algorithm and the improved Tchebycheff method are highly competitive with the CRO 

algorithm in test functions and multi-objective optimization problems in HDSNs. In the future, we will 

study energy efficient coverage optimization algorithms in mobile HDSN, which can adjust the 

working direction of the nodes and change their physical positions to improve the network coverage.  

Acknowledgments: The authors wish to express their appreciation to Huang Minting for her language 

polishing work on the paper. The authors also appreciate the useful suggestions and opinions provided by 

three anonymous reviewers, which have helped to improve this paper. This research is funded partially by 

Chongqing Education Committee Cooperation Foundation, China (Grant No.KJ130716), Chongqing Science 

and Technology Commission, China (Grant No. CSTC2012jjA40037), the Scientific Research Foundation of 

Chongqing Technology and Business University (Grant No. 2012-56-03), China Scholarship Council (CSC).  

Author Contributions: Ming Li conceived and designed the experiments; Ming Li. performed the experiments; 

Ming Li, Chunyan Miao and Cyril Leung. analyzed the data; Ming Li. wrote the paper.  

Conflict of Interest: The authors declare no conflict of interest. 

References  

1. Akyildiz, I.F.; Melodia, T.; Chowdhury, K.R. A survey on wireless multimedia sensor networks. Comput. 

Netw. 2007, 51, 921–960. 

2. Aitsaadi, N.; Achir, A.; Boussetta, K.; Pujolle, G. Tabu Search WSN Deployment Method for Monitoring 

Geographically Irregular Distributed Events. Sensors 2009, 9, 1625–1643. 

3. Iqbal, M.; Naeem, M.; Anpalagan, A.; Ahmed, A.; Azam, M. Wireless Sensor Network Optimization: 

Multi-Objective Paradigm. Sensors 2015, 15, 17572–17620. 

4. Zhang, Q.; Li, H. MOEA/D: A multi-objective evolutionary algorithm based on decomposition. IEEE Trans. 

Evolut. Comput. 2007, 6, 712–731. 

5. Konstantinidis, A.; Yang, K. Multi-objective energy-efficient dense deployment in Wireless Sensor 

Networks using a hybrid problem-specific MOEA/D. Appl. Soft Comput. 2012, 12, 1847–1864. 

6. Lanza-Gutierrez, J.M.; Gomez-Pulido, J.A. Assuming multiobjective metaheuristics to solve a 

three-objective optimisation problem for Relay Node deployment in Wireless Sensor Networks. Appl. Soft 

Comput. 2015, 30, 675–687. 

7. Rasul, E.; Yousefi, M.; Abdullah, A.H.; Darus, A.N. LAHS: A novel harmony search algorithm based on 

learning automata. Commun. Nonlinear Sci. Numer. Simulat. 2013, 18, 3481–3497. 

8. Hashemi, A.B.; Meybod, M.R. A note on the learning automata based algorithms for adaptive parameter 

selection in PSO. Appl. Soft Comput. 2011, 11, 689–705. 

9. Guvensan, M.A.; Yavu, A.G. On coverage issues in directional sensor networks: A survey. Ad. Hoc. Netw. 

2011, 9, 1238–1255. 

10. Mohamadia, H.; Salleh, S.; Razali, M.N. Heuristic methods to maximize network lifetime in directional 

sensor networks with adjustable sensing ranges. J. Netw. Comput. Appl. 2014, 46, 26–35. 

11. Ai, J.; Abouzeid, A.A. Coverage by directional sensors in randomly deployed wireless sensor networks.  

J. Comb. Optim. 2006, 11, 21–41. 

12. Cai, Y.; Lou, W.; Li, M.; Li, X.-Y. Energy efficient target-oriented scheduling in directional sensor networks. 

IEEE Trans. Comput. 2009, 58, 1259–1274. 

13. Wen, J.; Fang, L.; Jiang, J.; Dou, W. Coverage Optimizing and Node Scheduling in Directional Wireless 

Sensor Networks. In Proceedings of the IEEE International Conferences on Wireless Communications, 

Networking and Mobile Computing (WiCom’08), Dalian, China, 12–14 October 2008; pp. 1–4,  



Sensors 2015, 15, 30617–30635 

30634 

14. Kim, Y.-H.; Han, Y.-H. Lifetime maximization considering target coverage and connectivity in directional 

image/video sensor networks. J. Supercomput. 2013, 65, 365–382. 

15. Sung, T.-W.; Yang, C.-S. Distributed Voronoi-Based Self-Redeployment for Coverage Enhancement in a 

Mobile Directional Sensor Network. Int. J. Distrib. Sens. Netw. 2013, 1–15. 

16. Sung, T.-W.; Yang, C.-S. Voronoi-based coverage improvement approach for wireless directional sensor 

networks. J. Netw. Comput. Appl. 2014, 39, 202–213. 

17. Mohamadi, H.; Ismail, A.; Salleh, S.I.; Nodehi, A. Learning automata-based algorithms for solving the 

target coverage problem in directional sensor networks. Wirel. Pers. Commun. 2013, 73, 1309–1330. 

18. Ma, H.; Zhang, X.; Ming, A. A coverage-enhancing method for 3d directional sensor networks. In 

Proceedings of the IEEE International Conference on Computer Communications (INFOCOM’09), Rio de 

Janerio, Brazil, 19–25 April 2009; pp. 2791–2795. 

19. Mohamadi, H.; Ismail, A.S.B.H.; Salleh, S. A learning automata-based algorithm for solving coverage 

problem in directional sensor networks. Computing 2013, 95, 1–24. 

20. Wang, J.; Niu, C.; Shen, R. Priority-based target coverage in directional sensor networks using a genetic 

algorithm. Comput. Math. Appl. 2009, 57, 1915–1922. 

21. Yang, H.; Li, D.; Chen, H. Coverage Quality Based Target-Oriented Scheduling in Directional Sensor Networks. 

In Proceedings of the International Conference on Communications, Beijing, China, 23–27 May 2010; pp. 1–5. 

22. Mohamadi, H.; Ismail, A.; Salleh, A.S. A Learning Automata-Based Solution to the Priority-Based Target 

Coverage Problem in Directional Sensor Networks. Wirel. Pers. Commun. 2014, 79, 2323–2338. 

23. Bian, F.; Kempe, D.; Govindan, R. Utility Based Sensor Selection. In Proceedings of the 5th International 

Conference on Information Processing in Sensor Networks, Nashville, TN, USA, 19–21 April 2006;  

pp. 11–18. 

24. Salcedo-Sanz, S.; del Ser, J.; Landa-Torres, I.; Gil-López, S.; Portilla-Figueras, J.A. The Coral Reefs 

Optimization Algorithm: A Novel Metaheuristic for Efficiently Solving Optimization Problems. Sci. World 

J. 2014, 2014, 1–15. 

25. Salcedo-Sanz, S.; García-Díaz, P.; Portilla-Figueras, J.A.; del Ser, J., Gil-López, S. A Coral Reefs 

Optimization Algorithm for Optimal Mobile Network Deployment with Electromagnetic Pollution 

Control Criterion. Appl. Soft Comput. 2014, 24, 239–248. 

26. Salcedo-Sanz, S.; Casanova-Mateo, C.; Pastor-Sánchez, A.; Sánchez-Girón, M. Daily Global Solar Radiation 

Prediction Based on a Hybrid Coral Reefs Optimization—Extreme Learning Machine Approach. Solar 

Energy 2014, 105, 91–98. 

27. Salcedo-Sanz, S.; Pastor-Sánchez, A.; Prieto, L.; Blanco-Aguilera, A.; García-Herrera, R. Feature selection in 

wind speed prediction systems based on a hybrid coral reefs optimization—Extreme learning machine 

approach. Energy Convers. Manag. 2014, 87, 10–18. 

28. Salcedo-Sanz, S.; Pastor-Sánchez, A.; del Ser, J.; Prieto, L.; Geem, Z.W. A Coral Reefs Optimization 

Algorithm with Harmony Search Operators for Accurate Wind Speed Prediction. Renew. Energy 2015, 75, 

93–101. 

29. Narendra, K.S.; Thathachar, M.A.L. Learning automata: a survey. IEEE Trans. Syst. Man Cybern. 1974, 3, 

23–34. 

30. Thathachat, M.A.L.; Sastry, P.S. A hierarchical system of learning automata that can learn the globally 

optimal path. Inf. Sci.1997, 42, 743–766. 

31. Beigy, H.; Meybodi, M.R. Cellular learning automata with multiple learning automata in each cell and its 

applications. IEEE Trans. Syst. Man Cybern. Part B Cybern. 2010, 40, 54–66. 



Sensors 2015, 15, 30617–30635 

30635 

32. Konak, A.; Coit, D.W.; Smith, A.E. Multi-objective optimization using genetic algorithms. Reliab. Eng. Syst. Saf. 

2006, 91, 992–1007.  

33. Konstantinidis, A.; Yang, K. Multi-Objective K-Connected Deployment and Power Assignment in WSNs 

Using a Problem-Specific Constrained Evolutionary Algorithm Based on Decomposition. Comput. Commun. 

2011, 34, 83–98. 

34. Storn, R.; Price, K. Differential evolution-A simple and efficient heuristic for global optimization over 

continuous spaces. J. Glob. Optim. 1997, 11, 341–359.  

35. Salcedo-Sanz, S.; Gallo-Marazuela, D.; Pastor-Sánchez, A.; Carro-Calvo, L.; Portilla-Figueras, A.; Prieto, L. 

Offshore Wind Farm Design with the Coral Reefs Optimization Algorithm. Renew. Energy 2014, 63, 

109–115.  

36. Zitzler, E.; Thiele, L. Multiple objective evolutionary algorithms: A comparative case study and the 

strength Pareto approach. IEEE Trans. Evolut. Comput. 1999, 3, 257–271. 

37. Schaffer, J.D. Multiple Objective Optimization with Vector Evaluated Genetic Algorithms. In Proceedings 

of the 1st International Conference on Genetic Algorithms, Pittsburgh, PA, USA, 24–26 July 1985;  

pp. 93–100. 

38. Joanna, L.; Eiben, A.E. A Multi-Sexual Genetic Algorithm for Multi-Objective Optimization. In 

Proceedings of the IEEE International Conference on Evolutionary Computation, Nagoya, Japan,  

13–16 April 1997; pp. 13–16. 

39. Zitzler, E.; Deb, K.; Thiele, L. Comparison of Multiobjective Evolutionary Algorithms: Empirical Results. 

Evolut. Comput. 2000, 8, 173–195. 

40. Watts, D.J.; Strogatz, S.H. Collective dynamics of small-world networks. Nature 1998, 393, 440–442. 

41. Liu, C.; Wu, K.; King, V. Randomized Coverage-Preserving Scheduling Schemes for Wireless Sensor 

Networks. IEEE Trans. Parallel Distrib. Syst. 2005, 17, 956–967. 

©  2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access 

article distributed under the terms and conditions of the Creative Commons by 

Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/). 


