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Abstract: This paper describes the design and experimental evaluation of a silicon micro-machined
resonant accelerometer (SMRA). This type of accelerometer works on the principle that a proof
mass under acceleration applies force to two double-ended tuning fork (DETF) resonators, and the
frequency output of two DETFs exhibits a differential shift. The dies of an SMRA are fabricated
using silicon-on-insulator (SOI) processing and wafer-level vacuum packaging. This research aims
to design a high-sensitivity SMRA because a high sensitivity allows for the acceleration signal to
be easily demodulated by frequency counting techniques and decreases the noise level. This study
applies the energy-consumed concept and the Nelder-Mead algorithm in the SMRA to address the
design issues and further increase its sensitivity. Using this novel method, the sensitivity of the
SMRA has been increased by 66.1%, which attributes to both the re-designed DETF and the reduced
energy loss on the micro-lever. The results of both the closed-form and finite-element analyses are
described and are in agreement with one another. A resonant frequency of approximately 22 kHz,
a frequency sensitivity of over 250 Hz per g, a one-hour bias stability of 55 µg, a bias repeatability
(1σ) of 48 µg and the bias-instability of 4.8 µg have been achieved.
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1. Introduction

Microelectromechanical accelerometers can be found in numerous applications such as inertial
navigation systems, gaming, smartphones and mobile devices [1]. These devices are very attractive
for high-precision measurement applications due to their high sensitivity, frequency output and large
dynamic range [2–4]. In a silicon micro-machined resonant accelerometer (SMRA), the acceleration is
measured through the differential frequency shift originated by axial loading between the two pull
and push double-ended tuning fork (DETF) resonators. This type of resonant accelerometer benefits
from a direct frequency shift between the resonators when sensing the input acceleration and this
feature draws the extensive attention of researchers.

The sensitivity of the SMRA is defined as the differential output frequency of the resonators
produced by an acceleration of 1 g. It is an important characteristic and deserves to be researched.
A high sensitivity allows for the acceleration signal to be easily demodulated by frequency counting
techniques [2] and decreases the overall noise on the readout electronics [5]. Recently, the design
and fabrication of various mechanical resonant accelerometers have been studied [1,6,7]. Pinto et al.,
have presented the design of a very small and sensitive resonant accelerometer [4]. By using thin
silicon-on-insulator (SOI)-based technologies compatible with “In-IC“ integration, the accelerometer
size has been reduced drastically (0.05 mm2 ˆ 4.2 µm) with a sensitivity of 22 Hz/g. Sandia
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National Laboratories have developed an in-plane microelectromechanical systems (MEMS)-based
nano-g accelerometer with a subwavelength optical resonant sensor in [8], where the authors focus
on the maximum mass and the minimum spring constant to achieve a high sensitivity of 590 V/g
and resolution of 17 ng/

‘

Hz. Zou et al., optimized a tilt accelerometer to obtain a design trade-off
between sensitivity, resolution and robustness [9,10]. However, each part of this sensitive structure
was optimized separately without considering the interaction effect between each other. Su et al.,
designed a two-stage micro-leverage mechanism in the silicon resonant accelerometer and provided
the theory for the amplification factor of the micro-leverage [11]. Constraint conditions have great
effect on the amplification efficiency of the micro levers, but this study did not take these factors
into consideration.

Although many of these studies have been concerned with the structure of resonant
accelerometers to improve the ability to sense accelerations, their methods for the design and the
sensitivity achievable from such sensors still remain limited. There remains a need for an efficient
and systematic method that can obtain a reasonable structure with a high sensitivity based on the
trade-off between the geometry of the accelerometer and its fabrication requirements.

This paper will show an in-plane SMRA by building upon previous work [5,12–14]. However,
the geometrical setting, and hence, the properties of the mechanical parts are different. The structure
of an SMRA is regarded as an energy transmission system, and each part consumes and transmits
energy. Our study applies the energy-consumed concept to the SMRA to address the design issues
and to increase its sensitivity. This sensor is referred to as a compliant mechanism. Based on the
law of the conservation of energy, micro-lever mechanisms with boundary conditions are optimized
to consume low energy and to show high force transmission efficiency between the proof mass and
the resonators. This is very important for the design of resonant accelerometers. Currently, such an
application of the energy-consumed concept has not been reported. In addition, the Nelder-Mead
method [15,16] with constraint conditions is initially used as the optimization algorithm. The SOI
processing has an integrated 80 µm-thick single-crystal silicon structure with a standard on-chip
circuit. It offers a higher aspect ratio MEMS structure that will reduce the cross-axis sensitivity and
increase the robustness of the sensors [17].

This paper demonstrates an SMRA with a 211.5 Hz/g nominal sensitivity (66.1% higher than
the previous structure), one-hour bias stability of 55 µg and a bias repeatability of 48 µg. The device
possesses a good output frequency nonlinearity of within ˘40 g input acceleration (corresponding
over the 16 kHz output frequency shift of the resonators). A very good agreement is obtained between
the results of the closed-form analyses and those of the finite-element analyses. In what follows, we
report on the experimental characterization of an SMRA based on the resonant sensing principles [2].

This paper is organized as follows: Section 2 describes the operation principle and the SOI
processing for the SMRA dies, Section 3 proposes the reasonable design for each part of the SMRA
and how to obtain an optimum sensitivity, Section 4 presents simulated and experimental results to
compare with the theoretical predictions, and Section 5 contains the conclusions of the entire work.

2. Background

2.1. Operation Principle

The SMRA structure is shown as a schematic in Figure 1. This structure can be divided into four
major components: a proof mass, micro levers, flexure suspensions and DETFs. All these components
have coplanar faces. Two DETFs are joined via micro-levers to the proof mass. The proof mass is
constrained to move along the y-axis by four flexures, which are linked to the frame mounted to the
silicon substrate by four anchors. When acceleration along the input axis is applied to the device, the
force from the proof mass is magnified by micro-lever and then transferred to the DETFs. This input
applies axial loads, either tension or compression, to the DETFs, which produces a measurable natural
frequency shift between the two resonators. The output of the SMRA is the differential frequency
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variation of the two resonators, and this differential arrangement enables a first-order cancellation of
common parasitic sensitivities such as temperature.Sensors 2015, 15, page–page 

3 

lever arm

DETF 

resonator

Connet 

beam

input 

beam

pivot beam

output beam

la

lb1

lb2

x

y

z

Flexure

Connecting 

mass 1

Connecting 

mass 1

Micro-leverage 

mechanism

Proof mass 

A
c
c
e

le
ra

ti
o

n
 I
n

p
u

t 
A

x
is

Fixed Free

Frame

DETF resonator 1

Flexure

DETF resonator 2

Connecting 

mass 1

 

Figure 1. Schematic view of the SMRA with a frame structure. 

2.2. Dies Based on the SOI-MEMS Process 

The SMRA has been fabricated with SOI processing and wafer-level vacuum packaging [18]. 

The main characteristic of the SOI process is the use of silicon-to-silicon direct bonding (SSDB) and 

high-aspect ratio inductively coupled plasma (ICP) etching technology [17,19]. This process offers 

an 80 μm-thick MEMS structure with a high aspect ratio up to 1:30, which will then reduce 

cross-axis sensitivity and increase the robustness of the sensors. 

The process cross-section is schematically represented in Figure 2. The die is realized with 

three wafers, the substrate, the SOI device layer and the cover. The sensor surface is around  

110 mm2 and its thickness for the three layers is 700 μm. The SOI device layer is 80 μm thick and is 

manufactured using deep reactive ion etching on the SOI wafer with a high aspect ratio of up to 

1:30. The residual stress is much less than that of a silicon-on-glass (SOG) process [20]. The cover 

and the active SOI layer are joined by an Au/Si eutectic bonding, forming a hermetic cavity that 

maintains the vacuum needed for a high-Q operation of the SMRA. To maintain the vacuum level 

over the long term, a getter is adhered to the inner surface of the cover, and once it is activated, the 

getter progressively absorbs and traps gaseous species. The packaged SMRA die was placed in a 

ceramic cartridge to protect the silicon structure and to facilitate the welding of the whole device. 

Figure 3 shows the wafer-level vacuum packaged SMRA dies, and Figure 4 shows the SEM 

(Scanning Electron Microscope) photo of the SMRA structure. The vacuum level of the sensor is 

measured at 10 Pa. 
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Figure 2. SOI-MEMS (silicon-on-insulator microelectromechanical system) process cross-section of 

the die. 

Figure 1. Schematic view of the SMRA with a frame structure.

2.2. Dies Based on the SOI-MEMS Process

The SMRA has been fabricated with SOI processing and wafer-level vacuum packaging [18].
The main characteristic of the SOI process is the use of silicon-to-silicon direct bonding (SSDB) and
high-aspect ratio inductively coupled plasma (ICP) etching technology [17,19]. This process offers
an 80 µm-thick MEMS structure with a high aspect ratio up to 1:30, which will then reduce cross-axis
sensitivity and increase the robustness of the sensors.

The process cross-section is schematically represented in Figure 2. The die is realized with three
wafers, the substrate, the SOI device layer and the cover. The sensor surface is around 110 mm2 and
its thickness for the three layers is 700 µm. The SOI device layer is 80 µm thick and is manufactured
using deep reactive ion etching on the SOI wafer with a high aspect ratio of up to 1:30. The residual
stress is much less than that of a silicon-on-glass (SOG) process [20]. The cover and the active SOI
layer are joined by an Au/Si eutectic bonding, forming a hermetic cavity that maintains the vacuum
needed for a high-Q operation of the SMRA. To maintain the vacuum level over the long term, a getter
is adhered to the inner surface of the cover, and once it is activated, the getter progressively absorbs
and traps gaseous species. The packaged SMRA die was placed in a ceramic cartridge to protect the
silicon structure and to facilitate the welding of the whole device. Figure 3 shows the wafer-level
vacuum packaged SMRA dies, and Figure 4 shows the SEM (Scanning Electron Microscope) photo of
the SMRA structure. The vacuum level of the sensor is measured at 10 Pa.

30295



Sensors 2015, 15, 30293–30310

Sensors 2015, 15, page–page 

3 

lever arm

DETF 

resonator

Connet 

beam

input 

beam

pivot beam

output beam

la

lb1

lb2

x

y

z

Flexure

Connecting 

mass 1

Connecting 

mass 1

Micro-leverage 

mechanism

Proof mass 

A
c
c
e

le
ra

ti
o

n
 I
n

p
u

t 
A

x
is

Fixed Free

Frame

DETF resonator 1

Flexure

DETF resonator 2

Connecting 

mass 1

 

Figure 1. Schematic view of the SMRA with a frame structure. 

2.2. Dies Based on the SOI-MEMS Process 

The SMRA has been fabricated with SOI processing and wafer-level vacuum packaging [18]. 

The main characteristic of the SOI process is the use of silicon-to-silicon direct bonding (SSDB) and 

high-aspect ratio inductively coupled plasma (ICP) etching technology [17,19]. This process offers 

an 80 μm-thick MEMS structure with a high aspect ratio up to 1:30, which will then reduce 

cross-axis sensitivity and increase the robustness of the sensors. 

The process cross-section is schematically represented in Figure 2. The die is realized with 

three wafers, the substrate, the SOI device layer and the cover. The sensor surface is around  

110 mm2 and its thickness for the three layers is 700 μm. The SOI device layer is 80 μm thick and is 

manufactured using deep reactive ion etching on the SOI wafer with a high aspect ratio of up to 

1:30. The residual stress is much less than that of a silicon-on-glass (SOG) process [20]. The cover 

and the active SOI layer are joined by an Au/Si eutectic bonding, forming a hermetic cavity that 

maintains the vacuum needed for a high-Q operation of the SMRA. To maintain the vacuum level 

over the long term, a getter is adhered to the inner surface of the cover, and once it is activated, the 

getter progressively absorbs and traps gaseous species. The packaged SMRA die was placed in a 

ceramic cartridge to protect the silicon structure and to facilitate the welding of the whole device. 

Figure 3 shows the wafer-level vacuum packaged SMRA dies, and Figure 4 shows the SEM 

(Scanning Electron Microscope) photo of the SMRA structure. The vacuum level of the sensor is 

measured at 10 Pa. 

Silicon Silicon dioxide Au

Cover

Substrate

SOI device

 

Figure 2. SOI-MEMS (silicon-on-insulator microelectromechanical system) process cross-section of 

the die. 

Figure 2. SOI-MEMS (silicon-on-insulator microelectromechanical system) process cross-section of
the die.Sensors 2015, 15, page–page 

4 

 
x

y

z

Silicon 

cover

Lead pad

Ceramic 

cartridge

2000 m

 

Figure 3. Photo of the SMRA wafer-level vacuum packaged die. 
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Figure 4. SEM photo of the mechanical sensitive structure. 

3. Device Design 

3.1. Theoretical Analysis 

For each DETF, the natural frequency of the basic lateral vibration mode is expressed as [21] 
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where E is the Young’s modulus, ρ is the density of single-crystal silicon and l, w and t are the length, 

width and thickness of the resonant beam, respectively. The comb-drive structure and the resonant 

beam have the same thickness, and qs is the x-y plane area of the comb-drive structure. If qs is 

constant, it is clear that the natural frequency of one resonant beam depends on the length and the 

width but is independent of the thickness of the beam. 

When the acceleration a along the sensitive axis is applied (see Figure 1), the proof mass is 

subjected to the force F1 = m1a, and each of the connecting masses is subjected to F2 = m2a. The axial 

force on each resonant beam has been magnified by the micro-lever to be 
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3. Device Design

3.1. Theoretical Analysis

For each DETF, the natural frequency of the basic lateral vibration mode is expressed as [21]

f0 “
1
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where E is the Young’s modulus, ρ is the density of single-crystal silicon and l, w and t are the length,
width and thickness of the resonant beam, respectively. The comb-drive structure and the resonant
beam have the same thickness, and qs is the x-y plane area of the comb-drive structure. If qs is
constant, it is clear that the natural frequency of one resonant beam depends on the length and the
width but is independent of the thickness of the beam.

When the acceleration a along the sensitive axis is applied (see Figure 1), the proof mass is
subjected to the force F1 = m1a, and each of the connecting masses is subjected to F2 = m2a. The axial
force on each resonant beam has been magnified by the micro-lever to be
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ˆ

A˚m1a
4

`
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2

˙

(2)

where A˚ is the amplification factor of the sensitive structure (i.e., the effective amplification factor)
and m1 and m2 are the mass of the proof mass and the connecting mass.

Therefore, the resonant beam frequency f under acceleration can be found by energy analysis [22]
to be
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where Me f f is the effective mass and Ke f f is the axial effective stiffness of the DETF.

Setting α “
0.073 pA˚m1 ` 2m2q al2

Ew3t
, the frequency shift between two DETFs is

∆ f “ f0
?

1`α´ f0
?

1´α “ f0α`
1
8

f0α
3 (4)

By substituting a = ng (where n is the applied acceleration in terms of g) into Equation (4) and
by taking the derivative of ∆f with respect to n, the sensitivity can be expressed in terms of frequency
(with units of Hz/g)

Sg “
d∆ f
dn

« f0
0.073 pA˚q1 ` 2q2q ρl2

Ew3 g

“ 0.0473

d

l
p0.397ρwtl `msq Ew3t

pA˚m1 ` 2m2qg

“ Sres pA˚m1g` 2m2gq

(5)

where Sres is the sensitivity of the DETF sensing element.

Sres “ 0.0473

d

l
p0.397ρwtl `msq Ew3t

(6)
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3.2. Effective Amplification Factor A*

When acceleration a along the input axis is applied to the device, the force from the proof mass
is magnified by the micro-lever and then transferred to the DETFs. The effective amplification factor
A˚ is therefore defined as the ratio of the axial force of the DETF beam to the input inertial force of
the proof mass. Because the structure is symmetrical with respect to both the x- and y-axes, only
one-quarter of the structure has been directly analyzed.

Figure 5a shows the model and deformation of each part of the half structure under an inertial
load a. All the deformations have been exaggerated for clarity. Because the connecting mass is
symmetrical with respect to the y-axis, the bending moment and the horizontal force transferred
from output beams will be counteracted. As a result, only the axial force can be transferred to the
DETFs and will therefore cause vertical displacements. Figure 5b shows the equivalent model of a
quarter of the structure. By supposing the flexure can be regarded as a vertical spring K1, half of the
connecting mass and one DETF can be regarded as vertical springs of which stiffness are k f and kb.

By solving the boundary conditions for Fxi, Fyi, Mi, Fyo, Fxo and Mo (see Appendix A),
the effective amplification factor can be obtained to be

A˚ “
Fyo

m1a{4
(7)

Because this is a fairly large output, the expression for A* is shown in Appendix A. Based on the
analysis above, the sensitive structure should be designed to produce a high effective amplification
factor A*, which proportionally contributes to the sensitivity.Sensors 2015, 15, page–page 
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By substituting Equation (A8) into Equation (A12), we obtain 
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where Alever = Fyo/Fyi represents the amplification factor of the micro-lever, and Klever = Fyi/dyi represents 

the spring constant of the micro-lever. Both Alever and Klever are decided by the geometry of the 

micro-lever, and K1 has no influence on them; therefore, the effective amplification factor A* 

increases as K1 decreases. As for the connecting mass, it should be rigid to ensure energy 

conservation in an ideal situation. In reality, if kb is 10 times greater than kf, the connecting mass can 

be regarded as rigid. The design for the connecting mass relies on this principle. 

3.3. DETF Design Analysis 

The corresponding enhancement to the sensitivity owes not only to micro-lever mechanisms’ 

reasonable design, but also to the reasonable design for the resonators. As shown in Equation (6), 

the sensitivity of DETF Sres increases with an increase to the beam length and decreases with an 

increase to the beam width. Figure 6 shows the variation trend of Sres: the sensitivity of DETF 

increases steadily when the beam length changes from 300 μm to 1100 μm, while it decreases 

rapidly when the beam width changes from 1 μm to 10 μm, especially when less than 3 μm. 

Thinner, longer beams provide more sensitivity, but may also cause resonator mismatch due to 

process, with detrimental effects to the temperature stability of the sensor. This is a trade-off in the 

mechanical structure design, and the optimum geometry of DETF will be point out in next section. 
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By substituting Equation (A8) into Equation (A12), we obtain

A˚ “
Fyo

Fyi ` K1dyi
“

Fyo{dyi

Fyi{dyi ` K1
“

AleverKlever
Klever ` K1

(8)

where Alever = Fyo/Fyi represents the amplification factor of the micro-lever, and Klever = Fyi/dyi
represents the spring constant of the micro-lever. Both Alever and Klever are decided by the geometry
of the micro-lever, and K1 has no influence on them; therefore, the effective amplification factor A˚

increases as K1 decreases. As for the connecting mass, it should be rigid to ensure energy conservation
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in an ideal situation. In reality, if kb is 10 times greater than k f , the connecting mass can be regarded
as rigid. The design for the connecting mass relies on this principle.

3.3. DETF Design Analysis

The corresponding enhancement to the sensitivity owes not only to micro-lever mechanisms’
reasonable design, but also to the reasonable design for the resonators. As shown in Equation (6), the
sensitivity of DETF Sres increases with an increase to the beam length and decreases with an increase
to the beam width. Figure 6 shows the variation trend of Sres: the sensitivity of DETF increases
steadily when the beam length changes from 300 µm to 1100 µm, while it decreases rapidly when the
beam width changes from 1 µm to 10 µm, especially when less than 3 µm. Thinner, longer beams
provide more sensitivity, but may also cause resonator mismatch due to process, with detrimental
effects to the temperature stability of the sensor. This is a trade-off in the mechanical structure design,
and the optimum geometry of DETF will be point out in next section.
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mechanical structure design, and the optimum geometry of DETF will be point out in next section. 
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Figure 6. (a) Sres as a function of the DETF beam length for a series of beam widths; and (b) Sres as a 

function of the DETF beam width for a series of beam lengths. 
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Figure 6. (a) Sres as a function of the DETF beam length for a series of beam widths; and (b) Sres as a
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3.4. Reasonable Design of the Structure

By substituting Equation (7) into Equation (5), there is a tremendous dimension system about
the sensitivity Sg. To obtain a high Sg, the Nelder-Mead method under constraint conditions is used
as the optimization algorithm for each part of the SMRA. The Nelder-Mead method is a technique
for minimizing an objective function in multidimensional space. It uses the concept of a simplex,
which is a special polyhedron with N + 1~2N vertexes in N dimensions [16]. In this paper, the
energy-consumed concept (energy-consumed concept: based on the conservation of energy law,
micro-lever mechanisms with boundary conditions are optimized to consume a low amount of energy
and show high-force transmission efficiency from the proof mass to the resonators) is applied to
this method and used as the structure optimization algorithm. The flow chart for this algorithm
under constraint conditions is shown in Figure 7. The sensitivity is regarded as the negative objective
function to obtain a maximum result. Limited by the layout size, the proof mass area is assumed to
be lower than 8 mm2. The first vibrating mode (the first mode: when SMRA is under acceleration,
the proof mass will generate an inertial force, amplified by the micro-lever mechanism; then, the
amplified inertial force will cause axial push and pull loading on the DETF resonators) frequency can
be expressed as

f1 “

d

4 pKlever ` K1q

m1
(9)
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Figure 7. Flow chart for the Nelder-Mead method under constraint conditions.Figure 7. Flow chart for the Nelder-Mead method under constraint conditions.

In the testing environment, the first mode frequency should be larger than 2.1 kHz to stay
away from low-frequency external vibrations. Substituting m1 into Equation (9), the spring constant
K1 + Klever is assumed to be more than 71.4 N/m. The width of each beam is assumed to be equal to
or larger than 4.5 µm which is limited by the processing level. Therefore, the range of each beam’s
geometry is set as shown in Table 1 for our design requirements. Because kb is assumed to be 10 times
greater than k f , the connecting mass can be regarded as rigid, which helps to reduce the energy
consumed. All the above requirements are used as constraint conditions for the Nelder-Mead method.

The SMRA geometric dimensions after optimization are shown in Table 1. Its sensitivity is
determined to be 216.35 Hz/g. Limiting by the layout size and processing level and based on the
energy-consumed concept, several dimensions have been corrected slightly. The final sensitivity
is 211.5 Hz/g, 66.1% higher than the previous structure’s sensitivity of 127.33 Hz/g [14]. The
FEM (finite-element analyses) result of the first vibrating mode is 1994.59 Hz, 4.7% lower than the
theoretical value of 2.1 kHz. Meanwhile, the energy consumed in each component of this sensitive
structure is shown in Table 2. The DETF in this work consumes 59.6% of the total energy, while
the DETF of the earlier structure consumes only 6.58 ppm (parts per million). Table 3 shows the
ratio of the sensitivity improvement contributed by the DETF, the new micro-lever and the proof
mass. This means that the sensitivity improvement is mainly attributed to both the re-designed
DETF and the reduced energy loss on the lever. The micro-lever mechanisms (given the boundary
conditions) consume lower energy and show high force transmission efficiency from the proof mass
to the DETF resonators. If another optimum sensitivity is required, users can simply change the
constraint conditions of the Nelder-Mead algorithm and repeat the steps above.
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Table 1. Sensitive Structure Dimensions of the SMRA compared to earlier structure.

Variable lr wr li wi lo wo lp wp lin lout wc Lc la lb1 lb2
(µm) (µm) (µm) (µm) (µm) (µm) (µm) (µm) (µm) (µm) (µm) (µm) (µm) (µm) (µm)

Size range 100–1500 5.5–8 50–480 4.5–10 20–350 4.5–10 10–350 4.5–10 200–1650 >(wo+ wp)/2 lin/10 < wc
< lin/2 2lin-10 9–20 200–1000 Lb1–20

Optimal value 761.4 5.5 242.2 5.63 44.8 5.24 196.1 4.5 1641 54.9 1225 3272 10.7 390.3 370.3

Corrected value 761.5 5.5 242 5.5 45 5 196 4.5 900 29 525 1700 11 390 370

Earlier structure 1000 8 300 6 60 4 270 6 644 19 – – 16 650 650

* l and w, respectively, represent length and width. r, i, o and p represent the length of the resonant beam, input beam, output system and pivot beam, respectively.
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Table 2. Energy consumed in each component of the SMRA.

Component Energy Consume ˆ 10´17a2 (J) Ratio (%)

Earlier Structure This Work Earlier Structure This work

DETF 7.96 ˆ 10´4 24.56 6.58 ˆ 10´4 59.6
Flexure 41.93 6.51 34.64 15.8

Input beam 51.69 2.19 42.71 5.3
Output beam 23.35 1.09 19.3 2.6
Pivot beam 3.825 1.04 3.16 2.5

Lever arm(in) 0.24 2.55 0.198 6.2
Lever arm(out) 9.47 ˆ 10´5 0.07 7.82 ˆ 10´7 0.2

Connecting mass 8.8 ˆ 10´4 3.27 7.27 ˆ 10´6 7.9

Table 3. The sensitivity improvement between the two work.

SMRA
Sensitivity of

DETF
(Hz/N)

Effective
Amplification

Factor A*

The Proof
Mass
(kg)

Sg
(Hz/g)

Previous design 399,393 22.04 1.42 ˆ 10´6 127.33
This work 490,303 26.67 1.7 ˆ 10´6 211.5

Ratio for the improvement 22.8% 21% 19.72% 66%

4. Simulation and Experiments for the SMRA

The micro-lever mechanism can be evaluated by the output frequency by supposing one
resonator’s natural frequency is f 10. When it is subjected to an inertial force, the frequency becomes
f 1. By substituting f 10 into Equation (1) and f 1 into Equation (3), we obtain

f 2
1 ´ f 2

10 “
0.073 f 2

10 pA
˚q1 ` 2q2q ρal2

Ew3 (10)

By setting c “
0.073ρal2

Ew3 , the effective amplification factor A˚ for one resonator can be determine
by Equation (10) as follows:

A˚ “
f 2
1 { f 2

10 ´ p1` 2q2cq
q1c

(11)

Equation (11) can be used to judge whether the design of the micro-lever mechanism
is reasonable.

The SMRA has been simulated by FEA software, from which the sensitive structure was
subjected to an input acceleration in the range of˘40 g (see Figure 8). By fitting 13 datasets, the output
frequency, simulated frequency and sensitivity agree with the designed values, as shown in Table 4.
Moreover, the effective amplification factor is calculated through Equation (11). The nonlinearity of
Sg within ˘40 g is 49.66 ppm (parts per million).
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Figure 8. Simulated resonant frequency output versus the input acceleration. 
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Table 4. Simulated and testing results of the SMRA.

Results and Errors f0
(Hz)

Effective Amplification
Factor A˚

Sg
(Hz/g)

Theory results 26,053.5 26.2 211.5
Simulated values 25,585.4 26.67/25.33 203

Relative shift 1.8% 1.88%/3.33% 4.19%

The initial testing was performed in open air at the Sci & Tech Micro Inertial Technology Lab of
the Nanjing University. Three SMRA prototypes (A1-5, A1-7, and A1-8) had been chosen for testing
these prototypes adopted a self-excited oscillation loop with automatic gain control (AGC) as the
drive circuit, and the packaged SMRA dies were finally placed in a ceramic cartridge. The ceramic
cartridge package was put on a socket that was wire-connected to an off-chip circuit on a PC board.
During our testing, the output was connected to an oscilloscope. Without any input acceleration
in A1-5, the resonant frequency of one DETF was 22,447.45 Hz and that of the other DETF was
22,179.4 Hz. The gaps between the normalized frequencies are attributed to thermal and residual
stress during the process. Substituting the measured frequency into Equation (5), the theoretical
sensitivity is determined to be 249.46 Hz/g.

The PC board of A1-5 was then placed vertically on a rotating platform with a constant
temperature control. When this prototype was subjected to 1 g, the resonant frequency for the pull
resonator was 22,574.23 Hz, while the push resonator was 22,047.41 Hz. The increased frequency of
the pull resonator was 126.78 Hz, and the decreased frequency of the push resonator was 131.99 Hz.
The total frequency shift was therefore translated to a sensitivity of 258.77 Hz/g, only 3.6% higher
than the calculation of 249.46 Hz/g.

Figure 9 shows experimental points and a linear fitting of the measured differential frequency for
the acceleration of sin(θ) g on the three SMRA prototypes: A1-5, A1-7, A1-8. The rotating angle θwas
adjusted to be 0˝, 5˝, 15˝, 25˝, 45˝, 65˝, 75˝, 85˝, 90˝, 95˝, 105˝, 115˝, 135˝, 155˝, 165˝, 175˝, 180˝, 185˝,
195˝, 205˝, 225˝, 245˝, 255˝, 265˝, 270˝, 275˝, 285˝, 295˝, 315˝, 335˝, 345˝, and 355˝, respectively [23].
Good linearity of these prototypes is observed in this range of operation. By fitting the 32 sets of the
differential frequency, the average sensitivity within 1 g turns out to be 254.3 Hz/g. As shown in
Figure 10, when the SMRA prototypes were subjected to an input acceleration in the range of ˘40 g
with a constant temperature control, the testing nonlinearity of the sensitivity is within 100 ppm. All
of the above results have helped to confirm our theory.
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Figure 9. Variation of the differential resonant frequency ∆f for three SMRA prototypes between
the resonators in the range of ˘1 g.
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Figure 10. Testing nonlinearity of the sensitivity in the range of ˘40 g.

To study the bias stability, the A1-5’s input axis was kept horizontal to insure that the input
accelerometer was 0 g, and then the whole accelerometer was kept powered for 20 min. In this
working state, the output data of this prototype was recorded at a 1 Hz sampling rate for 60 min.
To avoid a temperature influence, the sample had been put on a rotating platform under a constant
20 ˝C. Then, the above steps were repeated for seven times. All the tested data have been presented
in Figure 11 with a one-hour bias stability of 55 µg and a bias repeatability of 48 µg. The random
bias variance was then characterized using Allan variance, a method proposed for clock systems [24].
Allan variance calculation is applied to the frequency reading and plotted in Figure 12. The Allan
variance flattens around 3 s and then shows an increase trend as the averaging time increases. The
flatten floor is known as the Allan deviation, which indicates the random parts of the bias-instability
is 4.8 µg. The increase trend part is believed to be caused by the temperature drift.
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Figure 12. Measured Allan variance. 

As a result, compared to the studies of [2,11,25,26], after reasonable geometrical design, the 

SMRA reported in this paper stands out for its high-sensitivity of over 210 Hz/g, the input range of 

±40 g, one-hour bias stability of 55 μg and the bias repeatability of 48 μg. 

5. Conclusions/Outlook 

This paper presents the design and experimental evaluation of an SMRA. We apply 

energy-consumed concept and the Nelder-Mead algorithm on this sensor to address the design 

issues and to increase its sensitivity. This SOI-MEMS fabricated SMRA has a closed-form sensitivity 

of 211.5 Hz/g, its FEM value is 203 Hz/g, and the experimental value is 254.3 Hz/g. The nonlinearity 

of the Sg is below 100 ppm within the input range of ±40 g. All the results exhibit good agreement 

with the theoretical results. The sensitivity of the SMRA has increased 66% compared to the previous 

work by using a novel optimization algorithm. This improvement is mainly attributed to both the 

re-designed DETF and the reduced energy loss on the micro-lever. All the above work provides a 

reference for the geometrical design of other MEMS sensors. 

0 500 1000 1500 2000 2500 3000 3500 4000
-1.5

-1

-0.5

0

0.5

1

1.5
x 10

-4

Time/s

B
ia

s
/g

 

 

first

second

third

fourth

fifth

sixth

seventh

Figure 11. Measured bias (magnified seven times) versus the elapsed time.

Sensors 2015, 15, page–page 

4 

systems [24]. Allan variance calculation is applied to the frequency reading and plotted in Figure 12. 

The Allan variance flattens around 3 s and then shows an increase trend as the averaging time 

increases. The flatten floor is known as the Allan deviation, which indicates the random parts of the 

bias-instability is 4.8 μg. The increase trend part is believed to be caused by the temperature drift. 

 

Figure 11. Measured bias (magnified seven times) versus the elapsed time. 

10
-2

10
-1

10
0

10
1

10
2

10
3

10
1

Average time（ s）

A
lla

n
 V

a
ri
a
n
c
e
（

u
g
）

4.8 g

 

Figure 12. Measured Allan variance. 

As a result, compared to the studies of [2,11,25,26], after reasonable geometrical design, the 

SMRA reported in this paper stands out for its high-sensitivity of over 210 Hz/g, the input range of 

±40 g, one-hour bias stability of 55 μg and the bias repeatability of 48 μg. 

5. Conclusions/Outlook 

This paper presents the design and experimental evaluation of an SMRA. We apply 

energy-consumed concept and the Nelder-Mead algorithm on this sensor to address the design 

issues and to increase its sensitivity. This SOI-MEMS fabricated SMRA has a closed-form sensitivity 

of 211.5 Hz/g, its FEM value is 203 Hz/g, and the experimental value is 254.3 Hz/g. The nonlinearity 

of the Sg is below 100 ppm within the input range of ±40 g. All the results exhibit good agreement 

with the theoretical results. The sensitivity of the SMRA has increased 66% compared to the previous 

work by using a novel optimization algorithm. This improvement is mainly attributed to both the 

re-designed DETF and the reduced energy loss on the micro-lever. All the above work provides a 

reference for the geometrical design of other MEMS sensors. 

0 500 1000 1500 2000 2500 3000 3500 4000
-1.5

-1

-0.5

0

0.5

1

1.5
x 10

-4

Time/s

B
ia

s
/g

 

 

first

second

third

fourth

fifth

sixth

seventh

Figure 12. Measured Allan variance.

As a result, compared to the studies of [2,11,25,26], after reasonable geometrical design, the
SMRA reported in this paper stands out for its high-sensitivity of over 210 Hz/g, the input range
of ˘40 g, one-hour bias stability of 55 µg and the bias repeatability of 48 µg.

5. Conclusions/Outlook

This paper presents the design and experimental evaluation of an SMRA. We apply
energy-consumed concept and the Nelder-Mead algorithm on this sensor to address the design issues
and to increase its sensitivity. This SOI-MEMS fabricated SMRA has a closed-form sensitivity of
211.5 Hz/g, its FEM value is 203 Hz/g, and the experimental value is 254.3 Hz/g. The nonlinearity
of the Sg is below 100 ppm within the input range of ˘40 g. All the results exhibit good agreement
with the theoretical results. The sensitivity of the SMRA has increased 66% compared to the previous
work by using a novel optimization algorithm. This improvement is mainly attributed to both the
re-designed DETF and the reduced energy loss on the micro-lever. All the above work provides
a reference for the geometrical design of other MEMS sensors.

Other key performances like bias stability, bias repeatability, and Allan variance are also shown
in the paper. It should be noted that the testing results are prone to temperature shifts. Therefore,
how temperature and residual stress influence the SMRA’s performance remain to be elucidated,
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and this will be explored in the future work. A careful study on the model for the thermal stress of
SMRAs is now under way.

Appendix A

By supposing an inertial load a is applied to the SMRA, the ends of the input and output beams
are loaded with vertical forces Fyi (for the input beam) and Fyo (for the output beam), horizontal
forces Fxi (for the input beam) and Fxo (for the output beam) and bending moments Mi (for the input
beam) and Mo (for the output beam). The axial force and moment of each beam on the micro-lever in
Figure 5b are shown in Table A1.

Table A1. The axial force and moment of each beam on the micro-lever.

Beam Number Axial Force Fj Moment Mj (j = 1, 2, 3, 4, 5)

1 F1 “ ´Fyi M1 pxq “ Mi ` Fxix
2 F2 “ Fxi M2 pxq “ Mi ` Fxili ` Fyix
3 F3 “ Fyo M3 pxq “ Mo ´ Fxox
4 F4 “ Fxi ` Fxo M4 pxq “ Mi ` Fxili ` Fyi px` lin ´ loutq `Mo ´ Fxo lo ` Fyox

5 F5 “ ´
´

Fyi ` Fyo

¯

M5 pxq “ Mi` Fxi pli ` xq` Fyi px` linq`Mo´ Fxo plo ´ xq` Fyo lout

According to the theory of Castigliano’s method [27], the displacements and rotation angles of
the input and output beams can be expressed by the following equations:

dxi “
şli
0
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dx`
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dyi “
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dxo “
şli
0

ˆ

M1
EIi
¨
BM1
BFxo

`
F1
Eqi
¨
BF1
BFxo

˙

dx`
şlin´lout
0

ˆ

M2
EIlever

¨
BM2
BFxo

`
F2

Eqlever
¨
BF2
BFxo

˙

dx`
şlo
0

ˆ

M3
EIo
¨
BM3
BFxo

`
F3

Eqo
¨
BF3
BFxo

˙

dx

`
şlout
0

ˆ

M4
EIlever

¨
BM4
BFxo

`
F4

Eqlever
¨
BF4
BFxo

˙

dx`
şlp
0

˜

M5
EIp

¨
BM5
BFxo

`
F5

Eqp
¨
BF5
BFxo

¸

dx

“
1

6E

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

l2o p2Fxo lo ´ 3Moq
Io

`
3lo

´

Fyi lin` Fxi li ´ Fxo lo `Mi `Mo
¯2
´ 3lo

´

Fyo lout` Fyi
`

lin` lout
˘

` Fxi li ´ Fxo lo `Mi `Mo
¯2

´

Fyi ` Fyo
¯

Ilever

`
3lo

´

Fyo lout` Fyi
`

lin` lout
˘

` Fxi li ´ Fxo lo `Mi `Mo
¯2
` 3

´

lp´ lo
¯´

Fyo lout` Fyi
`

lin` lout
˘

` Fxi li ´ Fxo lo `
`

Fxi ` Fxo
˘

lp`Mi `Mo
¯2

`

Fxi ` Fxo
˘

Ip

`
´

´

Fyo lout` Fyi
`

lin` lout
˘

` Fxi li ´ Fxo lo `Mi `Mo
¯3
`

´

Fyo lout` Fyi
`

lin` lout
˘

` Fxi li ´ Fxo lo `
`

Fxi ` Fxo
˘

lp`Mi `Mo
¯3

`

Fxi ` Fxo
˘2 Ip

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

(A4)

dyo “
şli
0

˜

M1
EIi
¨
BM1
BFyo

`
F1
Eqi
¨
BF1
BFyo

¸

dx`
şlin´lout
0

˜

M2
EIlever

¨
BM2
BFyo

`
F2

Eqlever
¨
BF2
BFyo

¸

dx`
şlo
0

˜

M3
EIo
¨
BM3
BFyo

`
F3

Eqo
¨
BF3
BFyo

¸

dx

`
şlout
0

˜

M4
EIlever

¨
BM4
BFyo

`
F4

Eqlever
¨
BF4
BFyo

¸

dx`
şlp
0

˜

M5
EIp

¨
BM5
BFyo

`
F5

Eqp
¨
BF5
BFyo

¸

dx

“
1

6E

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

3lout
´

Fyo lout` Fyi
`

lin` lout
˘

` Fxi li ´ Fxo lo `Mi `Mo
¯2

´

Fyi ` Fyo
¯

Ilever
`

´

Fyi lin` Fxi li ´ Fxo lo `Mi `Mo
¯3

´

Fyi ` Fyo
¯2

Ip

´

´

Fyo lout` Fyi
`

lin` lout
˘

` Fxi li ´ Fxo lo `Mi `Mo
¯3

´

Fyi ` Fyo
¯2

Ip
´

3lout
´

Fyo lout` Fyi
`

lin` lout
˘

` Fxi li ´ Fxo lo `Mi `Mo
¯2

`

Fxi ` Fxo
˘

Ip

`
3lout

´

Fyo lout` Fyi
`

lin` lout
˘

` Fxi li ´ Fxo lo `
`

Fxi ` Fxo
˘

lp`Mi `Mo
¯2

`

Fxi ` Fxo
˘

Ip

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

(A5)

θo “
şli
0

ˆ

M1
EIi
¨
BM1
BMo

`
F1
Eqi
¨
BF1
BMo

˙

dx`
şlin´lout
0

ˆ

M2
EIlever

¨
BM2
BMo

`
F2

Eqlever
¨
BF2
BMo

˙

dx`
şlo
0

ˆ

M3
EIo
¨
BM3
BMo

`
F3

Eqo
¨
BF3
BMo

˙

dx

`
şlout
0

ˆ

M4
EIlever

¨
BM4
BMo

`
F4

Eqlever
¨
BF4
BMo

˙

dx`
şlp
0

˜

M5
EIp

¨
BM5
BMo

`
F5

Eqp
¨
BF5
BMo

¸

dx

“
1

6E

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

´3Fxo l2o ` 6lo Mo
Io

´
3
´

Fyi lin` Fxi li ´ Fxo lo `Mi `Mo
¯2

´

Fyi ` Fyo
¯

Ilever

`
3
´

Fyo lout` Fyi
`

lin` lout
˘

` Fxi li ´ Fxo lo `Mi `Mo
¯2

´

Fyi ` Fyo
¯

Ilever
´

3
´

Fyo lout` Fyi
`

lin` lout
˘

` Fxi li ´ Fxo lo `Mi `Mo
¯2

`

Fxi ` Fxo
˘

Ip

`
3
´

Fyo lout` Fyi
`

lin` lout
˘

` Fxi li ´ Fxo lo `
`

Fxi ` Fxo
˘

lp`Mi `Mo
¯2

`

Fxi ` Fxo
˘

Ip

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

(A6)

where I is the beam’s bending moment in the x-y plane, l is the beam length and q is the beam
cross-section with a subscript i, o, p, and lever representing the input beam, the output beam, the
pivot beam, and the lever arm; lout and lin are the input and output arm length of the micro-lever.

Applying force to the proof mass leads to the following equation:

m1a
4
“ Fyi ` K1dyi (A7)

Moreover, the proof mass can be regarded as rigid, and therefore, the boundary conditions at the
end of input beam can be expressed as

dxi “ dzi “ 0 (A8)

dyi “
`

m1a´ 4Fyi
˘

{4K1 (A9)

Similarly, the boundary conditions at the end of output beam can be expressed as

dxo “ dzo “ 0 (A10)

dyo “ ´Fyo{K2 (A11)

where K2 is equal to the spring constant of one DETF beam k f connected in series with the spring
constant of the half connecting mass kb.

By solving these boundary conditions for Fxi, Fyi, Mi, Fyo, Fxo and Mo, the effective amplification
factor can be obtained as

A˚ “
Fyo

m1a{4
(A12)
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Using the energy method to calculate the spring constant K1 along the input axis of one
flexure [28] (see Figure 1), this constant can be obtained to be

K1 “
3EIa Ibp3Ia Ib ` 2Iaplb1 ` lb2q

p6I2
b l2

a l2
b2 ` 6Ia Iblapl3

b1 ´ l2
b1lb2 ` l2

b2lb1 ` l3
b2q ` I2

a pl4
b1 ` 4l3

b1lb2 ´ 6l2
b1l2

b2 ` 4lb1l3
b2 ` l4

b2q
(A13)

where I is inertia moment around the z-axis of each flexure beam with a and b as the beams
corresponding to la, lb1 and lb2.

According to beam bending theory,

k f “
Ewt

l
(A14)

The connecting mass has a high width-length ratio (more than 1:5), and it can be defined as
a short beam. The deformation of the half connecting mass is shown in Figure 5. Its boundary
conditions can be simplified to those of a simply supported beam. By using Timoshenko beam
theory [29], the maximum deflection of the half connecting mass can be described to be

ωM “
FyoL3

c

24EIc
p1`

12asEIc

GwctL2
c
q (A15)

where E is the Young’s modulus; G is the shear modulus; Lc, wc, t and Ic is the length, width, thickness
and cross-sectional inertia moment across the z-axis of the half connecting mass, respectively; and as

is the shear coefficient of rectangular cross-section.
By substituting single-crystal silicon material parameters into Equation (A15),

ωM “
Fyo

2Et

ˆ

Lc

wc

˙3
˜

1` 3.81
ˆ

wc

Lc

˙2
¸

(A16)

Then, the spring constant of the half connecting mass along the input axis can be expressed as

kc “
Fyo

ωM
“

2Et pwc{Lcq
3

1` 3.81 pwc{Lcq
2 (A17)

and the spring constant of K2 is

K2 “ 1{

˜

1
k f
`

1
kc

¸

“
2Etw3

c w f

2l f w3
c ` L3

c w f ` 3.81Lcw2
c w f

(A18)

The calculated value of Kc and Kf are 5.84 ˆ 105 N/m and 0.98 ˆ 105 N/m.
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