
Sensors 2015, 15, 29734-29764; doi:10.3390/s151129734
OPEN ACCESS

sensors
ISSN 1424-8220

www.mdpi.com/journal/sensors

Article

UAVs Task and Motion Planning in the Presence of Obstacles
and Prioritized Targets
Yoav Gottlieb and Tal Shima *

Technion—Israel Institute of Technology, Technion City, Haifa 3200003, Israel;
E-Mail: syoavgo@gmail.com

* Author to whom correspondence should be addressed; E-Mail: tal.shima@technion.ac.il;
Tel.: +972-4-829-2705.

Academic Editor: Felipe Gonzalez Toro

Received: 25 June 2015 / Accepted: 12 November 2015 / Published: 24 November 2015

Abstract: The intertwined task assignment and motion planning problem of assigning
a team of fixed-winged unmanned aerial vehicles to a set of prioritized targets in an
environment with obstacles is addressed. It is assumed that the targets’ locations and
initial priorities are determined using a network of unattended ground sensors used to detect
potential threats at restricted zones. The targets are characterized by a time-varying level
of importance, and timing constraints must be fulfilled before a vehicle is allowed to visit a
specific target. It is assumed that the vehicles are carrying body-fixed sensors and, thus, are
required to approach a designated target while flying straight and level. The fixed-winged
aerial vehicles are modeled as Dubins vehicles, i.e., having a constant speed and a minimum
turning radius constraint. The investigated integrated problem of task assignment and motion
planning is posed in the form of a decision tree, and two search algorithms are proposed:
an exhaustive algorithm that improves over run time and provides the minimum cost solution,
encoded in the tree, and a greedy algorithm that provides a quick feasible solution. To satisfy
the target’s visitation timing constraint, a path elongation motion planning algorithm amidst
obstacles is provided. Using simulations, the performance of the algorithms is compared,
evaluated and exemplified.

Keywords: UAV; task assignment; motion planning; obstacles; prioritized targets;
Dubins car

Sensors 2015, 15 29735

1. Introduction

Unmanned vehicles are currently used in a variety of civil and military missions and are gradually
replacing manned vehicles. The need for autonomous capabilities is derived from the fact that the number
of unmanned vehicles used in each mission has increased dramatically, and the required collaboration
between them for the successful completion of the mission cannot be achieved if each vehicle is operated
individually. Furthermore, the complexity of the missions and the number of simultaneous actions
to be performed may cause operator overload, which will lead to deterioration in the overall mission
performance. In order to maximize performance, unmanned vehicles are expected to work together in
coordination as a team. The overall team performance is expected to exceed the sum of the performances
of the individual unmanned vehicles.

Two main aspects of the coordination and cooperation of a team of unmanned vehicles are path
planning and assignment allocation, usually referred to as motion planning and task assignment
problems, respectively. In the task assignment problem, a group of agents needs to be assigned to
perform a number of tasks. The tasks can be performed by any of the group’s agents while minimizing
or maximizing an objective function, depending on the scenario. An assignment task might be presented
as a problem in graph theory [1], where the data in the graph are represented by vertices and edges. Such
problems are commonly solvable using search algorithms by exploring the data structure level by level
(breadth-first search) or reaching the leaf node first and backtracking (depth-first search).

The motion planning problem consists of planning a path for the vehicle while taking into account its
kinematic and dynamic constraints, as well as generating feasible paths. The constraints may include a
minimum turn radius and/or velocity limits, but there could also be obstacles scattered in the vehicle’s
environment that need to be taken into consideration. In many cases ([2–5]), for the motion planning,
the vehicle is modeled as a Dubins vehicle [6]: a vehicle moving in a plane while having a turn rate
constraint. Extending the Dubins model with altitude control, time optimal paths between initial and final
configurations are provided in [7]. Considering obstacles, motion planning algorithms for the Dubins
vehicle are provided in [8–12]. In [13], a collision-free 3D motion planning algorithm is provided
for an aerial vehicle. When using the Dubins model, the resulting trajectory is composed of straight
lines and arcs of a minimum turn radius. Discontinuities in the curvature of the trajectory arise at the
junctions between the line and arc segments, causing tracking errors when followed by an actual vehicle.
To overcome such problems, an algorithm was proposed in works, such as [14,15], for generating a
continuous-curvature path between an ordered sequence of waypoints (the junctions between the line
and arc segments) produced by the motion planner.

The task assignment problem is usually coupled with that of motion planning, as the assignments
allocation process depends on the path length, and the path length depends on the vehicle’s assignments.
This coupling issue is addressed in the unmanned vehicles cooperative multiple task assignment problem
(CMTAP) [16]. The CMTAP includes a scenario in which multiple unmanned vehicles perform multiple
tasks on stationary targets. Different approaches based on customized combinatorial optimization
methods were employed to solve this problem, including the mixed integer linear programming
(MILP) [17,18], the capacitated transhipment network solver [19,20], genetic algorithms [16,21] and tree
search methods [22,23]. In [19,21,24], timing and precedence constraints are also considered. In such

Sensors 2015, 15 29736

scenarios, a target can be visited by a vehicle only if a specific task had first been performed on the
target and a timing constraint was fulfilled. A method to elongate minimum distance paths for constant
speed vehicles to meet the target timing constraints is presented in [25]. The presented works account
for the vehicles’ constraints, but they simplify the problem by assuming that the environment is obstacle
free. Most of the studies that take into account obstacles address only the motion planning subproblem
between the initial and final configuration. They include methods such as the rapidly-exploring random
trees (RRT) method [26], probabilistic roadmaps [27] and the kinodynamic method [28].

One of the main properties of the problem stated above is the assumption that the targets have the
same characteristics and differ only in their position. In many scenarios, each target has unique attributes,
which include different importance and priority. The targets’ priority may also vary in time depending on
the specific scenario. Cases in which targets are assigned with a priority value were studied in [29–31].
The targets’ priority was addressed by using an objective function, which includes a constant parameter
describing the priority value. In these works, the vehicles’ constraints were not taken into account, and
the environment was assumed to be free of obstacles, which may lead to infeasible trajectories.

In this paper, the task assignment problem coupled with the problem of motion planning for a team of
fixed-winged unmanned aerial vehicles that needs to service (fly over) multiple targets, while taking into
account the vehicles’ kinematic constraints and the need to avoid obstacles scattered in the environment,
is addressed. It is also assumed that vehicles carry downward pointing body-fixed sensors and, thus,
are required to approach a target flying straight and level. The main contribution of this paper is
incorporating these constraints together with the targets’ priority to create a more realistic time-varying
priority scenario and by proposing a path elongation algorithm, used to consider the targets’ timing
constraints dictated by the different scenarios’ characteristics. In order to solve this coupled problem, it
is represented as a decision tree, and two tree search algorithms are proposed.

The remainder of this paper is organized as follows: In Section 2, a mathematical formulation of the
problem is given. Section 3 describes the motion planning subroutine used. In Section 4, a solution to
the task assignment problem is proposed. In Section 5, the simulation results of different sample runs
are provided, and concluding remarks are offered in Section 6.

2. Problem Formulation

The problem considered in this work includes allocating a group of fixed-winged aerial vehicles to a
given set of targets, while taking into account the vehicles’ kinematic constraints and avoiding collision
with obstacles scattered in the environment. It is assumed that vehicles carry downward pointing
body-fixed sensors and, thus, are required to approach a target flying straight and level. Each target
is assigned with a time-dependent value (referred to as the target benefit) that represents the target’s
importance and priority. The objective is to maximize a reward function, which is the sum of all of the
benefits gathered by the group of vehicles.

2.1. Example Scenario

The motivation for solving this problem can be explained using the following example: A network
of unattended ground sensors (UGS) and a team of unmanned vehicles are used to prevent intruders’

Sensors 2015, 15 29737

access to a restricted zone (base defense) [32]. The UGS network is deployed at critical road junctions,
and when a sensor is triggered by an intruder, the location is sent as a target to be visited by the team
of unmanned vehicles. If there are multiple intrusions at different times, the group of vehicles must be
allocated according to the vehicles’ response time (time to target) and the target’s priority, which can be
based on the order of the UGS triggering time or on the location of the sensor. The target (sensor) priority
is time dependent, since, as time passes, the intruder may advance to a different location, and the target
relevance decreases. Additionally, the unmanned vehicle may have a timing constraint for visiting the
target, e.g., only after it has been classified and cleared from friendly forces by the ground forces. This
introduces a timing constraint that needs to be considered when allocating targets to the team of vehicles.

2.2. Vehicles

Let V = {V1, V2, ..., VNV
} be a set of unmanned aerial vehicles (UAVs) that need to complete the

visit requirements of the given set of targets. The vehicles have a minimum turn radius and can move
only forward at constant speed. The kinematic constraints need to be accounted for when planning the
vehicles’ trajectory. The equations of motion are presented below:

Vehicle kinematics:

ẋ = U cosψ

ẏ = U sinψ (1)

ψ̇ = ω

Turn rate constraint (given a minimum turn radius):

|ω| 6 U/Rmin (2)

where (x, y) are the vehicle’s Cartesian coordinates, ψ is the vehicle’s orientation angle and U and ω
are the vehicle’s constant speed and turn rate, respectively. A schematic planar view of the vehicle’s
kinematics is presented in Figure 1. It should be noted that the above kinematics may also represent the
motion of other types of vehicles moving in a plane, such as ground vehicles.

Figure 1. Vehicle kinematics.

The set of initial conditions that represents the vehicles’ initial position and orientation is given by
VIC = {(x10 , y10 , ψ10), (x20 , y20 , ψ20), ..., (xNV0

, yNV0
, ψNV0

)}.

Sensors 2015, 15 29738

2.3. Body-Fixed Sensors

UAV sensors can be roughly divided into two categories: gimballed and body fixed. Gimballed
sensors are usually more complex and enable pointing the sensor to a desired position, with usually
minimal effect of the UAV’s state. Body-fixed sensors are usually much simpler and less expensive, but
their footprint is determined by the UAV’s states, such as pitch and roll angles. Figure 2 [33], presents
a schematic example of the footprints of gimballed and body-fixed sensors. In the figure, UAV#1 is
carrying a gimballed sensor, which can be moved within a larger possible footprint. Target 1 (T1) is
enclosed by this larger possible footprint, but the sensor is currently pointing to a different direction.
UAV#2 is carrying a body-fixed sensor, and Target 3 (T3) is within its footprint; but, its tracking will not
be assured if the UAV rolls or pitches. Target 2 (T2) is outside the footprints of both UAVs.

Figure 2. Sensor footprint schematic examples.

In this research, it is assumed that the fixed-winged UAVs carry body-fixed sensors that point directly
downwards. Consequently, to ensure that the designated target will be inside the sensor’s field-of-view,
it is required that the UAVs approach a target flying straight and level. This ensures that the UAVs do
not bank before crossing the target.

2.4. Obstacles

Let Ω be the two-dimensional physical environment in which the vehicles move ((x, y) ∈ Ω) and the
targets are located. Let O ⊂ Ω be the set of obstacles that the vehicles need to avoid. O is considered to
be a set of disjoint convex polygons. It is required that:

(x(t), y(t)) ∩ int(O) = ∅ (3)

In this work, it is assumed that a vehicle is allowed to graze the obstacles’ boundaries, but it cannot
penetrate them. In reality, the obstacles considered by the algorithm would be slightly larger in size than
the actual obstacles, so as to ensure that the vehicle is safe, even if the algorithm requires the vehicle to
take a path that grazes an obstacle boundary.

Sensors 2015, 15 29739

2.5. Targets and Benefits

Let T = {T1, T2, ..., TNT
} be the set of NT stationary targets, located in Ω, designated to the group of

fixed-winged unmanned aerial vehicles. It is assumed that the minimum distance between each pair of
targets is larger than 2Rmin.

The set of timing constraints assigned to each target is given by tc = {tc1, tc2, ..., tcNT
}. The vehicle

is allowed to visit and perform its given task at the target only if the time required for a vehicle to
arrive from its initial configuration (x0, y0, ψ0) to the target is greater than or equal to the time constraint
specified for the relevant target.

Let C = {C1, C2, ..., CNT
} be the set of initial benefits assigned to each target, and let

S = {1, 2, ..., NT} be the set of stages in which a target is allocated as an assignment to a vehicle. The
set of stages S is used to keep track of the vehicles’ assignments history, which is of high importance
when calculating the vehicles’ path length. Furthermore, each stage corresponds to a layer in the tree
representation used in Section 3.1.

The target’s benefit represents the value granted to a vehicle for visiting the target. Since the benefits
are time dependent, a mathematical formulation, which is referred to as the “benefit function”, is
proposed. This formulation represents the reward granted to a vehicle for visiting a target, depending on
the target’s priority (represented by its initial benefits) and the time required for a vehicle to arrive at the
target from its initial position.

Let xmik ∈ {0, 1} be a binary decision variable that equals one if vehicle i ∈ V visits target k ∈ T at
stage m ∈ S and is zero otherwise, and let Xm = {x1ik, x2ik, ..., xmik} be the set of assignments up to and
including stage m.

Let:
tmik = L

Xm−1

ikm /U (4)

be the time required for vehicle i ∈ V to travel to target k ∈ T at stage m ∈ S. This time is obtained
through the division of the vehicle i path length to target k at stage m, notated as LXm−1

ikm , by its constant
speed. Note that LXm−1

ikm depends on the position and orientation of vehicle i before stage m, which,
in turn, depends on the initial position and orientation of the vehicle and the targets it visited in the
subsequent stages until stage m. The assignment history prior to stage m is included in the vehicle path
length expression by the notation Xm−1.

The benefit function, which represents the reward granted to vehicle i for visiting target j, is
formulated as follows:

Cje
−A

∑l
m=1

∑NT
k=1 t

m
ikx

m
ik (5)

where A is a user-defined coefficient, which defines the benefit function’s descent rate, and:

l∑
m=1

NT∑
k=1

tmikx
m
ik (6)

is the time required for vehicle i to arrive from its initial configuration (xi0 , yi0 , ψi0) to target j that is
visited at stage l.

Sensors 2015, 15 29740

This formulation helps create a problem in which the vehicle assignments’ order depends on the path
to each target and not only on the target’s initial priority (for example, the highest priority target is not
necessarily visited first, and the time to arrive at the target’s location is also taken into consideration).
In addition, the same formulation can be used to describe the example described in Section 2.1. The
example includes a UGS network and a team of unmanned vehicles used for intruder detection and
identification. The vehicles’ response time is taken into account by calculating the vehicles’ path length,
and the targets’ different initial priority represents the order of the UGS triggering time. Since the time
it takes a vehicle to reach a target depends on the vehicle’s path length, the latter will be calculated
using a motion planning subroutine, described in Section 3. Figure 3a shows the benefit function
change over time, each curve beginning with a different initial value (initial benefits three and 10). The
benefit function is a monotonically-decreasing function, and as such, the initial value diminishes as time
progresses. When the descent rate coefficient is changed (increased by five times), the benefit rapidly
diminishes over time, as seen in Figure 3b. The increase of the descent rate may also cause a change in
the targets assigned to each vehicle or a different order in which the assigned targets need to be visited.

0 100 200 300 400 500 600 700 800 900 1000
1

2

3

4

5

6

7

8

9

10
Benefit Function

Time [sec]

A
c
q
u
ir
e
d

B

e
n
e
fi
t

(a)

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6

7

8

9

10
Benefit Function

Time [sec]

A
c
q
u
ir
e
d

B

e
n
e
fi
t

(b)

Figure 3. Benefit function. (a) Benefit function over time; (b) benefit function over time,
increased decent rate.

2.6. Cost Function

The objective is to complete the visit requirement (visiting the given set of targets once) so as
to maximize a reward function. The reward function considered is the overall benefits acquired by
the vehicles:

J1 =

NV∑
i=1

NT∑
l=1

NT∑
j=1

[Cje
−A

∑l
m=1

∑NT
k=1 t

m
ikx

m
ik]xlij (7)

where xlij ∈ {0, 1} is a binary decision variable that equals one if vehicle i visits target j at stage l.
Since the benefit function diminishes with time, a “lost” benefit function is formulated and is given by
Cj − Cje

−A
∑l

m=1

∑NT
k=1 t

m
ikx

m
ik . The “lost” benefit function formulation allows the definition of a cost

function, which is the equivalent to the reward function defined above, but instead of maximizing

Sensors 2015, 15 29741

the reward function, the objective is to minimize the cost function. The cost function mathematical
formulation is given by:

J2 =

NV∑
i=1

NT∑
l=1

NT∑
j=1

[Cj − Cje
−A

∑l
m=1

∑NT
k=1 t

m
ikx

m
ik]xlij (8)

The constraints of the problem are given by:

NT∑
l=1

NV∑
i=1

xlij = 1, j = 1, . . . , NT (9)

NV∑
i=1

NT∑
j=1

xlij = 1, ∀ l = 1, . . . , NT (10)

l∑
m=1

NT∑
k=1

tmikx
m
ik ≥ tcj, ∀ j = 1, . . . , NT , tcj ∈ tc, s.t. xlij = 1 (11)

Equation (9) ensures that each target is visited once. Equation (10) ensures that only a single vehicle
is assigned to a target in each stage. In Equation (11), the timing constraint is posed. The time required
for a vehicle to arrive at the target location from its initial configuration must be greater than or equal
to the time constraint dictated as part of the problem’s initial parameters. If the vehicle’s arrival time at
the target is less than the time constraint tcj , the path should be elongated, otherwise the third constraint
will be violated.

In [16,21,23], somewhat similar problems involving multiple targets and vehicles were solved. The
cost function used in the related works is the sum of the path lengths of all of the vehicles and can be
formulated as:

J3 =

NV∑
i=1

NT∑
l=1

NT∑
j=1

Ll
ijx

l
ij (12)

In these cases, the targets’ importance is identical and ignored when solving the problem. In
the simulation results’ section, this cost function is used to help compare the performance of the
proposed algorithms.

The solution process of the problem includes solving two integrated subproblems: task assignment
and motion planning problems. To minimize the cost function, the task assignment depends on
the underlying motion planning for the path length, while the motion planning depends on the task
assignment for the order of the vehicle’s targets. This makes the problems coupled.

3. Motion Planning

For the motion planning problem, it is assumed that each vehicle is assigned a list of an ordered set of
targets, made by the task assignment algorithm. The goal of the motion planning is to derive a trajectory
for each vehicle to visit all of the targets on the list, avoid collision with obstacles and respect the vehicle
kinematic constraints (described in Section 2.2) and the timing constraint (described in Equation (11)).
Due to the sensor-oriented requirement of having the vehicles fly straight and level when approaching a

Sensors 2015, 15 29742

target (see Section 2.3), the planner needs to issue a trajectory with straight line segments preceding the
arrival of a vehicle to a target.

The motion planning problem description and solution presented below is based on the study
described in [12]. Since the targets’ timing constraints are not included in [12], a path elongation
algorithm is proposed in Subsection 3.2.

3.1. Tree Formulation

In order to represent the motion planning problem in the form of a decision tree, it is necessary to
generate nodes representing the following: targets position, vehicle’s initial configuration and obstacles’
vertices (under the assumption of polygonal obstacles). The vehicle’s path will either be a direct path
(free of obstacles) connecting the initial configuration and the set of targets, or a path that also passes
through some of the obstacles’ vertices, in case a direct path does not exist. Each branch of the tree
represents the described path. The root node (initial configuration) is connected to all of the target
nodes, and if a direct path is not feasible, obstacles nodes are also included. The goal is to find the
branch that provides the minimum time path. In order to to satisfy the timing constraint described in
Equation (11), a path elongation is provided in the following section.

The vehicles in this work are modeled as Dubins vehicles. The Dubins path is a concatenation of arcs
of minimum radius turn and straight line segments that connect an initial and final configuration (position
and orientation). The optimal path can be achieved by checking six possible path types for the Dubins
vehicle [6]. If the orientation angle in the final configuration is removed, the number of possibilities is
reduced. This is known as the relaxed Dubins path that include only four possibilities [34].

An important benefit obtained by using the relaxed path is explained using the example given in
Figure 4. When calculating the optimal path between an initial (Node 1), final (Node 5) configurations
and three additional unordered configurations (for example: obstacle vertices) located between them
(Nodes 2–4), the following branches of the tree graph are generated: A branch connecting nodes
1-2-3-4-5 and a branch connecting nodes 1-2-4-3-5. In the relaxed case, the path connecting Nodes
1 and 2 should be calculated only once, as it is independent of the remaining nodes. However, in the
non-relaxed case, the arrival angle at Node 2 depends on the order of the following nodes (Node 3 or 4),
and the path between Nodes 1 and 2 needs to be calculated separately for each branch. This attribute,
where the path between two nodes does not depend on the following nodes, enables us to pose the
problem as a tree.

Moreover, as the minimal distance between each of two targets is larger than two times the minimum
turn radius of the vehicles, it is guaranteed that the optimal relaxed paths between each pair of targets
consist of a terminal straight line segment, satisfying the body-fixed sensor-originated requirement that
a UAV approaches a target flying straight and level, discussed in Section 2.3.

In order to find the relaxed optimal path that connects the initial configuration and the targets’ set
and does not intersect with obstacles, it is necessary to search the tree presented above. The search
process includes calculating the relaxed path connecting the different graph nodes: obstacles’ vertices or
targets’ positions. In this search process, the calculation of the relaxed path is repeated multiple times,
especially in large-scale scenarios. When real-time scenarios are considered, the use of the relaxed path

Sensors 2015, 15 29743

becomes highly beneficial, as the computational complexity is significantly reduced, compared to the
non-relaxed case.

Figure 4. An example of a five-configuration tree.

In this work, an existing motion planning algorithm is used to find an admissible path of bounded
curvature through a given ordered set of points among obstacles without timing constraints. The motion
planning solution can be achieved by one of two algorithms: (1) an exhaustive algorithm, which explores
every branch of the search tree and evaluates every possible visit order sequence in order to find the
minimum cost one (See Algorithm B1 in the Appendix); and (2) an A* like heuristic algorithm, which
uses Euclidean distances as a heuristic estimation and a greedy approach to find a feasible path (See
Algorithm A1 in the Appendix). Since the existing algorithms do not take into account the timing
constraints when calculating the vehicles’ trajectory, a path elongation algorithm amidst obstacles is
proposed in the following section. The combined motion planning algorithm and the path elongation
algorithm are used as a subroutine for the developed task assignment algorithm.

3.2. Path Elongation Algorithm

A path elongation algorithm, used to lengthen a vehicle’s path that connects an initial configuration
and a target position in an environment with obstacles, is now presented. Different methods can be used
to elongate the vehicle path. For example, a different (higher cost) branch of the tree can be used instead
of the current branch. Another possibility is to increase the vehicle’s turn radius to elongate the path.
These methods, however, proved to be inefficient in terms of computational run time.

The path elongation method used in this paper is based on appending loitering circles. The technique
forces the vehicle to perform a circular flight with a minimum turn radius around a specific point until
the timing constraint is fulfilled. One of the motion planning algorithms is used to generate the vehicle’s
path. If the timing constraint is not fulfilled, the path elongation algorithm is employed.

The algorithm is given in Algorithm 1. The inputs to the algorithm are the vehicle’s configuration
and speed, obstacle vertices’ locations, target position, time constraint and the vehicle’s current path,
the order and orientation in which nodes are visited. The output is the vehicle’s trajectory in terms of
the order in which nodes are to be visited, the node in which the loitering circles are performed and the
number of cycles.

Sensors 2015, 15 29744

Algorithm 1 Path elongation algorithm amidst obstacles.

Input: Initial position and orientation of vehicle; vehicle speed; obstacle information; target
position; path nodes position and orientation; path length; time constraint;
Output: Vehicle trajectory (visit order and elongation circles node if needed)

1: EvList← generate a list of all elongation vertices in the environment
2: DpList← Construct a sorted list of direct Dubins path vertices list
3: if EvList ∩ pathNodes 6= ∅ then
4: elongationVertex← EvList ∩ pathNodes
5: elongationNode← elongationVertex(1)
6: loiterCirclesNumber← d(timeConstraint-(pathLength/VehicleSpeed))/2πRmine
7: newVisitOrder← path nodes
8: return newVisitOrder, elongationNode, loiterCirclesNumber
9: end if

10: for iPathNodes = 1 to nPathNodes do
11: intersectionCounter← checkCirclesIntersection[iPathNodes, obstaclesInfo]
12: if intersectionCounter 6= ∅ then
13: elongationNode← pathNodes(iPathNodes)
14: loiterCirclesNumber← d(timeConstraint-(pathLength/VehicleSpeed))/2πRmine
15: newVisitOrder← path nodes
16: return newVisitOrder, elongationNode, loiterCirclesNumber
17: end if
18: end for
19: if DpList ∩ EvList 6= ∅ then
20: newDplist=DpList ∩ EvList
21: for i = 1 to newDplistLength do
22: [newVisitOrder, newPathLength, newPathNodesAngles, intersectionCounter]←

motionPlanningAlgo[vehicleConfiguration, newDplist(i), target, obstaclesInfo]
23: if intersectionCounter=∅ then
24: elongationNode← newDplist(i)
25: if timeConstraint > newPathLength/VehicleSpeed then
26: loiterCirclesNumber← d(timeConstraint-(newPathLength/VehicleSpeed))/2πRmine
27: end if
28: return newVisitOrder, elongationNode, loiterCirclesNumber
29: end if
30: end for
31: end if
32: sortedEvList← euclideanSort[EvList]
33: for i = 1 to sortedEvListLength do
34: [newVisitOrder, newPathLength, newPathNodesAngles, intersectionCounter]←

motionPlanningAlgo[vehicleConfiguration, sortedEvList(i), target, obstaclesInfo]
35: if intersectionCounter=∅ then
36: elongationNode← sortedEvList(i)
37: if timeConstraint > newPathLength then
38: loiterCirclesNumber← d(timeConstraint-(newPathLength/VehicleSpeed))/2πRmine
39: end if
40: return newVisitOrder, elongationNode, loiterCirclesNumber
41: end if
42: end for

Sensors 2015, 15 29745

Since there are obstacles scattered in the environment, the vehicle cannot perform loitering circles
around any given point without intersecting with the obstacles. Let us define a set of points that will
be referred to as “elongation vertices”. This set includes obstacles’ vertices in which the vehicle can
perform a loiter circle (of minimum turn radius) without intersecting with the obstacles boundaries for
any given feasible orientation; infeasible orientations are defined as angles in which the vehicle cannot
be positioned without penetrating the obstacle boundary and, therefore, are initially not included in the
set of arrival angles, forming the vehicle’s path.

It should be noted that, as discussed in Section 2.4, a vehicle is allowed to graze the obstacles’
boundaries, but it cannot penetrate them. In reality, the obstacles considered by the algorithm would
be slightly larger in size than the actual obstacles, so as to ensure that the vehicle is safe, even if the
algorithm requires the vehicle to take a path that grazes an obstacle boundary. Thus, it is safe for the
vehicles to perform loitering circles that graze an obstacle edge.

An example of the elongation vertices is given in Figure 5. This example includes a vehicle, a target
and two rectangular obstacles. On each of Obstacle 1’s vertices, loitering circles are drawn. Each circle
corresponds to a specific feasible vehicle orientation (a 30◦ discretization of the feasible angles’ range
was used in this example). As can be seen, Vertex 3 can be defined as an elongation vertex, while
Vertex 4 is not part of the this set, as several loitering circles in this vertex intersect with Obstacle 2.
A zoom-in of Vertex 3 is presented in Figure 6. The discretization of the orientation angles is clearly
visible, with each circle corresponding to two feasible angles. All of the loitering circles in each vertex
can be enclosed by a polygon, as presented in the figures.

0 200 400 600 800 1000
0

100

200

300

400

500

600

700

800

900

1000

x (Meters)

y
 (

M
e

te
rs

)

3 4

52

Obstacle #1

7 8

96

Obstacle #2

Target 1

T
1

Vehicle

Figure 5. Elongation vertices example: Minimum turn radius = 60 m.

Sensors 2015, 15 29746

100 150 200 250 300 350 400

550

600

650

700

750

800

x (Meters)

y
 (

M
e
te

rs
)

3

0[deg]/180[deg]

30[deg]/210[deg]

60[deg]/240[deg]

90[deg]/270[deg]

Figure 6. Elongation vertex: 30◦ discretization.

Figure 7 shows the range of infeasible/feasible orientation angles at a specific obstacle vertex. It
is important to notice that each of the rectangle obstacle’s vertices has a different distribution of
infeasible/feasible orientation.

250 300 350 400 450

550

600

650

700

750

x (Meters)

y
 (

M
e

te
rs

)

Feasible
Angles

0−90[deg]

Unfeasible
Angles

90−180[deg]

Unfeasible
Angles

270−360[deg]

Feasible
Angles

180−270[deg]

Figure 7. Feasible and unfeasible angles example.

The key idea behind the proposed algorithm is to locate a node of the input path that is also an
elongation vertex or to generate a new path that includes at least one elongation vertex. If a new path

Sensors 2015, 15 29747

is generated and the timing constraints are not satisfied, the vehicle can perform the required amount of
loitering cycles at the elongation vertex.

4. Task Assignment

The task assignment solutions are now provided. First, the problem is presented as a tree (as can
be seen in Figure 8) by generating nodes that describe a vehicle Vi assigned to a target Tj . Figure 8
presents a search tree for a scenario in which three targets need to be assigned to two vehicles. For a
concise illustration, only some of the branches of the tree are shown. The branch shown by a dashed line
gives an assignment V1T1, V1T3, V2T2. This means that target T2 is assigned to vehicle V2, and targets
T1 and T3 are assigned to vehicle V1, which must visit the assigned targets in that specific order. Each
node of the tree is associated with a cost. For example: node ViTj has a cost that equals the “lost”
benefit granted to vehicle i for visiting target j. The “lost” benefit value depends on the time that it takes
vehicle i to reach target j from its initial position, which depends on the vehicles’ path length. The path
is obtained using a motion planning subroutine (described in Section 3), which guarantees a feasible
path for the vehicles. Since the motion planning subroutine is used in the task assignment process,
the problem solution consists of a primary task assignment tree search, which depends on a secondary
motion planning tree search.

Figure 8. A tree for two vehicles and three targets.

Two algorithms that provide solutions to the task assignment problem are proposed, an exhaustive
search algorithm and a greedy algorithm. The greedy algorithm provides a computationally-fast solution
that may not be optimal, and the exhaustive algorithm explores all of the assignment possibilities to
derive an assignment’s allocation with the minimum cost value. The main use of the greedy algorithm
may be in scenarios where the assignment cannot be planned beforehand and needs to be planned in real
time. Such cases arise when new targets pop-up during the engagement and/or other relevant changes
occur in the scenario (like a loss of a vehicle).

4.1. Exhaustive Task Assignment Algorithm

The proposed algorithm that is described in Algorithm 2 explores every branch of the tree to evaluate
all of the assignment’s possibilities.

Sensors 2015, 15 29748

The inputs to the algorithm are the initial configuration and constant speed of the vehicles, the
locations of the target points, information about the obstacles and the time constraint of each target.

The algorithm’s first step includes generating an upper bound on the cost (Line 1), calculated by
using the greedy algorithm described in Section 4.2. This upper bound will be useful to bound the
branching of the tree, thus preventing unnecessary explorations. Then the following lists are initialized
(Lines 2–5). A TargetsList variable is constructed that includes all of the targets that need to be visited by
the vehicles, and the corresponding time constraints are entered into a TimeConstraint list. Furthermore,
a vehicleTargetList that contains the assigned targets (and order of visit) of each vehicle and an OpenSet
that stores all of the nodes to be examined are initialized to an empty set.

Next, the first layer of the tree (as presented in Figure 8) is generated. All possible vehicle-target pair
combinations are described as nodes and added to OpenSet for further exploration (Lines 6–26). Each
node’s vehiclePath and vehicleTargetsList fields are initialized to zero and empty vectors, respectively
(Line 8). Then, the current target (Tj) is assigned to the current vehicle (Vi) (Lines 9–10), and the value
of the path length and the cost are updated in the corresponding position (i-th entry) (Line 11, Line 15).

Algorithm 2 Task assignment exhaustive search algorithm.
Input: Vehicles’ initial configuration (V) and constant speed, targets’ position and their visit
requirements (T), obstacle vertices’ positions, targets’ time constraints (tc)
Output: Assignment for each vehicle and the order in which the assigned targets needs to be visited

1: UpperBound← greedy task assignment algorithm solution
2: TargetsList← {Tj, j = 1, . . . , NT}
3: TimeConstraint← {tcj, j = 1, . . . , NT}
4: vehicleTargetList(i)← [], i = 1, . . . , NV

5: OpenSet← []
6: for Vi, i = 1, . . . , NV do
7: for Tj ∈ targetsToVisit do
8: node.vehiclePath(k)← 0 , node.vehicleTargetsList(k)← [], k = 1, . . . , NV

9: node.vehicle← Vi
10: node.vehicleTargetsList(i)← Tj
11: node.vehiclePath(i)=PathLength(Vi, Tj)
12: if TimeConstraint(Tj) < (node.vehiclePath(i)/VehicleSpeed(Vi)) then
13: node.vehiclePath(i)=PathElongation(Vi, Tj)
14: end if
15: node.cost← lostBenefitFunction(PathLength(Vi, Tj))
16: node.targetsList← targetsList\Tj
17: if node.targetsList = ∅ then
18: if Cost(node) ≤ UpperBound then
19: UpperBound← Cost(node.cost)
20: vehicleTargetsList(i)← node.vehicleTargetsList(i)
21: end if
22: else
23: OpenSet← OpenSet ∪ node
24: end if
25: end for
26: end for

Sensors 2015, 15 29749

Algorithm 2 Task assignment exhaustive search algorithm (continued).

27: while OpenSet 6= ∅ do
28: parentNode← OpenSet(last entered node) – depth-first search
29: for Vi, i = parentNode.vehicle, . . . , NV do
30: for Tj ∈ targetsToVisit do
31: childNode.cost(k)← parentNode.cost(k),

childNode.vehicleTargetsList(k)← parentNode.vehicleTargetsList(k),
childNode.vehiclePath(k)← parentNode.vehiclePath(k), k = 1, . . . , NV

32: if TimeConstraint(Tj) < (childNode.vehiclePath(i)
+PathLength(Vi, Tj))/VehicleSpeed(Vi) then

33: PathLength(Vi, Tj)=PathElongation(Vi, Tj)
34: end if
35: childNode.vehiclePath(i)=childNode.vehiclePath(i) + PathElongation(Vi, Tj)
36: childNode.cost(i)← lostBenefitFunction(childNode.vehiclePath(i))
37: if Cost(childNode) ≤ UpperBound then
38: childNode.vehicle← Vi,
39: childNode.vehicleTargetsList(i)← [childNode.vehicleTargetsList(i) Tj],
40: childNode.targetsList← parentNode.targetsList\Tj

41: if childNode.targetsList = ∅ then
42: UpperBound← Cost(childNode.cost)
43: vehicleTargetsList(i)← childNode.vehicleTargetsList(i) i = 1, . . . , NV

44: else
45: OpenSet← OpenSet ∪ childNode
46: end if
47: end if
48: end for
49: end for
50: OpenSet← OpenSet \ parentNode
51: end while
52: return vehicleTargetsList

The path length function returns the length of the relaxed path while avoiding obstacles between
the vehicle’s current location and the target’s position. If the given time constraint is not satisfied, the
path elongation algorithm is employed. If the path elongation algorithm is unable to satisfy the time
constraint, the vehicle’s path length is given a value equal to infinity; this is done in order to ensure that
the current branch is pruned, since the problem constraints are not fulfilled (Lines 12–14). The current
target can now be removed from the targetsList of the expended branch (Line 16).

If a leaf node is reached (Line 17) and its cost is lower than the current upper bound (Line 18), the
upper bound is updated to the cost of the current node (Line 19), and the vehicle’s assigned targets are
stored in the vehicleTargetList variable (Line 20). Otherwise, the node is added to OpenSet for further
exploration (Line 23).

After the initial nodes are generated, the exhaustive search begins. A depth first search is used to
expand a branch until a leaf node is generated (Lines 27–52). While OpenSet is not empty, the last node
inserted into OpenSet is chosen as the current parent node for further exploration, and the corresponding
children nodes are created (Lines 29–49). Each child inherits the cost, vehicleTargetsList and vehiclePath
fields from the parent node (Line 31). The child cost is calculated using the lostBenefitFunction, which is
based on the vehicle’s accumulated path length (Lines 35–36). Additionally, the target’s time constraint

Sensors 2015, 15 29750

is again compared to the vehicle’s accumulated path length, and if needed, the path elongation algorithm
is used (Lines 32–34). If the child cost is lower than the current upper bound (Line 37), the child node’s
vehicle, targetsList and vehicleTargetsList fields are updated accordingly (Lines 38–40). Otherwise, the
branching is bounded.

As before, if the child node has an empty targetList (Line 41), then the UpperBound and the
vehicleTargetsList are updated (Lines 42–43). If a leaf node is not reached and the child node targetList
is not empty, the child node is added to OpenSet for further exploration (Line 45). Once evaluated,
the parent node is removed from OpenSet (Line 50). This process is repeated until all branches have
been either bounded or completely explored; OpenSet is empty. The algorithm output is a minimum
cost ordered set of targets, assigned to each vehicle (Line 52). Owing to the tree search involved, this
algorithm has an exponential time complexity.

4.2. Greedy Task Assignment Algorithm

The proposed algorithm is based on a greedy search method that enables finding an assignment
solution quickly and is described in Algorithm 3. Since the algorithm is greedy by nature, the objective
function used is the reward function presented in Equation (7).

Algorithm 3 The heuristic greedy algorithm for task assignment.

Input: Vehicles’ initial configuration (V) and constant speed, targets’ position and their visit
requirements (T), obstacle vertices; positions, targets’ time constraint (tc)
Output: Vehicle target list - the targets assigned to each vehicle and the required visitation order.

1: TargetsList← {Tj, j = 1, . . . , NT | Tj has a visit requirement}
2: TimeConstraint← {tcj, j = 1, . . . , NT}
3: vehicleTargetsList(i)← 0, i = 1, . . . , NV

4: vehicleTotalBenefit(i)← 0, i = 1, . . . , NV

5: accumulatedPathLength(i)← 0, i = 1, . . . , NV

6: while TargetsList 6= ∅ do
7: VehiclePath(Vi, Tj)=PathLength(Vi, Tj), (i, j)∈ {1, . . . , NV } × {1, . . . , NT}
8: if TimeConstraint < (VehiclePath(Vi, Tj)+accumulatedPathLength(Vi))/VehicleSpeed(Vi) then
9: PathLength(Vi, Tj)=PathElongation(Vi, Tj)

10: end if
11: VehicleBenefit(Vi, Tj)← BenefitFunction(PathLength(Vi, Tj)+accumulatedPathLength(Vi)),

(i, j)∈ {1, . . . , NV } × {1, . . . , NT}
12: (i∗, j∗)← arg max(i,j)∈{1,...,NV }×{1,...,NT }VehicleBenefit(Vi, Tj)

subject to: Tj ∈ targetsList & Tj /∈ vehicleTargetsList(i)
13: vehicleTargetsList(i∗)← [vehicleTargetsList(i∗) Tj∗]
14: VehiclePosition(Vi∗)← VehiclePosition(Tj∗)
15: accumulatedPathLength(V ∗i)← accumulatedPathLength(V ∗i) + PathLength(V ∗i , T

∗
j)

16: vehicleTotalBenefit(V ∗i)← vehicleTotalBenefit(V ∗i) + VehicleBenefit(V ∗i , T
∗
j)

17: TargetsList← TargetsList\Tj∗
18: end while
19: return vehicleTargetsList

Sensors 2015, 15 29751

The key idea behind the proposed task assignment algorithm is the following: each vehicle is assigned
an associated reward, equal to the benefit value acquired by the vehicle until now. A vehicle is assigned to
a target only if the benefit value acquired by traveling from its current location to the target is maximum
for all vehicle-target pairs. The assigned vehicle is first required to visit the target to which it is assigned.
Then, assuming that the vehicle is at the assigned target point and that the target point is already visited,
the process is repeated; that is, finding the next target-vehicle pair that has the highest benefit value of
all other target-vehicle pairs, and so on.

The inputs to the algorithm are the initial configuration and constant speed of the vehicles, the
locations of the target points, information about the obstacles and the time constraint of each target.

In each stage of the proposed algorithm, the motion planning algorithm is used as a subroutine to
calculate the vehicle’s feasible trajectory to the relevant target point. Thus, the complexity of Algorithm 3
can be either polynomial or exponential, depending on the motion planning subroutine used (heuristic
or exhaustive). If real-time applications are considered, the A*-like motion planning heuristic algorithm
should be used as a subroutine in Algorithm 3, leading to polynomial complexity.

5. Simulation Results

In this section, sample runs are used to demonstrate the presented algorithms and to explain the
different parameters’ (vehicle type, benefit’s descent rate, etc.) influence on the obtained solution. In
the first scenario, the path elongation algorithm is demonstrated. Since only a single target is considered
in this scenario, the benefit issue is ignored, and the objective is to obtain a feasible path that satisfies
the given time constraint. In all of the remaining scenarios, the task assignment algorithms (exhaustive
or greedy) use the motion planning subroutine (exhaustive or heuristic) based on the relaxed Dubins
distances; hence, the coupling of the problem is kept. The vehicles’ turn radius is set to 60 m (in most
cases, except where noted otherwise), and the targets’ initial benefit values can be set between 1000 and
10,000 (values are presented in the figures next to each target as a numeral between one and 10).

5.1. Path Elongation Algorithm Demonstration

In the following scenario, an aerial vehicle needs to be assigned to a single target with a time
constraint. The vehicle must wait until the time constraint is satisfied before visiting the target. Since
the path elongation algorithm is divided into four sequential steps, four figures that present the working
of each step are given. In each figure, the scenario is slightly altered to initiate the algorithm’s different
steps. The vehicle’s arrival times at the target point for the different scenarios are summarized in Table 1.

Table 1. Path elongation results summary.

Figure # Step # Time Constraint (s) Vehicle Trajectory Time (s) Number of Cycles Solution Time (s)

9a Step #1 2000 2357 4 3.6× 10−5

9b Step #2 2000 2357 4 9.6× 10−5

9c Step #3 2000 2011 3 0.45
9d Step #4 2000 2072 0 4

Sensors 2015, 15 29752

In Figure 9a, the vehicle performs four loitering circles before heading towards the target. According
to Step 1, the obstacle’s vertex, in which the circles are performed, is part of the elongation vertices
list and is also one of the vehicle’s original path nodes (without the time constraint). In Figure 9b, an
additional obstacle is added to the same scenario. Since in this case, the vertex in which the circles
were previously performed is not part of the elongation vertices list, the vehicle performs four loitering
circles around the target point. This is done according to Step 2. The scenario in Figure 9c includes
additional obstacles, which initiate the third step of the elongation algorithm. Since the vehicle is unable
to perform circles around any of the original path nodes, a new path is generated, which includes a direct
relaxed path node and the target point. Three cycles are performed around the direct path node to satisfy
the given time constraint. In Figure 9d, a new path is generated according to Step 4. In this specific
scenario, loitering circles are not performed, even though the new path passes through an elongation
vertex. This is due to the fact that the time constraint is already satisfied, as can be seen in Table 1.

0 200 400 600 800 1000
0

100

200

300

400

500

600

700

800

900

1000

x (Meters)

y
 (

M
e
te

rs
)

1

(a)

0 200 400 600 800 1000
0

100

200

300

400

500

600

700

800

900

1000

x (Meters)

y
 (

M
e
te

rs
)

1

(b)

0 200 400 600 800 1000
0

100

200

300

400

500

600

700

800

900

1000

x (Meters)

y
 (

M
e
te

rs
)

1

(c)

0 200 400 600 800 1000
0

100

200

300

400

500

600

700

800

900

1000

x (Meters)

y
 (

M
e
te

rs
)

1

(d)

Figure 9. Path elongation demonstration. (a) Step #1; (b) Step #2; (c) Step #3; (d) Step #4.

Sensors 2015, 15 29753

5.2. General Scenario

Figure 10 presents a scenario in which two aerial vehicles need to visit four targets with different
initial benefits. The scenario solution is obtained using different algorithm setups in each case. Table 2
summarizes the results of the different sample runs. The highest benefit (lowest lost benefit) and longest
running time were gained using an exhaustive algorithm setup (Figure 10a). When heuristic motion
planning is used instead (Figure 10c), the cost remains the same, but the running time decreases. In the
case of a greedy task assignment and heuristic motion planning algorithms (Figure 10b), the lowest
benefit (highest cost) and shortest running time are attained. The solution presented in Figure 10a
demonstrates that the vehicles are generally first heading towards targets with high priority while taking
into account targets with lower priority. Since the benefit diminishes with time, the vehicle does not
head directly towards the high priority targets, but passes through low priority targets, which are closer
to its location (upper vehicle on Figure 10a). In Figure 10b, the upper vehicles head directly to Target 6
(initial benefit value = 6) and skips Target 1, since, in this case, the task assignment algorithm is greedy
by nature. In the scenarios presented in Sections 5.3 and 5.4, the exhaustive algorithms’ setup yields
the same results as the exhaustive task assignment algorithm and heuristic motion planning algorithm
setup; therefore, only the latter setup is presented. Even though the results presented in these sections are
identical, it can be shown that, in certain cases, the exhaustive algorithms’ setup provides better results,
although the solution running time becomes longer.

0 200 400 600 800 1000
0

100

200

300

400

500

600

700

800

900

1000

x (Meters)

y
 (

M
e
te

rs
)

1

6

5

9

(a)

0 200 400 600 800 1000
0

100

200

300

400

500

600

700

800

900

1000

x (Meters)

y
 (

M
e
te

rs
)

1

6

5

9

(b)

0 200 400 600 800 1000
0

100

200

300

400

500

600

700

800

900

1000

x (Meters)

y
 (

M
e
te

rs
)

1

6

5

9

(c)

Figure 10. General scenario: two vehicles and four targets among obstacles. (a) Exhaustive
task assignment algorithm; exhaustive motion planning algorithm; (b) greedy task
assignment algorithm; heuristic motion planning algorithm; (c) exhaustive task assignment
algorithm; heuristic motion planning algorithm.

Table 2. Different initial benefits scenarios.

Figure # Algorithms Used Initial Benefit Acquired Benefit Lost Benefit Overall Distance Solution Time (s)

10a Exhaustive TAExhaustive MP 21,000 9918 11,082 1925 58.1
10b Greedy TA Heuristic MP 21,000 9537 11,463 2423 1.05
10c Exhaustive TA Heuristic MP 21,000 9918 11,082 1925 17.3

Figure 11 presents a similar scenario to that of Figure 10, but with different polygon obstacles.
Pentagon obstacles are present in Figure 11a, while octagon ones are in Figure 11b. Table 3 summarizes

Sensors 2015, 15 29754

the results of the different sample runs. It can be seen that the type of obstacles has a negligible effect
on the acquired benefit. In contrast, it significantly affects the run time of the algorithm, as having more
edges enlarges the search space.

0 200 400 600 800 1000
0

100

200

300

400

500

600

700

800

900

1000

x (Meters)

y
 (

M
e
te

rs
)

1

6

5

9

(a)

0 200 400 600 800 1000
0

100

200

300

400

500

600

700

800

900

1000

x (Meters)

y
 (

M
e
te

rs
)

1

6

5

9

(b)

Figure 11. General scenario: two vehicles and four targets among different obstacle types;
greedy task assignment algorithm and heuristic motion planning algorithm. (a) Pentagon
obstacles; (b) Octagon obstacles.

Table 3. Different initial benefits scenarios: pentagon and octagon obstacles.

Figure # Algorithms Used Initial Benefit Acquired Benefit Lost Benefit Overall Distance Solution Time (s)

11a Greedy TA Heuristic MP 21,000 9479 11,521 2446 1.85
11b Greedy TA Heuristic MP 21,000 9440 11,560 2462 2.73

5.3. Equal Benefit Scenario

The scenario shown in Figure 12 is similar to the scenario shown in Figure 10, where only the targets’
initial benefit is equal. Since the targets’ priority is identical, it is expected that the results would be
similar to the case where the cost function objective is to minimize the overall distance traveled by
the vehicles (Equation (12)). In the results summarized in Table 4, the highest benefit (lowest cost) is
obtained by the setup of the exhaustive task assignment algorithm (Figure 12b). The overall distance
is the same as in the case of using the cost function, which minimizes the sum of the distance traveled
(Figure 12c), as expected. As in the previous scenario, the solution running time has the same tendency,
when using a greedy and heuristic algorithms’ combination to gain the shortest running time; with an
exhaustive algorithms’ combination, the longest running time is gained. This tendency remains the same
through all of the presented scenarios.

Sensors 2015, 15 29755

0 200 400 600 800 1000
0

100

200

300

400

500

600

700

800

900

1000

x (Meters)

y
 (

M
e
te

rs
)

1

1

1

1

(a)

0 200 400 600 800 1000
0

100

200

300

400

500

600

700

800

900

1000

x (Meters)

y
 (

M
e
te

rs
)

1

1

1

1

(b)

0 200 400 600 800 1000
0

100

200

300

400

500

600

700

800

900

1000

x (Meters)

y
 (

M
e
te

rs
)

1

1

1

1

(c)

Figure 12. Equal benefits scenario: two vehicles and four targets among obstacles.
(a) Greedy task assignment algorithm; heuristic motion planning algorithm; (b) exhaustive
task assignment algorithm; heuristic motion planning algorithm; (c) exhaustive task
assignment algorithm; exhaustive motion planning algorithm; minimize the sum of the
overall distance traveled.

Table 4. Equal initial benefits scenario.

Figure # Algorithms Used Initial
Benefit

Acquired
Benefit

Lost
Benefit

Overall
Distance

Solution
Time (s)

12a Greedy TA Heuristic MP 4000 1399 2601 3353 1.3

12b Exhaustive TA Heuristic MP 4000 1623 2377 2075 40.5

12c

Exhaustive TA Heuristic MP
(Sum of path length

cost function-Equation (12)) 4000 1623 2377 2075 40.5

5.4. Comparing Exhaustive and Greedy Task Assignment Algorithms

A scenario involving three vehicles (each having a minimum turn radius of 100 m), five targets and
eight obstacles is presented in Figure 13. The results of the scenario are given in Table 5. As expected, the
exhaustive algorithm provides better or equal results compared to the greedy algorithm, at the expense
of additional run time. This is also evident from Tables 2 and 6.

The main advantage of the greedy algorithm is its low computational time, which makes it suitable
for real-time applications. In cases where both the exhaustive task assignment and the motion planning
algorithms are used, the best solution coded in the tree is obtained, and the lowest cost assignments
allocation and vehicles’ paths are provided. However, due to the increased computational burden, such an
algorithm may not be applicable for real-time application in a high dimensional problem and can mainly
serve as a benchmark to evaluate (off-line) the performance of the greedy algorithm. Figure 14 presents
the solution obtained using the greedy algorithm to a high dimensional problem involving seven vehicles,
11 targets and 23 obstacles. The run time of the algorithm was about three minutes, while the exhaustive
algorithm did not return a solution within 24 h of run time. These computation times, as all other in this
paper, were attained in a MATLAB implementation of the algorithm.

Sensors 2015, 15 29756

0 500 1000 1500 2000
0

200

400

600

800

1000

1200

1400

1600

1800

2000

x (Meters)

y
 (

M
e

te
rs

)

1

7

3

8

10

(a)

0 500 1000 1500 2000
0

200

400

600

800

1000

1200

1400

1600

1800

2000

x (Meters)

y
 (

M
e

te
rs

)

1

7

3

8

10

(b)

Figure 13. Comparison between exhaustive and greedy task assignment algorithms.
(a) Greedy task assignment algorithm; heuristic motion planning algorithm; (b) exhaustive
task assignment algorithm; heuristic motion planning algorithm.

Table 5. Comparing exhaustive and greedy task assignment algorithms.

Figure # Algorithms Used Initial
Benefit

Acquired
Benefit

Lost
Benefit

Overall
Distance

Solution
Time (s)

13a Greedy TA Heuristic MP 29,000 20,120 8880 5340 5
13b Exhaustive TA Heuristic MP 29,000 18,050 10,950 3520 150

Table 6. Scenario 1 and Scenario 2.

Figure # Algorithms Used Initial
Benefit

Acquired
Benefit

Lost
Benefit

Overall
Distance

Solution
Time (s)

15 Exhaustive TA Exhaustive MP 15,000 6571 8529 1371 0.06
15 Greedy TA Heuristic MP 15,000 6571 8529 1371 0.016
16 Exhaustive TA Exhaustive MP 15,000 6634 8366 1333 0.06
16 Greedy TA Heuristic MP 15,000 6634 8366 1333 0.015

0 500 1000 1500 2000
0

200

400

600

800

1000

1200

1400

1600

1800

2000

x (Meters)

y
 (

M
e

te
rs

)

2

4

10

7

5

97

3

7

1

3

Figure 14. Complex scenario solved only using the greedy TA/MP algorithm.

Sensors 2015, 15 29757

5.5. Benefit Time Dependency

A simple scenario of one vehicle and two targets (initial benefit of 10 and 5) is used in Figures 15
and 16. The time dependency can be easily explained using these two figures. In Figure 15, the vehicle’s
path passes through Target 5, even though this causes the vehicle to extend its path toward Target 10.
This happens because the time it takes to get to Target 5 is very short compared to Target 10, and it
is better to first pass through Target 5 to minimize the “lost benefit” of the two targets. In Figure 16,
however, the time it takes to get to Target 5 is still shorter than the time it takes to get to Target 10, but
since Target 10 is now located closer to the vehicle, it is better to first pass through Target 10. These two
scenarios demonstrate how the arrival time of the vehicle to each target influences the task assignment
process. In both of these small-sized simple cases, the greedy algorithm provides an identical result to
the exhaustive algorithm’s result, and the vehicle’s path remains the same.

0 200 400 600 800 1000
0

100

200

300

400

500

600

700

800

900

1000

x (Meters)

y
 (

M
e
te

rs
)

10

5

Figure 15. Scenario 1: Exhaustive TA; exhaustive MP and greedy TA; heuristic MP.

0 200 400 600 800 1000
0

100

200

300

400

500

600

700

800

900

1000

x (Meters)

y
 (

M
e
te

rs
)

10

5

Figure 16. Scenario 2: Exhaustive TA; exhaustive MP and greedy TA; heuristic MP.

Sensors 2015, 15 29758

5.6. Benefit Descent Rate

The scenario of two targets and one vehicle presented in Figure 17 helps to illustrate the influence of
the descent rate on the obtained results. In this scenario, the time it takes the vehicle to get to Target 3 is
200 s from its initial position, and the time it takes the vehicle to get to Target 10 is 500 s from the same
position. By increasing the value of the descent rate, the benefit rapidly diminishes as time progresses.
In Figure 17b, the descent rate is increased to A = 0.005, five times compared to Figure 17a, causing a
change in the vehicle assignments’ order (note that the threshold value for this change of assignment in
the examined scenario was A = 0.0034). Before the increase of the descent rate, the benefit of Target 10
is significantly higher than that of Target 3 (upper red bullet compared to lower red bullet in Figure 3a),
but after the descent rate is increased, the targets have similar benefits (as can be seen by the red bullets’
vertical position in Figure 3b). Since the benefit that the vehicle can gather in Target 10 is smaller than
the one in Target 3, it is preferable to change the targets’ visitation order, as can be seen in Figure 17b.
The results summarized in Table 7 emphasize the influence of the descent rate, as the benefit acquired
in Figure 17a is much higher than the one in Figure 17b. The benefit decent rate not only influences the
benefit gathered, but may also influence the assignments’ order, as presented above.

0 200 400 600 800 1000
0

100

200

300

400

500

600

700

800

900

1000

x (Meters)

y
 (

M
e
te

rs
)

10

3

(a)

0 200 400 600 800 1000
0

100

200

300

400

500

600

700

800

900

1000

x (Meters)

y
 (

M
e
te

rs
)

10

3

(b)

Figure 17. Benefit decent rate. (a) Exhaustive task assignment algorithm; exhaustive motion
planning algorithm; decent rate: A = 0.001; (b) exhaustive task assignment algorithm;
exhaustive motion planning algorithm; decent rate: A = 0.005.

Table 7. Benefit decent rate.

Figure # Algorithms Used Initial
Benefit

Acquired
Benefit

Lost
Benefit

Overall
Distance

Solution
Time (s)

17a Exhaustive TA Exhaustive MP 13,000 6866 6134 1321 0.05
17b Exhaustive TA Exhaustive MP 13,000 1170 11,830 1004 0.05

Sensors 2015, 15 29759

6. Conclusions

In this paper, the intertwined problem of assigning and planning paths of UAVs to visit targets (having
time-varying priorities) in an environment with obstacles was studied. It was assumed that the vehicles
carry body-fixed sensors and, thus, are required to approach a designated target while flying straight and
level. In order to address the time dependency of the targets’ priority, an objective function incorporating
the feasible path length of the vehicles and the targets’ initial priority was formulated. Two task
assignment algorithms were proposed: an exhaustive search algorithm that provides an optimal (lowest
cost) solution and a greedy algorithm that provides a fast feasible solution (also used as an upper bound).
A motion planning subroutine based on a tree search of an ordered set of targets and obstacles’ vertices
is used as part of the task assignment solution and provides feasible vehicle paths. The targets’ time
constraint was addressed by providing a path elongation algorithm amidst obstacles. Using simulations,
the performance of the algorithms was compared, and the influence of the time-varying targets’ priority
on the task allocation process was demonstrated and investigated. Although the greedy algorithm
provides a sub-optimal solution, it is useful in large-scale real-time scenarios, where computational
running time is of the essence. The exhaustive algorithm can provide an immediate solution that
improves over run time for large-scale scenarios, or it can be used in off-line scenarios. It should be
noted that as the Dubins model was used for representing the kinematics of UAVs, similar models may
be used for representing the motion of other vehicles moving in a plane (such as ground vehicles), and
thus, the developed motion and task assignment algorithms may be used.

Acknowledgments

This work was supported by the U.S. Air Force Office of Scientific Research, Air Force Material
Command, under Grant FA8655-12-1-2116.

Author Contributions

Y.G. and T.S. conceived and developed the algorithms; Y.G. performed the simulations; Y.G. and T.S.
wrote the paper.

Conflicts of Interest

The authors declare no conflict of interest.

Appendix

The task assignment algorithm uses a motion planning subroutine, which is based on the study
described in [12]. The motion planning subroutine includes two types of algorithms. These algorithms
are based on a search process that explores the tree described in Section 3. The targets positions, vehicle’s
initial configuration and obstacles vertices form the tree nodes set N . The two algorithms are described
next, an exhaustive search algorithm that finds the minimum cost branch and a heuristic greedy algorithm
that finds a feasible solution in a shorter computational time.

Sensors 2015, 15 29760

A. Heuristic Motion Planning Algorithm

The algorithm is given in Algorithm A1. Given a set of ordered targets, the vehicle’s initial
configuration and the obstacle vertices’ position, the algorithm performs an A*-like greedy search based
on Euclidean distance heuristics. A Euclidean distance between two points exists if and only if the
straight line connecting the points does not intersect with the interior of an obstacle. The algorithm steps
are as follows:

1. The vehicle is assumed to be located and oriented according to the initial configuration. A visit
order list is initialized to null set (Line 1).

2. The following Steps 3–7 are repeated until the entire targets’ set is visited (Line 2).
3. The next point of the visit is chosen as n∗ until an obstacle-free relaxed path is found from the

current point to the next target in the ordered targets’ set (Line 4).
4. n∗ is the node with the following property: the sum of the relaxed path length (connecting the

vehicle’s current configuration and n∗) and the shortest Euclidean distance (connecting n∗ and the
current target) is minimum (Line 5).

5. The node n∗ is added to the visit order list (Line 6).
6. The vehicle is assumed to be located at node n∗ (Line 7).
7. The current orientation angle becomes the arrival angle at n∗ of the relaxed path from the previous

point to n∗ (Line 8).

The algorithm output is a vehicle trajectory, represented by an ordered set of nodes (including targets
and obstacles’ vertices) that need to be visited using relaxed paths.

Algorithm A1 Heuristic algorithm for motion planning of a Dubins vehicle amidst obstacles and
multiple targets.

Input: Initial position and orientation of vehicle; obstacle information; ordered targets
Output: Vehicle trajectory (visit order)

1: Initialize: currentPosition← startPosition; currentOrientation← startOrientation; visitOrderList←
[]

2: for iTarget = 1 to nTargets do
3: n∗← currentPosition
4: while n∗ 6= iTarget do
5: n∗← arg minn∈N (RelaxedPath(currentPosition,currentOrientation,n) +

ShortestEuclideanDistance(n,iTarget))
subject to: relaxed path from currentPosition to n is obstacle free

6: visitOrderList← [visitOrderList n∗]
7: currentPosition← v∗

8: currentOrientation← final angle of relaxed path from currentPosition to n∗

9: end while
10: end for

Sensors 2015, 15 29761

B. Exhaustive Motion Planning Algorithm

The algorithm explores every branch of the search tree and evaluates every possible visit order
sequence to find the minimum cost branch. The algorithm’s input is a set of ordered targets, the vehicle’s
initial configuration and the obstacle vertices’ position. The algorithm steps are as follows:

1. Calculate the initial upper bound, using the heuristic algorithm (Line 1).
2. An OPEN list is generated to store the nodes that will be examined as the next node to visit.
3. The initial configuration is entered to OPEN as a node (Line 3).
4. The node with the lowest cost in OPEN (minimum relaxed path connecting the initial configuration

and the node) is selected as the current node (Line 5).
5. The neighbors of the current node that can come after it in the visit order are examined (Line 7).

Their estimated distance is defined as the sum of the following (Line 8):

(a) Cost of the selected node.
(b) Relaxed path length connecting the selected node and the neighbor.
(c) Euclidean distance between the neighbor and the current target to visit.
(d) The total Euclidean distance that connects the current target and the remaining targets to visit

in the targets’ set in the required order.

6. The neighbors with an estimated distance that is lower than the current upper bound are added to
OPEN as new nodes (Lines 9–10).

7. All of the new nodes added to OPEN are examined.

(a) In the case a new node is the next target to visit, the target is marked as visited in the current
explored branch (Line 12).

(b) In the case a new node is the last target to visit and the entire targets’ set is visited in the
required order, a leaf node of the branch is reached, and the entire branch is explored (Line 13).

i. The upper bound is updated to the relaxed path total length described by the nodes in the
branch, and the visit order of the nodes is stored (Lines 14–15).

8. The current node is removed from OPEN, since all of the neighbors have been evaluated (Line 23).
9. This process is repeated until the OPEN list is empty.

Sensors 2015, 15 29762

Algorithm B1 An exhaustive search algorithm for the motion planning of a Dubins/Reeds–Shepp vehicle
amidst obstacles.

Input: Initial position and orientation of vehicle, obstacle information and ordered waypoints
Output: Minimum length vehicle trajectory (visit order) and its length

1: UPPER← upper bound on the path length obtained from heuristic
2: initialNode.{position← initial position, angle← initial orientation, vertex← 0,

targetsVisited← 0, visitOrder← [], cost← 0}
3: OPEN← initialNode
4: while notEmpty(OPEN) do
5: currNode← arg minOPEN OPEN.cost
6: nextTarget← currNode.targetsVisited+1
7: for iNode = [nextTarget obstacleVertices] do
8: pathLengthEstimate← currNode.cost

+ relaxedLength(currNode.{position,angle},iNode)
+ EuclideanDistance(iNode,nextTarget)
+ EuclideanDistanceCostToGo(nextTarget)

9: if pathLengthEstimate < UPPER then
10: newNode.{position← position(iNode),

angle← arrival angle of relaxed path at iNode,
vertex← iNode, visitOrder← [currNode.visitOrder iNode],
cost← currNode.cost

+ relaxedLength(currNode.{position,angle},iNode)}
11: if iNode = nextTarget then
12: newNode.targetsVisited← nextTarget
13: if iNode = lastTarget then
14: UPPER← newNode.cost
15: visitOrder← newNode.visitOrder
16: end if
17: else
18: newNode.targetsVisited← currNode.targetsVisited
19: end if
20: OPEN← OPEN ∪ newNode
21: end if
22: end for
23: OPEN← OPEN \ currNode
24: end while

The algorithm output is identical to the heuristic algorithm output described above.

References

1. Cormen, T.H.; Leiserson, C.E.; Rivest, R.L.; Stein, C. Introduction to Algorithms, 2nd ed.;
The MIT Press: Cambridge, MA, USA, 2001.

2. LaValle, M.S. Planning Algorithms; Cambridge University Press: New York, NY, USA, 2006.
3. Shima, T.; Rasmussen, J. UAV Cooperative Decision and Control: Challenges and Practical

Approaches; SIAM: Philadelphia, PA, USA, 2009.

Sensors 2015, 15 29763

4. Enright, J.; Savla, K.; Frazzoli, E.; Bullo, F. Stochastic and Dynamic Routing Problems for Multiple
Uninhabited Aerial Vehicles. AIAA J. Guid. Control Dyn. 2009, 32, 1152–1166.

5. Shanmugavel, M.; Tsourdos, A.; Zbikowski, R.; White, B. Path Planning of Multiple UAVs
Using Dubins Sets. In Proceedings of the AIAA Guidance, Navigation, and Control Conference,
San Francisco, CA, USA, 15–17 August 2005.

6. Dubins, L.E. On curves of minimal length with a constraint on average curvature, and with
prescribed initial and terminal positions and tangents. Am. J. Math. 1957, 79, 497–516.

7. Chitsaz, H.; LaValle, S.M. Time-optimal paths for a Dubins airplane. In Proceedings of the 2007
46th IEEE Conference on Decision and Control, New Orleans, LA, USA, 12–14 December 2007;
pp. 2379–2384.

8. Agarwal, P.K.; Wang, H. Approximation algorithms for curvature-constrained shortest paths.
SIAM J. Comput. 2001, 30, 1739–1772.

9. Backer, J.; Kirkpatrick, D. A Complete approximation algorithm for shortest bounded-curvature
paths. In Proceedings of the 19th International Symposium on Algorithms and Computation,
Gold Coast, Australia, 15–17 December 2008; pp. 628–643.

10. Jacobs, P.; Canny, J. Planning smooth paths for mobile robots. In Proceedings of the IEEE
International Conference on Robotics and Automation, Scottsdale, AZ, USA, 14–19 May 1989;
doi:10.1109/ROBOT.1989.99959.

11. Laumond, J.P.; Jacobs, P.; Taix, M.; Murray, R. A motion planner for nonholonomic mobile robots.
IEEE Trans. Robot. Autom. 1994, 10, 577–593.

12. Gottlieb, Y.; Manathara, J.G.; Shima, T. Multi-Target Motion Planning Amidst Obstacles for Aerial
and Ground Vehicles. Robot. Auton. Syst. 2015, submitted.

13. Snape, J.; Manocha, D. Navigating multiple simple-airplanes in 3D workspace. In Proceedings
of the 2010 IEEE International Conference on Robotics and Automation (ICRA), Anchorage, AK,
USA, 3–8 May 2010; pp. 3974–3980.

14. Yang, K.; Sukkarieh, S. Real-time continuous curvature path planning of UAVS in cluttered
environments. In Proceedings of the 5th International Symposium on Mechatronics and its
Applications, Amman, Jordan, 27–29 May 2008.

15. Yang, K.; Sukkarieh, S. An Analytical Continuous-Curvature Path-Smoothing Algorithm.
IEEE Trans. Robot. 2010, 26, 561–568.

16. Shima, T.; Rasmussen, S.; Sparks, A.; Passino, K. Multiple task assignments for cooperating
uninhabited aerial vehicles using genetic algorithms. Comput. Oper. Res. 2006, 33, 3252–3269.

17. Richards, A.; Bellingham, J.; Tillerson, M.; How, J.P. Coordination and Control of Multiple
UAVs. In Proceedings of the AIAA Guidance, Navigation, and Control Conference, AIAA Paper
2002-4588, Monterey, CA, USA, 5–8 August 2002.

18. Schumacher, C.; Chandler, P.R.; Pachter, M.; Pachter, L.S. Optimization of air vehicles operations
using mixed-integer linear programming. J. Oper. Res. Soc. 2007, 58, 516–527.

19. Chandler, P.R.; Pachter, M.; Rasmussen, S.J.; Schumacher, C. Multiple task assignment for a UAV
team. In Proceedings of the AIAA Guidance, Navigation, and Control Conference, Monterey, CA,
USA, 5–8 August 2002.

Sensors 2015, 15 29764

20. Schumacher, C.J.; Chandler, P.R.; Rasmussen, S.J. Task allocation for wide area search munitions.
In Proceedings of the American Control Conference, Anchorage, AK, USA, 8–10 May 2002;
pp. 1917–1922.

21. Edison, E.; Shima, T. Integrated task assignment and path optimization for cooperating uninhabited
aerial vehicles using genetic algorithms. Comput. Oper. Res. 2011, 38, 340–356.

22. Rasmussen, S.J.; Shima, T. Tree search algorithm for assigning cooperating UAVs to multiple
tasks. Int. J. Robust Nonlinear Control 2008, 18, 135–153.

23. Shima, T.; Rasmussen, S.; Gross, D. Assigning micro UAVs to task tours in an urban terrain.
IEEE Trans. Control Syst. Technol. 2007, 15, 601–612.

24. Schumacher, C.; Chandler, P.; Pachter, M.; Pachter, L. UAV Task Assignment with Timing
Constraints; Defense Technical Information Center: Fort Belvoir, VA, USA, 2003.

25. Schumacher, C.; Chandler, P.R.; Rasmussen, S.J.; Walker, D. Path Elongation for UAV Task
Assignment; Defense Technical Information Center: Fort Belvoir, VA, USA, 2003.

26. Karaman, S.; Frazzoli, E. Sampling-based algorithms for optimal motion planning. Int. J.
Robot. Res. 2011, 30, 846–894.

27. Kavraki, L.; Svestka, P.; Latombe, J.; Overmars, M. Probabilistic roadmaps for path planning in
high-dimensional configuration spaces. IEEE Trans. Robot. Autom. 1996, 12, 566–580.

28. Donald, B.; Xavier, P.; Canny, J.; Reif, J. Kinodynamic motion planning. J. ACM (JACM) 1993,
40, 1048–1066.

29. Delle Fave, F.; Rogers, A.; Xu, Z.; Sukkarieh, S.; Jennings, N. Deploying the max-sum
algorithm for decentralised coordination and task allocation of unmanned aerial vehicles for
live aerial imagery collection. In Proceedings of the 2012 IEEE International Conference
on Robotics and Automation (ICRA), Saint Paul, MN, USA, 14–18 May 2012; pp. 469–476.

30. Jiang, L.; Zhang, R. An autonomous task allocation for multi-robot system. J. Comput. Inf. Syst.
2011, 7, 3747–3753.

31. Shetty, V.; Sudit, M.; Nagi, R. Priority-based assignment and routing of a fleet of unmanned combat
aerial vehicles. Comput. Oper. Res. 2008, 35, 1813–1828.

32. Krishnamoorthy, K.; Casbeer, D.; Chandler, P.; Pachter, M.; Darbha, S. UAV search and capture
of a moving ground target under delayed information. In Proceedings of the 2012 IEEE 51st
Annual Conference on Decision and Control (CDC), Maui, HI, USA, 10–13 December 2012;
pp. 3092–3097.

33. Shaferman, V.; Shima, T. Unmanned aerial vehicles cooperative tracking of moving ground target
in urban environments. AIAA J. Guid. Control Dyn. 2008, 31, 1360–1371.

34. Boissonnat, J.D.; Bui, X.N. Accessibility Region for a Car That Only Move Forward along Optimal
Paths; Research Report INRIA 2181; INRIA Sophia-Antipolis: Valbonne, France, 1994.

c© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/4.0/).

	Introduction
	Problem Formulation
	Example Scenario
	Vehicles
	Body-Fixed Sensors
	Obstacles
	Targets and Benefits
	Cost Function

	Motion Planning
	Tree Formulation
	Path Elongation Algorithm

	Task Assignment
	Exhaustive Task Assignment Algorithm
	Greedy Task Assignment Algorithm

	Simulation Results
	Path Elongation Algorithm Demonstration
	General Scenario
	Equal Benefit Scenario
	Comparing Exhaustive and Greedy Task Assignment Algorithms
	Benefit Time Dependency
	Benefit Descent Rate

	Conclusions
	Heuristic Motion Planning Algorithm
	Exhaustive Motion Planning Algorithm

