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Abstract: Nowadays, wireless sensor networks are often deployed on the sea surface for
ocean scientific monitoring. One of the important challenges is to localize the nodes’
positions. Existing localization schemes can be roughly divided into two types: range-based
and range-free. The range-based localization approaches heavily depend on extra hardware
capabilities, while range-free ones often suffer from poor accuracy and low scalability, far
from the practical ocean monitoring applications. In response to the above limitations,
this paper proposes a novel signal similarity-based localization (SSL) technology, which
localizes the nodes’ positions by fully utilizing the similarity of received signal strength
and the open-air characteristics of the sea surface. In the localization process, we first
estimate the relative distance between neighboring nodes through comparing the similarity of
received signal strength and then calculate the relative distance for non-neighboring nodes
with the shortest path algorithm. After that, the nodes’ relative relation map of the whole
network can be obtained. Given at least three anchors, the physical locations of nodes can be
finally determined based on the multi-dimensional scaling (MDS) technology. The design
is evaluated by two types of ocean experiments: a zonal network and a non-regular network
using 28 nodes. Results show that the proposed design improves the localization accuracy
compared to typical connectivity-based approaches and also confirm its effectiveness for
large-scale ocean sensor networks.
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1. Introduction

With the development of the economy and technology, the ocean environment is particularly
important for human activities related to industry, tourism and urban development. The traditional ocean
instruments often suffer from high-cost and time-consuming problems. Wireless sensor networks (WSN)
currently play an important role in ocean monitoring [1–3], because they can excellently finish the task
of real-time monitoring for a long period in large geographical areas. One of the monitoring applications
is to deploy sensors on the sea surface for reporting the data. In such networks, many routing and data
collection protocols are constructed based on the nodes’ geographic locations. Therefore, the localization
of the nodes is the cornerstone of such applications. Furthermore, it is a very challenging problem due
to extremely limited resources available at low-cost sensor nodes.

Many excellent ideas have been proposed for sensor localization so far. Generally, there are two
types of localization methods: range-based and range-free. The former localization scheme can
obtain good localization accuracy. However, it requires either ranging hardware [4–9] or system
calibration and environment profiling [10]. Hence, it is not appropriate for large-scale ocean monitoring
sensor networks. The latter range-free ones localize nodes based on simple sensing, such as wireless
connectivity [11–13], anchor proximity [14–16] or localization events detection [17,18]. These
approaches have less cost, but have low accuracy. In fact, a range-free solution with relative distance
estimation often has better accuracy and is preferred to be applied into the open scenario. The work
in [19] proposes a novel autonomous passive localization approach for road sensor networks, in which
the distance between any pair of sensors on roadways is first estimated to construct a virtual graph, and
the virtual graph is then matched with the real topology of the road map to identify where sensors are
located. It does provide good localization accuracy with low cost, but this method assumes there is
no connectivity between nodes and that the road map is known, which is obviously invalid for ocean
sensor networks.

This paper is inspired by one of our ongoing projects, in which 18 nodes are deployed on the sea
surface for collecting the received signal strength, light and temperature for several months [20]. After
analyzing the experimental results, we find that the closer nodes have more similar received signal
strength values. Hence, we decide to further extract the embedded position information. Although
the received signal strength indicator (RSSI) is generally not considered a good solution for directly
estimating physical distance, we argue that it is a free lunch for localization without additional hardware,
and it does provide some useful distance-related information [21,22]. Utilizing the RSSI similarity,
this paper first estimates the relative distance between neighboring nodes and then calculates the relative
distance for non-neighboring nodes with the shortest path algorithm. In the following, the nodes’ relative
relation map can be constructed. Given three or more anchors, the nodes’ physical locations are finally
obtained through transforming the relative map. Specifically, our major contributions are as follows:
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• This paper proposes a novel method to estimate the relative distance between any node pair based
on the comparison of RSSI similarity, which has low computation complexity and good distance
correlation (the correlation coefficient has increased by about 15% from the experiments).
• A complete localization solution is built for the sea surface sensor network, which fully considers

and utilizes the characteristics of both the ocean environment and RSSI values.
• The performance of the proposed design is evaluated by practical experiments with two types of

networks, which confirm its effectiveness further.

The rest of the paper is organized as follows: Section 2 surveys the related work. The network model
and the motivation are presented in Section 3. Section 4 describes the main design with the algorithm
analysis in detail. Section 5 gives the experiment setup and analyzes the experimental results. Finally,
we conclude the paper along with future work in Section 6.

2. Related Work

Existing localization methods can be roughly categorized into two classes: (i) range-based [23–27];
and (ii) range-free localization [28,29]. The below will give the detailed description and analysis about
the two approaches.

Range-based solutions estimate absolute distances or angles among nodes and then apply
triangulation or multi-lateration for location calculation. The representative algorithms are RSSI [22],
angle of arrival (AOA) [7], time of arrival (TOA) [8], time differences of arrival (TDOA) [9], and so on.
The RSSI scheme employs some empirical models to estimate the distance based on the loss of power,
which only relies on the communication module and, hence, has low hardware cost. The AOA approach
estimates nodes’ locations by measuring the direction from which a signal is received. The TOA and
TDOA methods measure the propagation time and calculate the distance based on the propagation speed.
Because the ultrasound signals usually propagate only a very short distance, TDOA is not quite suitable
for ocean sensor networks. In all, the above methods achieve good accuracy by virtue of additional
and costly hardware, which are not suitable for large-scale ocean monitoring systems. Although there
are also some RSSI-based localization methods with noise filtering or fingerprint matching, they have
to accomplish environment profiling and calibration, which are also impractical for large-scale ocean
sensor networks.

Range-free solutions, like approximate point-in triangulation (APIT) [15] and the centroid
method [16], do not need to measure accurate distances or angles. They make use of the
proximity information to anchor nodes. For instance, APIT employs an area-based approach
to finish the location estimation by dividing the environment into triangular regions. Through
combining multiple positions of anchors, the possible area in which a node resides can be
reduced. Concurrently, connectivity-based protocols, such as distance vector-hop (DV-Hop) [30],
multi-dimensional scaling-map (MDS-MAP) [31], and so on, construct hop-based distances for
large-scale sensor network localization using neighborhood sensing. In the DV-Hop scheme, anchors
flood their location throughout the whole network in which each node maintains a running hop count.
Nodes calculate their positions based on the anchor locations, the hop count and the average distance
per hop. In those systems, only a small number of anchors is needed, which significantly reduces the
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system cost. In addition, a modified extended Kalman filtering technique [32] is proposed for tracking
applications with insufficient and intermittent observations. By deeply analyzing existing protocols, we
find that connectivity-based localization schemes do not make full use of the information available from
neighborhood sensing.

Considering the limitations of previous works, this paper presents a novel similarity-based localization
approach especially for wireless sensors deployed on the sea surface, which has a better performance than
state-of-the-art connectivity-based methods.

3. Motivation

A network model composed of several anchors and static nodes with unknown locations is considered.
All of the sensors are deployed on the sea surface and are used to monitor the ocean environment or the
ships’ information on the sea route, as shown in Figure 1. The sensor nodes are fixed to keep stationary
or anchored to the sea bottom by ropes. In this context, there are many requirements and constraints for
node localization as follows:

• The localization algorithm must be energy efficient, because the replacement of the batteries is
often troublesome. This requires that there is less communication and lower complexity.
• The localization algorithm must be robust, since the aggressive and rugged ocean environment

may cause the loss of nodes or node faults.
• The localization system should be low cost. The monitored ocean area often needs many nodes to

cover. Thus, we cannot add too much additional equipment (e.g., GPS) for localization.

Sea bed

AnchorSensor

Figure 1. Network scenario.

Realizing the above requirements, the RSSI-based method is preferred to be utilized to perform the
localization. Unlike time-based solutions, it does not need additional hardware and communication.
However, it is hard to accomplish the environment profiling and calibration, due to the unpredictable
environmental factors. Besides, one RSSI value may correspond to multiple different distances. Hence,
directly using the RSSI values and empirical models is not reasonable for node localization.

Although a network-wide monotonic relationship between RSSI and physical distance does not hold,
the single-node monotonic RSSI-distance relationship holds well in an open scenario [33,34]. Our
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experimental data also confirm that. The RSSI values of two nodes can indeed reflect the “near-far”
relationship between them. However, this inherent correlation is not fully utilized by previous typical
connectivity-based localization methods. They only consider the binary connection information, leading
to a degraded localization accuracy. This forms the motivation for our work, which is to explore the
distance and position information embedded in the RSSI values for improving localization accuracy.

4. Signal Similarity-Based Localization

4.1. Distance Estimation for Neighboring Nodes

This subsection presents the main design of a relative distance among one-hop neighbors through
comparing the similarity of the RSSI. Without loss of generality, we describe the calculation process
using nodes i and j step by step.

In order to estimate the near-far relation between nodes, a reference object must be assigned. Here,
we construct a reference set Rij for the node pair (i, j), where j is one of the neighbors of node
i. Let Si and Sj denote the neighbor sets of nodes i and j; the reference set can be constructed as
Rij = Si ∪ Sj ∪ {i} ∪ {j}, and the number of elements in Rij is m.

Given the reference set Rij , we can then generate two vectors Vi and Vj , respectively, for nodes i
and j based on the following vector generation rules. Both Vi and Vj consist of RSSI values from all of
the nodes in Rij . Namely, Vi = {RSSI(i, n1), RSSI(i, n2), · · · , RSSI(i, nm)}, where nl ∈ Rij and
l = 1, 2, · · · ,m.

Vector Generation Rule 1: The “RSSI” itself is assigned as its sending power. For example, if the
sending power of the node i is 0 dBm, we have RSSI(i, i) = 0 in the vector Vi.

Vector Generation Rule 2: For the node k not in the set Si, but in Rij , RSSI(i, k) is assigned as
−100 dBm (the receiver sensitivity threshold) in the vector Vi.

Obviously, for a node pair i and j, the vector Vi contains the RSSI values of the node itself, its one-hop
neighbors and some non-neighbors, which belong to neighbors of node j. We can further observe that
the vector has two important features. First, it is position dependent and not unique for a node. The
generated vector Vi is different for node pairs (i, j) and (i, k) for any j 6= k. Second, it is obtained
without ranging. Hence, the vector embeds the location information on both connectivity and proximity
with a low-cost method, which is suitable for relative distance estimation.

Now, the problem of relative distance estimation between i and j is turned into the similarity
calculation problem of two vectors VA and VB. In this paper, we use the Manhattan distance of the two
vectors as their relative distance. The Manhattan distance is the distance between two points measured
along axes at right angles. It can be easily generalized to higher dimensions, which is illustrated below.
Given two vectors (X1, X2, X3, · · · ) and (Y1, Y2, Y3, · · · ) with the same number of elements N , the
Manhattan distance of two vectors is:

MD =
N∑
k=1

|Xk − Yk| (1)

From a computational perspective, the Manhattan distance costs few resources and has obvious
advantages. Moreover, it can effectively reflect the difference of the received signal. The experimental
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results also confirm that Manhattan distance has better accuracy than the classic Euclidean distance.
Below, the terminology SSLM (SSL with the Manhattan distance) is used to represent the relative
distance estimated with the Manhattan distance, while SSLE (SSL with the Euclidean distance) indicates
the relative distance calculated by the Euclidean distance.

A simple example is shown in Figure 2. On the left of the figure, the connectivity of the network
is illustrated through a graph G. Additionally, the reference set RAB and RSSI values are listed on the
right. Next, we will elaborate the calculation process of the relative distance based on this example. The
reference set RAB of SA and SB can be easily obtained, which is {A,B,C,D,E}. According to the
proposed rules, the vectors VA and VB are set as [0,−60,−66,−68,−100] and [−61, 0,−55,−85,−72],
respectively. Then, the SSLM value SSLM(A,B) between A and B is |0 + 61| + | − 60 + 0| +
| − 66 + 55|+ | − 68 + 85|+ | − 100 + 72|, which is 177 namely.

A

B

C

D

E

Node A SA:

Node B SB:

B D

A

C

EDC

RAB: A B C D E

A

B

Node

RSS

0 -60

A B C D E

-68

-61 0 -55 -85 -72

-66

Connectivity Graph G Example

-100

Figure 2. The calculation process of RSSI similarity.

With the RSSI values, the relative distance of any two neighboring nodes can be easily obtained.
Furthermore, we can see that the SSLM(A,B) is equals to SSLM(B,A). This feature can reduce the
calculation times of the relative distance from n2 to n(n+ 1)/2, where n is the total number of nodes in
the network. Moreover, SSLM can achieve a sub-hop resolution. In the traditional hop-based approach,
all neighboring node pairs have an identical hop distance of one, while the SSLM distances between
neighboring nodes are different and determined by RSSI values.

4.2. Distance Estimation for Non-Neighboring Nodes

In this subsection, the relative distance estimation for non-neighboring nodes is considered.
We define the smallest accumulated SSLM along a path between two nodes as the relative distance
of non-neighboring nodes.

Taking the non-neighboring node pair (A,E) as an example, we first search all of the paths between
them after obtaining the SSLM values of all one-hop neighboring nodes and then summarize SSLM
values of every path. Finally, the smallest accumulated SSLM value is assigned as their relative distance,
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which is 488 in this example. Figure 3 illustrates the calculation process of the relative distance. On
the right of the figure, all neighboring nodes’ SSLM values are listed, and all of the accumulated
SSLM values between A and E are also shown. In all, for one-hop neighboring nodes i and j, the
relative distance equals SSLM(i, j) computed with Formula (1). For non-neighboring nodes i and j,
the relative distance is calculated as the smallest summation of the SSLM values along a path between
them. Utilizing the above calculation method, we can finally get the relative distance of any node pair in
the whole network.
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D

E

177

SSLM(A,D)= 232

SSLM(A,C)= 228 SSLM(B,E)= 310

SSLM(B,C)= 150
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Figure 3. Distance estimation for non-neighboring nodes.

In the implementation process, we can employ graph knowledge to solve the problem of the smallest
accumulated SSLM as follows. Given the network connectivity graph G, we use the vertex set V (G)

to denote all nodes in the network. Additionally, the edge set E(G) is used to indicate the distance of
neighboring nodes. The weights of the edges are represented by SSLM values. Let the accumulated
edge’s weight be the length of the path; the shortest path can then be solved by the Floyd–Warshall
algorithm [35].

4.3. Node Position Estimation

Starting with the network connectivity information and RSSI values, we have already roughly
estimated the relative distance between each pair of nodes by using the shortest path algorithm. Thus, a
distance matrix can be constructed in which the value at the i-th row and the j-th column is the relative
distance between nodes i and j. In the following, we can adopt many existing schemes to localize
the nodes without changing their major design. For example, the distance matrix here is the smallest
accumulated SSLM values instead of the shortest hop distances in MDS-MAP and shortest-path hops in
DV-Hop, while the others remain the same.

Considering the requirements and characteristics of the ocean monitoring, the MDS technology is
adopted to construct a relative map of the network from the calculated relative distance matrix, which can
deduce node locations satisfying those estimated distances. Then, an “absolute map” can be obtained by
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scaling and rotating the relative map based on the physical coordinates of at least three anchors. There
currently exist many types of MDS techniques to find a placement of the nodes in a two-dimensional
space. Since one distance matrix is used in this paper, we only employ the classical metric MDS. It is the
simplest case of MDS and tolerates error gracefully, due to the overdetermined nature of the solution.
Moreover, the solution is closed-form, which is very suitable for an ocean sensor network consisting
of a large numbers of nodes. The detailed description of MDS can be found in [36]. Here, we do not
illustrate it further.

4.4. Algorithm Analysis

Algorithm 1 SSL Node Localization Algorithm
Input: RSS, Anchor, N;
Output: SSL;

1: ND = CalNeighboringDistance(RSS)

2: %Calculate the relative distance of any neighboring nodes
3: for i = 1 : N

4: for j = i+ 1 : N

5: Sij = ReferenceSet(Si, Sj)

6: (Vi, Vj) = V ectorGeneration(Sij)

7: SSLMij = CalManha(V i, V j)

8: end
9: end

10: ShortestND = CalNonneighboringDistance(ND)

11: %Calculate the relative distance of non-neighboring nodes
12: TempND = ND

13: ShortestND = ND

14: for k = 1 : N

15: for i = 1 : N

16: for j = 1 : N

17: if TempND(i, j) ≤ (TempND(i, k) + TempND(k, j))

18: ShortestND(i, j) = TempND(i, j)

19: else
20: ShortestND(i, j) = TempND(i, k) + TempND(k, j)

21: end
22: end
23: end
24: TempND = ShortestND

25: end
26: SSL =MDSrealLocation(ShortestND,Anchor, tol)

27: % Convert the relative positions to absolute locations, where tol is the absolute error tolerance
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Algorithm 1 illustrates the whole localization procedure. The relative distances are firstly calculated
through comparing the similarity of RSSI vectors. Given the anchors’ coordinates, each node’s location
is estimated by scaling and rotating the relative distance map based on the MDS technology. The
computational complexity of constructing the reference set is O(MlogM + NlogN), where M and
N are the numbers of neighbors of two nodes, respectively. Additionally, the computational complexity
of estimating the relative distance between two neighboring nodes is only O(1). From the localization
procedure, we can see that the involvement of the RSSI similarity for distance estimation introduces
little additional cost, since the shortest path calculation or the MDS technology is also used in traditional
location methods.

Regarding the communication cost in the localization process, the additional overhead is the
exchanging of RSSI values among one-hop nodes. Note that it only requires neighboring nodes to
exchange the RSSI value instead of the network flooding. Additionally, the RSSI values can be
encapsulated in the messages during the network initialization phase. Hence, the proposed design is
energy efficient and low cost. After getting the RSSI values from the neighbors, the calculation of SSLM
can be implemented at each node or by a localization server deployed at the seashore. Obviously, it costs
few time and space resources to calculate the Manhattan distance. Therefore, the proposed algorithm
does not affect the scalability of the system and falls into the connectivity-based localization methods.

5. Experiments

In this section, we describe the performance gain obtained from the SSL design for ocean sensor
networks with two experiment scenarios.

5.1. Experiment Setup

Generally, there are two types of WSN applications for ocean surface monitoring. The first one
is the sea route monitoring, in which nodes are often deployed as the zonal network to monitor the
passing ships. The other scenario is the monitoring of the ocean environment, in which several nodes
are deployed on the sea surface to monitor the temperature, light, and so on. The experiments of two
scenarios will both be conducted in this paper. Figure 4 shows the experiment scenario. To protect
the nodes from seawater and sunshine, the sensor is encapsulated into a transparent plastic bottle.
Additionally, each node is left 40 inches above the sea surface with 3 lightweight supporting foam balls.

In the experiments, every sensor broadcasts 80 packets with the radio sending power of 0 dBm.
The technologies of carrier sensing and back-off time are adopted to avoid collision. Each packet
contains the sender’s node ID and a sequence number of the packet. If the received signal strength
is larger than −100 dBm (the receiver sensitivity threshold), the corresponding RSSI value, the sender’s
ID and the sequence numbers of the packet will be written into its flash memory or the MAC frame will
be abandoned. In order to eliminate the effect of the radio path loss, multi-path, hardware discrepancies,
and so on, each node will choose the median one from the 80 RSSI values as the final RSSI value when
the broadcasting is ended.

As is well known, DV-Hop estimates the expected one-hop physical distance based on the average
hop distance and hops among anchors. Because the deployed network in this paper has at most 3 hops,
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the direct using of DV-Hop is not fair and suitable. Here, we employ the “MDS-Hop” localization
method, which is described as below. For each sensor, it estimates its distance to another node with the
number of hops and the expected hop distance. After obtaining the distance matrix using DV-Hop, we
can use MDS to localize the node. Similarly, “MDS-SSLM” and “MDS-SSLE” are the corresponding
localization methods embedded with SSLM and SSLE, respectively. In the following, we will describe
and discuss the localization accuracy of the three methods.

Figure 4. Experiments for the ocean monitoring.

5.2. Zonal Network

In this experiment, 28 nodes are deployed to be a zonal network for monitoring three sea routes.
Additionally, there are 7 nodes on each side of the sea route. As shown in Figure 5, 7 nodes are selected
as anchors and depicted in black hexagons, while the green squares are the deployed positions of general
nodes. The distance between two adjacent nodes along the X-axis is about 16 feet, while the distance of
adjacent nodes along the Y-axis is about 32 feet.
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Figure 5. Zonal network.
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5.2.1. Distance Correlation in a Zonal Network

The effectiveness of the estimated relative distance will first be evaluated. Three relative distances are
compared, as described below. The first one is traditional hop-based distance, in which the number of
hops between any two nodes is regarded as their relative distance. The other two relative distances are
the SSLM and SSLE mentioned in this paper.

The effectiveness is determined by the correlation between their values and the physical distance. A
higher correlation coefficient implies that the corresponding relative distance reflects the real distance
better. The correlation coefficient for the neighboring nodes is zero in the hop-based distance, because
all one-hop node pairs have the same hop distance. SSLE and SSLM are surely superior to hop-based
distance for proximity expression. Thus, we just give the correlation coefficient comparison between
relative distance and physical distance from the view point of the whole network, as shown in Figure 6.
The X-axis is the physical distance between two nodes in all of the sub-figures, while the Y-axis is the
hop-based distance, SSLE and SSLM, respectively. The experiment data shown in Figure 6c confirm that
SSLM (with the correlation coefficient ρ = 0.83) provides a better resolution than SSLE and hop-based
distance. From the results, we can see that the effective use of the RSSI value can be indeed a good
heuristic indicator for physical distance.
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Figure 6. Distance correlation comparison. (a) Correlation between hop and
physical distance; (b) correlation between SSL with the Euclidean distance (SSLE) and
physical distance; (c) correlation between SSL with the Manhattan distance (SSLM) and
physical distance.

5.2.2. Comparison of Localization Results

Figures 7–9 show the localization results of MDS-Hop, MDS-SSLM and MDS-SSLE, respectively.
In the figures, blue stars are used to depict the estimated positions, while the black lines represent the
offset of node locations. This result confirms that the MDS-SSLM method offers a better resolution than
MDS-SSLE and MDS-Hop.
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Figure 7. Localization results of multi-dimensional scaling (MDS)-Hop.
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Figure 8. Localization results of MDS-SSLE.
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Figure 9. Localization results of MDS-SSLM.

The localization error is defined as the distance from the real position of a node to its estimated
location in this paper. Table 1 shows the maximum and median localization errors from the results in
the above figures for all three methods. We can clearly observe that the MDS-SSLM method has smaller
errors than MDS-SSLE and MDS-Hop. Specifically, the maximum and mean errors of MDS-SSLM get
reduced by 53% and 37% compared to MDS-Hop. Compared to MDS-SSLE, the maximum and median
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errors are reduced by 48% and 49%. This result confirms that the Manhattan-based distance estimation
has better accuracy and stability than the Euclidean-based version.

Table 1. Error statistics for a zonal network.

Error MDS-Hop MDS-SSLE MDS-SSLM

Median Error 4.9569 6.1568 3.1087
Max Error 16.0075 14.5258 7.5756

5.2.3. Impact of Anchor Density in a Zonal Network

In order to eliminate the possible bias caused by anchor selection, we randomly pick different numbers
of anchors, from 4 to 10, and try each for 1500 runs. From Figure 10, we can obviously see that
more anchors help improve the localization accuracy for all three methods. Note that MDS-SSLM is
more effective than MDS-Hop. By introducing the similarity of RSSI values, the localization error gets
reduced constantly by around 20% for MDS-Hop.

4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

 Number of Anchors

 E
rr

o
r 

(i
n

 f
e
e
t)

 

 

MDS−Hop: Max Error

MDS−SSLE: Max Error

MDS−SSLM: Max Error

MDS−Hop: Median Error

MDS−SSLE: Median Error

MDS−SSLM: Median Error

Figure 10. Statistical comparison of the three localization methods.

5.3. Non-Regular Network

In order to verify the universality of the SSL design, we conduct the second experiment, which is a
non-regular network with 28 nodes. The network covers an area of about 100× 100 square feet with
7 selected anchors.

5.3.1. Distance Correlation in a Non-Regular Network

Here, the correlations between hop-based distance, SSLE, SSLM and physical distance are evaluated
for the non-regular network. In all of the figures, the X-axis is the physical distance between two nodes,
and the Y-axis is the hop-based distance, SSLE, SSLM, respectively. Figure 11a displays the relation
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between the hop distance and physical distance. Similarly, Figure 11b,c plots the accumulated SSLE
and SSLM against physical distance for all node pairs. Comparing these three figures, SSLM provides
better resolution with the correlation coefficient ρ = 0.79. Specifically, a physical distance can only be
mapped to an integer hop distance in a discrete manner in Figure 11a, while the mapping is continuous
in Figure 11c. Obviously, the continuous mapping can better reflect the physical distance relationship.
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Figure 11. Distance correlation comparison. (a) Correlation between hop and physical
distance; (b) correlation between SSLE and physical distance; (c) correlation between SSLM
and physical distance.

5.3.2. Comparison of Localization Results

Figures 12–14 depict the localization results from MDS-Hop, MDS-SSLM and MDS-SSLE. In the
above figures, the blue star is the estimated location, and the line segment is the offset between real
and estimated positions. Similarly, from the three figures, we can see that MDS-SSLM also gives better
localization accuracy than others for a non-regular network.
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Figure 12. Localization results of MDS-Hop.



Sensors 2015, 15 29716

0 10 20 30 40 50 60 70 80 90 100
-10

0

10

20

30

40

50

60

70

80

90

 X Axis

 Y
 A

x
is

Figure 13. Localization results of MDS-SSLE.

The localization errors of the three methods are listed in Table 2. From the table, we can observe
that the maximum and median errors of MDS-SSLM get reduced obviously compared to the MDS-Hop,
which are 51% and 63%, respectively.
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Figure 14. Localization results of MDS-SSLM.

Table 2. Error statistics for a non-regular network.

Error MDS-Hop MDS-SSLE MDS-SSLM

Median Error 6.0175 4.4897 2.2011
Max Error 18.7441 15.7196 9.1300
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5.3.3. Impact of Anchor Density in a Non-Regular Network

The above results are obtained based on the given seven anchors. In order to evaluate the impact of
anchor placement and anchor number, we further conduct the accuracy evaluation for different numbers
of anchors in a non-regular network, in which the anchors are randomly selected and 1500 rounds are
performed to achieve a fair comparison.
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Figure 15. Statistical comparison of the three localization methods.

As expected, Figure 15 shows that more anchors help improve the localization accuracy for all
methods. It is noticed that the MDS-SSLM method is more effective than adding extra anchors,
especially after 7 anchors when curves become flat. This characteristic can help to reduce the number of
deployed anchors and improve the system robustness under a certain localization requirement.

6. Conclusions

In this paper, we propose a novel localization scheme for wireless sensors deployed on the sea surface,
which is based on the similarity comparison of the RSSI values. The estimation of node location is
obtained only by means of the received signal strength information, which is energy efficient, robust and
low cost. Hence, the proposed design is very practical for ocean monitoring. Experimental results reveal
that the proposed algorithm offers better localization accuracy than the traditional schemes. Considering
the good results obtained, we have decided to broaden the algorithm for constructing the large-scale
experiments in a real ocean environment in the future.
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