
Sensors 2015, 15, 28402-28420; doi:10.3390/s151128402

sensors
ISSN 1424-8220

www.mdpi.com/journal/sensors

Article

Optimization Algorithm for Kalman Filter Exploiting the

Numerical Characteristics of SINS/GPS Integrated

Navigation Systems

Shaoxing Hu 1,*, Shike Xu 1, Duhu Wang 1 and Aiwu Zhang 2

1 School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China;

E-Mails: xushike24k@163.com (S.X.); buaaben@163.com (D.W.)
2 Ministry of Education Key Laboratory of 3D Information Acquisition and Application,

Capital Normal University, Beijing100089, China; E-Mail: zhang_aiwu@126.com

* Author to whom correspondence should be addressed; E-Mail: husx@buaa.edu.cn;

Tel.: +86-10-8233-9130.

Academic Editor: Stefano Mariani

Received: 26 August 2015 / Accepted: 3 November 2015 / Published: 11 November 2015

Abstract: Aiming at addressing the problem of high computational cost of the traditional

Kalman filter in SINS/GPS, a practical optimization algorithm with offline-derivation and

parallel processing methods based on the numerical characteristics of the system is presented

in this paper. The algorithm exploits the sparseness and/or symmetry of matrices to simplify

the computational procedure. Thus plenty of invalid operations can be avoided by offline

derivation using a block matrix technique. For enhanced efficiency, a new parallel

computational mechanism is established by subdividing and restructuring calculation

processes after analyzing the extracted “useful” data. As a result, the algorithm saves about

90% of the CPU processing time and 66% of the memory usage needed in a classical Kalman

filter. Meanwhile, the method as a numerical approach needs no precise-loss

transformation/approximation of system modules and the accuracy suffers little in

comparison with the filter before computational optimization. Furthermore, since no

complicated matrix theories are needed, the algorithm can be easily transplanted into other

modified filters as a secondary optimization method to achieve further efficiency.

Keywords: computational optimization; SINS/GPS; closed-loop Kalman filter; block matrix;

offline-derivation; parallel processing; accuracy-lossless decoupling; symbol operation

OPEN ACCESS

mailto:xushike24k@163.com

Sensors 2015, 15 28403

1. Introduction

In many SINS/GPS integrated navigation systems, common system models cannot conform to the

use conditions of classical Kalman filter due to the “colored noise”. To still be able to use the optimal

estimation method, it is necessary to expand the system state model [1,2]. However, as the state

dimensions increase, filtering computation will rapidly become expensive and unstable, and the so-called

“dimension disaster” could even break out. In order to address this problem, scholars have reported

various optimization algorithms which can lower the computational costs and/or enhance the numerical

robustness. The typical optimization algorithms contain square-root information filtering SRIF [3], U-D

decomposition filtering [4], singular value decomposition filtering [5] and their improved versions [6–8].

These modified filters, besides greatly reducing the time consumption, theoretically guarantee the

positive definiteness of covariance and effectively avoid the numerical divergence, thus they are widely

applied in the theoretical design of higher-order systems. Nevertheless, they require the support of

relatively complex matrix theory in derivation and may pose certain difficulty in engineering. On the

other hand, although these algorithms have decreased computational costs, their complexity is still O(n3).

With further expansion of the state dimensions, the above decomposition algorithms, as a kind of general

method, are also being challenged on their real-time capability. Recently, researchers have paid much

attention to non-commonality methods, which are designed for some specific applications or based on

specific models. For instance, aiming at integrated navigation applications, a kind of reduced-order

Kalman filter (RDKF) [9–12] was promoted to ease the computational load. The idea of these filters is

to reduce the model dimension by theoretical/engineering methods. As the filter dimension n is vital to

computation time, the reduction of the state order will produce a direct benefit in terms of real time.

However, the decrease of the state order will also bring partial accuracy damage, therefore, these

methods may not be suitable for some high accuracy-demanding applications. Another kind of effective

algorithm optimizes the float-point operations mainly by taking advantage of the sparse matrices (e.g.,

the transition matrix Φn in SINS/GPS) during the filtering computation [13–15]. In these algorithms, the

so-called matrix accumulative method (MAM) or other online methods are used and the algorithm

complexity can be simplified to O(s2 – u2) (s/u represents the numbers of nonzero/1 elements in Φn). As

the matrices in the high order model normally contain substantial numbers of zero elements, the

computational time can be curtailed to an ideal level by usage of this sparse-matrix-based method.

Meanwhile, being different from RDKF, the sparse-matrix-based methods do not change the system

model and need little engineering approximation, thus they perform better in the accuracy-control aspect.

But these methods also have their own limitations:

(1) Though they avoid massive unnecessary multiplying-zero operations, the methods still need extra

O(n3) times estimation of zero elements in each matrix multiplication;

(2) Methods based on MAM, a kind of online method, could not seek any deeper optimization online

and their efficiency is totally dependent on the number of zeros in the real-time matrix. To enhance

the optimization efficiency, the usual way is to set more zero elements by approximation methods,

but this comes at the cost of a certain accuracy loss.

In response to the above problems, we present here a new highly-efficient, accuracy-lossless, and

engineering-tractable optimization algorithm based on offline derivation and a parallel method

Sensors 2015, 15 28404

exploiting the numerical characteristics of SINS/GPS. In comparison with other algorithms, the proposed

method offers numerous advantages: (i) in comparison with the general algorithms, our proposed method

requires little complex deduction and is easily understandable; (ii) in comparison with the RDKF

optimization method, the proposed method needs little engineering approximation and would be more

accurate; and (iii) in comparison with the filter based on MAM, it is free of zero-estimation operations

and can deduce some stronger conclusions, thus it is more efficient. Emphasizing on the engineering

simplicity, we will introduce our optimization method revolving around the classical Kalman filter and

a loosely-coupled model of SINS/GPS. It is apprised here that the chosen model does not imply any

constraints on the application scope of our method. Actually, the offline and parallel method, as a pure

numerical optimization method, is equally applicable to the extended filter and other complex SINS/GPS

models if some similar research on the special model is done. On the other hand, since there is no

transformation on any models or equations in our method (the two distinct differences with the normal

filtering computations are: (i) unnecessary floating-point operations are directly avoided; and (ii) de-coupled

operations are processed in parallel), the precision and robustness of our method would be equal to the

classical Kalman filter in theory. Owing to this fact, the efficiency rather than robustness or accuracy is

focused on in our discussion later. Section 2 gives a brief account of closed-loop Kalman filtering and a

widely-used loosely-coupled model in SINS/GPS. In Section 3, the details of offline derivation and the

parallel method based on a block-matrix technique are described. Section 4 and Section 5 deal with the

statistics on computational costs and the filter performance on error estimation.

2. Loosely-Coupled SINS/GPS Model Using the Classical Kalman Filter

Depending on the different ways of integration, SINS/GPS are classified into two modes: (i) loose

mode; and (ii) tight mode. Loose mode using GPS output to adjust SINS errors is opted for in this

research for its distinctive features of high redundancy and easy realization. The emphasis is placed on

a common kind of loose model i.e., position-velocity integration with 18 states and six observations.

2.1. State Equation

By using the indirect method, which treats the estimation variables as parametric errors instead of

parameters themselves, the state equation is established in Equation (1):

         t t t t t x A x G  (1)

where,  tx represents the state vector, including attitude errors  , velocity errors v , position errors

 T L h   , and the “colored noise” errors: gyro constant drift cε , Markov process drift rε , and

accelerometer drift a ;  t denotes the collected system noise vector, including gyro drift white noise

g , Markov driving white noise r , and accelerometer drift white noise a ;  tA is state transition

matrix and  tG is noise coefficient matrix. Combining references [16–22] with some modification, the

variables of the state equation can be described by Equations (2)–(5):

   
T

 x y z x y z cx cy cz rx ry rz ax ay azt v v v L h                x

(2)

   
T

 gx gy gz rx ry rz ax ay azt         ω

(3)

Sensors 2015, 15 28405

11 12 13 3 3

21 22 23 3 3 3 3

3 3 32 33 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 22 3 3

3 3 3 3 3 3 3 3 3 3 33 18 18

()

N N

B B

N

B

IMU

IMU

t



 

   

     

    

     

 
 
 
 

  
 
 
 
  

A A A C C O

A A A O O C

O A A O O O
A

O O O O O O

O O O O A O

O O O O O A

(4)

 

3 3 3 3

3 3 3 3 3 3

3 3 3 3 3 3

3 3 3 3 3 3

3 3 3 3 3 3

3 3 3 3 3 3 18 9

N

B

t

 

  

  

  

  

   

 
 
 
 

  
 
 
 
  

C O O

O O O

O O O
G

O O O

O I O

O O I

(5)

In matrices (4) and (5), all blocks are 3-order square matrices. Blocks
3 3O ,

3 3I , and N

BC stand for the

zero matrix, the identity matrix, and the attitude matrix, respectively. The other blocks are described in

detail in [16–22]. In particular, we highlight here two kinds of nonzero blocks
3(1,2,3)i iA and

(2,3)IMUii iA of

which the special single-nonzero-vector and diagonal structure may contribute to deeper optimization:

3

* 0 0

* 0 0 , 1,2,3

* 0 0

i i

 
  
 
  

A

* 0 0

0 * 0 , 2,3

0 0 *

IMUii i

 
  
 
  

A (6)

In addition, the variance  tQ of noise vector  t is described as:

 
11 3 3 3 3

3 3 22 3 3

3 3 3 3 33 9 9

t

 

 

  

 
 


 
  

Q O O

Q O Q O

O O Q

 (7)

where, block
(1,2,3)ii iQ is also diagonal.

2.2. Measurement Equation

We adopt a position-velocity integration model and define the filter observation vector  tz [16,22]:

 

 
cos() cos

n xINS GPS n

eINS GPS e

zINS GPS

obs

xINS xGPS

y yyINS yGPS

z zzINS zGPS

y

x x

R L NL L R

R L NR L

h Nh h
t

v Mv v

v Mv v

v Mv v



 









   
   

   
   

    
   

   
   

      

z (8)

Then, we define the measurement equation as follows:

       t t t tz H x n (9)

where  tn represents the measurement noise vector;  tR denotes the corresponding variance matrix,

and  tH is the coefficient matrix.  tn ,  tR

and  tH are described as follows according to [16–22]:

   
T

, , , , ,x zy x y zt N N N M M Mn (10)

Sensors 2015, 15 28406

    11 3 32 2 2 2 2 2

3 3 22

,diag , , , ,px py pz vx vy vzt      




 
   

 

R O
R

O R
 (11)

  3 3 3 3 13 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3 3 3 6 18

t
    

      

 
  
 

O O H O O O
H

O I O O O O
 (12)

where:

 13 , cos ,1n ediag R R L H (13)

2.3. Closed-Loop Kalman Filtering

In order to fulfill the requirement of closed-loop Kalman filtering, the state equation (Equation (1))

and measurement equation (Equation (9)) are changed to the discrete forms:

1n n cn nn n  Γx x u ω (14)

n n n n z H x n (15)

where, the transition matrix
n is converted from  tA ; the noise driving matrix

nΓ is converted from

 tG ; the coefficient
nH is converted from  tH ; and the control vector  

T
T T T T T cn c c c c c cc rc ac c

L h   u γ δv ε ε

is added for real-time calibration on the parameters of SINS.

After discretization, the update of
nx is done recursively as follows:

   

 

   

   

1

()

n n n c

n n n

n e n n obsn n

n c n e cn

  

 

    

   

x x

z H x

x x K z z

x x u



 (16)

where, “~” represents the parameter needed estimation;   represents the value before estimation;  e+

represents the value after estimation;  c+ represents the value after calibration with the vector
cnu ;

obsnz

represents real observation vector; and
nK represents Kalman filtering gain.

To minimize the filtering error, state vector  n cx is permanently set to zero:

 n c  0x (17)

Substitution of Equation (17) into Equation (16), yields:

 cn n e n obsn   u x K z (18)

Apparently,
cnu becomes the final output of the Kalman filter with control vector. As

obsnz is almost

directly obtained by measurement,
nK appears to be the key of

cnu and even the filter. According to the

Kalman filtering theory,
nK can be recursively computed as follows:

    T T

1n n en n n n n   Γ ΓP P Q  (19)

    
1

T T

n n n n n n n



   K P H H P H R (20)

     n e n n n   P I K H P (21)

where
nP is the covariance;

nQ and
nR are the discretized forms of  tQ and  tR , respectively. In fact,

Equations (18)–(21) constitute the main process of the closed-loop Kalman filter. This process is

Sensors 2015, 15 28407

generally subdivided into two processes: time propagation Equation (19) and measurement updating

Equations (18), (20) and (21). In summary, the process flow of Kalman filter in SINS/GPS is depicted

in Figure 1. Since most matrices involved in Figure 1 or Equations (19)–(21) are either 18 × 18 or

18 × 6 matrices, there will be a large-scale and time-consuming computation in each recursive cycle.

Therefore, a certain optimization on the computation would be essential to the real-time properties

of SINS/GPS.

Figure 1. Iterative closed-loop Kalman filtering process.

3. Computational Optimization

Consistent with Figure 1, optimization are sequentially implemented in the updating processes of
n ,

T

n n nΓ ΓQ ,  n P ,
nK ,  n eP , where the most computational time are consumed.

3.1. Compute
n

According to [16–22], we can calculate
n as follows:

 
1

2 3

2 3

2! 3!

nt

tn

t dt
n n

n n n n

T T
e T


    
A

n
I A A A (22)

Here, the 3rd order Taloy equation is selected for mainly two reasons:

(1) Equation (22) meets the requirements of most mid-high-accuracy systems;

(2) Equation (22) can deduce the universal optimization conclusion.

It’s not difficult to prove that
n would have a uniform numerical structure independent from which

of the 3rd and higher order equation is chosen. On the other hand, lower order equations are obviously

a special case of 3rd order equation. Therefore, the conclusion based on 3rd equation is suitable for the

model based on the different order of equations too.

As the computation of Equation (22) is centered on the 18 × 18 matrix  n ntA A , it is necessary to

inspect the numerical characteristics of nA before computational optimization: matrix nA , in which only

64 of the total 324 elements are non-zero, is clearly a sparse matrix. A substantial reduction of useless

multiplying-zero operations can be achieved by directly expanding nA and operating every element in

deduction (namely “direct derivation”), but because of the high order, direct derivation is quite

complicated to handle and is not advisable in practice. Fortunately, the 3-order-block form of nA , having

23 zero blocks among the total of 36 blocks (see Equation (4)), is still a sparse matrix structurally.

Sensors 2015, 15 28408

Therefore, we can carry out our offline optimization using an indirect method, in which the blocks

instead of the elements are treated as the atomic unit in deduction. In this way, we can largely decrease

the derivation complexity and retain most of the efficiency of a direct method at the same time. For these

reasons, the indirect method is applied to all the derivation processes in this paper. In addition, the

nonzero blocks
3iA and

IMUiiA (see Equation (6)), which need few operations in multiplication by any 3-order

block (no more than 32 float-pointing multiplications and 2 × 3 additions), are also introduced to the

derivation for higher efficiency.

It is a fact that manual derivation with indirect method is still a cumbersome job in view of multiple

matrix multiplications (e.g., 2

nA , 3

nA), so we handle our derivation by a computer program instead. With

the powerful symbolic-computation function of some well-known math software, e.g., MATLAB and

Maple, the complicated derivation can be easily accomplished. After necessary programming, the final

derivation results are shown in Equations (23) and (24):

11 12 13 14 15 16

21 22 23 24 25 26

31 32 33 3 1 3 3 362

3 3 3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 55 3 3

3 3 3 3 3 3 3 3 3 3 66 18 18

n

 

     

    

     

 
 
 
 

  
 
 
 
  

S S S S S S

S S S S S S

S S S O O S
A

O O O O O O

O O O O S O

O O O O O S

 (23)

11 12 13 14 15 16

21 22 23 24 25 26

31 32 33 34 35 363

3 3 3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 55 3 3

3 3 3 3 3 3 3 3 3 3 66 18 18

n

     

    

     

 
 
 
 

  
 
 
 
  

T T T T T T

T T T T T T

T T T T T T
A

O O O O O O

O O O O T O

O O O O O T

 (24)

Also, the computation of blocks
ijS and

ijT is described in a computerized sequence as follows:

 

 

 

 

 

3

1

(/2 1)

5 4

15 15 22

26 26 33

2

55 22

2

66 33

3

1

2

26 26 33

, 1,2,3

, 1,2,3; j 4,6

, , 1,2

, 1,2,3; 1,2, ,6

,ij ik kj

N

ij i j B

i i

N

B IMU Sim

N

B IMU Sim

IMU Sim

IMU Sim

ij ik kj

N

B IMU

i j

i

i j

i j







 

   

 

 

 





    

 





k

k

S A A

S A C

S S

S S C A

S S C A

S A

S A

T A S

T T C A

 

 

55 22 55

66 33 66

Sim

IMU Sim

IMU Sim





T A S

T A S

 (25)

Sensors 2015, 15 28409

whereas all products involving block
31A ,

34S or
35S are zero blocks

3 3O and need no real-time

computations; products involving the special blocks, e.g.,
3iA ,

3iS (single-nonzero –vector block),
IMUiiA ,

55S , or
66S (diagonal blocks), are simplified and are partly indicated in symbol  

Sim
.

Substituting of
nA Equation (4), 2

nA Equation (23), and 3

nA Equation (24) in
n Equation (22), yields:

11 12 13 14 15 16

21 22 23 24 25 26

31 32 33 34 35 36

3 3 3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 55 3 3

3 3 3 3 3 3 3 3 3 3 66 18 18

n

     

    

     

 
 
 
 

  
 
 
 
  

O O O I O O

O O O O O

O O O O O

     

     

     






 (26)

whereas:

   
2 3

2 3

3 3

, 1,3 , 1,6 ,
2! 3!

, 1,2,3,5,6
2! 3!

n n
ij n ij ij ij

n n
ii n ii ii ii

T T
T i j i j

T T
T i

      

    

A S T

I A S T





 (27)

Here,
13 and

23 are single-nonzero-column blocks;
33 is the sum of

3 3I and single-nonzero-column

block;
55 and

66 are diagonal blocks. These blocks would be specially used in other processes.

In conclusion, with offline derivation based on 3rd order block method, nearly half amount of blocks

ij is proved to be constant blocks:
3 3O or

3 3I (see Equation (26)), thus, the computations on them are

simply eliminated. Additionally, by using the properties of special blocks
3iA ,

3iS ,
3iT ,

jjA ,
jjS ,

jjT and

introducing the intermediate variables 2

nA , 3

nA , real-time computations on the other half can be

further reduced.

3.2. Compute T

n n nΓ ΓQ

According to [16–22], the 2nd order approximate of T

n n nΓ ΓQ are computed as follows:

 T T

1 1
2

n

n n n n n n n

T
 Γ ΓQ Q Q  (28)

where:

     

 
T

11 3 9 3 3 3 3

T
9 3 9 9 9 3 9 3

1

3 3 3 9 22 3 3

3 3 3 9 3 3 33 18 18

N N

B B

n t t t

  

   

  

   

 
 
 

   
 
 
 

C Q C O O O

O O O OQ G Q G
O O Q O

O O O Q

 (29)

Obviously,
1nQ and T

n n nΓ ΓQ are both symmetric. Thus, for matrix T

n n nΓ ΓQ , only its upper (or lower)

triangle elements need to be computed in real time. Substitution of
1nQ (Equation (29)) in T

n n nΓ ΓQ

(Equation (28)), yields:

Sensors 2015, 15 28410

11 12 13 3 3 15 16

12 22 23 3 3 25 26

13 23 33 3 3 35 36T

3 3 3 3 3 3 3 3 3 3 3 3

15 25 35 3 3 55 3 3

16 26 36 3 3 3 3 66 18 18

2

n n n n n

T

n n n n n

T T

n n n n nn

n n n

T T T

n n n n

T T T

n n n n

T







     

 

  

 
 
 
 

  
 
 
 
  

Γ Γ

Q Q Q O Q Q

Q Q Q O Q Q

Q Q Q O Q Q
Q

O O O O O O

Q Q Q O Q O

Q Q Q O O Q

(30)

where:

   

 

 

 

' T T T

1 11 1 5 22 5 6 33 6

'

11 11 11

3, 3

55 22 55 22 55

66 33 66 33 66

, 1,2,3;
2

2

, 1,2,3; 5,6
2

2

2

n
nij i j i j i jSim Sim

n
n n

n
nij ij j j jj Sim

n
n Sim

n
n Sim

T
i j i j

T

T
i j

T

T

 

      
 

 

   

 

 

,Q Q Q Q

Q Q Q

Q Q

Q Q Q

Q Q Q

     

 

 

 

 (31)

In Equation (31),
55nQ and

66nQ are apparently diagonal blocks that may be used to simplify other

processes. As stated above, we optimize the computation of T

n n nΓ ΓQ mainly by applying some special

numerical properties to the offline derivation (e.g., the sparsity of  tG , the simplicity of diagonal blocks

22Q ,
33Q ,

55 ,
66 , and the symmetry of T

n n nΓ ΓQ) and much of the computation time is saved.

3.3. Compute  n P

For simplicity,  n P and  n eP will be written in a unified form
nP (this is allowed because of that

 n P and  n eP are actually the same covariance matrices in different state and share the same

memories). Similar to
n or T

n n nΓ ΓQ ,
nP is written in 3rd-order-block-matrix form:

,11 ,12 ,16

,21 ,22 ,26

,61 ,62 ,66 18 18

n n n

n n n

n

n n n 

 
 
 
 
 
  

P P P

P P P
P

P P P

 (32)

According to its definition, nP is a symmetric matrix:

T

, , , , 1,2 6n ij n ji i j  P P (33)

Thus, only the lower (or upper) triangle part needs substantive computation. Regardless of T

n n nΓ ΓQ at

first, Equation (19) is written as:

    T

1n n n e n  P P  (34)

Substitution of Equation (26) and (32), yields:

Sensors 2015, 15 28411

 

 

 

 

6 6
T

,11 1 1, 1

1 1

6 6
T

,21 2 1, 1

1 1

6
T

,61 66 1,6 1

1

6 6
T

,22 2 1, 2

1 1

6

,32

1

P P

P P

P P

P P

P

 

 

 

 



n i n ij j

i j Temp

n i n ij j

i j Temp

n n j j Rep
j Sim

n i n ij j

i j Temp

n

i



 



 







 



   
   

   

   
   

   

 
  
 

   
   

   



 

 



 

  

 

 

6
T

3 1, 2

1

6
T

,62 66 1,6 2

1

,66 66 1,66 66

P

P P

P P



 

 

i n ij j

j Temp

n n j j Rep
j Sim

n n Sim











   
  

   

 
  
 







(35)

where the symbol  
Temp

 represents intermediate items that would be temporarily stored in memory to

avoid repeated computation; the symbol  
Rep

 represents the repeated item that have been computed

before and are available by directly accessing  
Temp

 and the symbol  
Sim

 indicates that the special

properties of T

3i are exploited to perform further optimization.

After Equation (35) is done, T

n n nΓ ΓQ should be added. Substitution of Equations (30) and (32) in

Equation (19), yields:

, , , , , 1,2,3,5,6;n ij n ij n ij i j i j    P P Q (36)

Above all, the computation of  n P is divided into two steps: Equations (34) and (36). As the latter

has few computations, optimization mainly focuses on the former. Employing the sparsity of
n , the

symmetry of  n P and the repeatability of intermediate items, the real time of calculating Equation (34)

is greatly improved.

3.4. Compute
nK

Substitution of Equations (11), (12) and (32) in the inversion part of Equation (20), yields:

 
T

13 ,33 13 11 13 ,23T

,23 13 ,22 22 6 6

n n

n n n n

n n 

 
    

  

H P H R H P
H P H R

P H P R
 (37)

Since   T

n n n n H P H R has a low order, few computations are needed during inversion (the complexity

is 3)O(6 that can be neglected in comparison with other procedures) and the details of inversion are not

discussed accordingly. Here, we use the symbol D to represent the result of inversion directly:

 
1

T

n n n n



    D H P H R (38)

Matrix D is easily proved to be symmetric and can be written in the 3-order-block-matrix form as:

Sensors 2015, 15 28412

11 12

12 22 6 6

T



 
  
 

D D
D

D D
 (39)

Then
nK can be computed as:

T

,12 12 ,13 13 11 ,12 22 ,13 13 12

T

,22 12 ,23 13 11 ,22 22 ,23 13 12

T

,62 12 ,63 13 11 ,62 22 ,63 13 12 18 6

n n n n

n n n n

n

n n n n 

  
 

  
 
 

   

P D P H D P D P H D

P D P H D P D P H D
K

P D P H D P D P H D

(40)

Define
nK as:

11 12

21 22

61 62 18 6

n

 
 
 
 
 
 
 
 





K

K K

K K

K K

 (41)

then:

T

, 2 2 , 3 13 1 , 1,2, ,6; 1,2ij n i j n i j i j      K P D P H D (42)

The derivation result shows that, by using the block-matrix optimization technique, only a simple

process (Equation (37), (38) and (42)) is needed in nK updating. Compared with the complicated

Equation (20) which needs multiple 18-order matrix production, our method seems much more simple

and efficient in computing.

3.5. Compute  n eP

Transform Equation (21) into:

     n e n n n n    P P K H P (43)

Obviously, the pressure in computation mainly comes from  n n n K H P . Fortunately,  n n n K H P is a

symmetrical matrix (this is an evident inference according to Equation (43) in the condition that  n eP ,

 n P are both symmetrical) so that only its upper (or lower) triangular part needs real-time updating.

Define  n n n K H P as the variance’s increment
nP :

 

11 12 16

21 22 26

61 62 66 18 18

n n n n



   
 
  
    
 
 
   

P P P

P P P
P K H P

P P P

 (44)

Substitution of Equations (12), (32) and (41), yields:

1 13 ,3 2 ,2 , , 1,2, ,6;ij i n j i n j i j i j     P K H P K P (45)

then:

, , , , 1,2, ,6;n ij n ij ij i j i j    P P P (46)

In conclusion, taking advantage of the symmetry of  n eP and the sparsity of
nH , we deduct a simple

form of computing  n eP : Equations (45) and (46). Equation (46) is apparently costless as only the

Sensors 2015, 15 28413

matrix subtraction is involved. Equation (45) involves matrix products, but requires no computations on

most blocks of
nP (except the blocks in 2nd and 3rd rows) and proves to be highly efficient.

3.6. Parallel Computation

The optimization results (see Tables 2–6) reveal that, computation on  n P costs nearly half of the

processing time and becomes a bottleneck for further efficiency. The low efficiency mainly arises from

that  n P becomes increasingly dense and can provide few zero blocks after initial filtering cycles. In

low-accuracy applications, some researchers may force the some matrix elements to be zero for low

computational costs with the engineering approximate method. However, to some accuracy-demanded

applications, methods with more accuracy and efficiency are still looked for. Parallel computation is one

of the feasible approaches.

Before discussing the parallel method, we perform an inspection of the whole computation processes

in order to clarify the dependency of every parameter on  n P . The numerical relationship between

 n P and other parameters can be consulted in Table 1.

Except for  n eP , all parameters are either irrelevant to ,n ijP or only relevant to 2nd and 3rd block

rows (columns) of  n P . Taking this fact into account, we can call 2nd and 3rd block rows (columns)

“useful” data and treat the rest as “useless” (it is emphasized here that “useless” only refers to the

requirement of most computation processes, but not that the data is really useless and needs no updates).

Furthermore, because  n P is a symmetrical matrix, the “useful” blocks are only 2nd, 3rd block

columns in fact. If “  ” represents “useless” blocks,  n P can be written as:

,12 ,31

,22 ,32

,32 ,33

,42 ,34

,52 ,35

,62 ,36 18 18

n n

n n

n n

n

n n

n n

n n 

    
 
   
 
    

  
    
    
 
     

P P

P P

P P
P

P P

P P

P P

 (47)

Table 1. Dependency of every real-time parameter on  n P blocks.

n ,
nQ ,  n

P 
nK (Equations (40) and (41))  n e

P  (Equation (43)) ij
P (Equation (45))

Irrelevant to ,n ijP Dependent on , 2n iP , , 3n iP only Dependent on ,n ijP
Dependent on ,2n iP , ,3n iP

only

In measurement updating (Equations (18), (20) and (21)), all parameters except  n eP are decoupled

with the “useless” data (Equation (19)) which belong to the time propagation. Moreover, to the coupled

 n eP its time-consuming part ijP is also independent of the “useless” blocks. In other words, with

some appropriate modification of measurement updating and time propagation, we can produce a new

decoupling mechanism of the two procedures. The modification contains three steps:

Step1. Subdivide time propagation.

Classify the blocks of  n P into two kinds: “useful” data and “useless” data;

Step 2. Subdivide measurement updating.

Sensors 2015, 15 28414

Subdivide  n eP into two processes: computing ijP (Equation (45)) and adding  n P (Equation (46));

Step 3. Restructure measurement updating.

Restructure measurement updating process as ijP (instead of  n eP) (Equations (18) and (21)).

With the above steps, the restructured process and the “useless” data updating process are completely

numerically decoupled and can be computed in parallel. In this way, the efficiency bottleneck in  n P

updating is broken.

Furthermore, in order to achieve the parallel computation on the “useful” data as well, we similarly

subdivide the process of updating “useful” data into two steps: computing   T

1n n e n P  (Equation (34))

and adding T

n n nΓ ΓQ (Equation (36)). Apparently, computing   T

1n n e n P  and updating T

n n nΓ ΓQ

(Equation (31), which belongs to time propagation) can be processed in parallel. In summary, the process

of Kalman filtering with parallel computation is described as Figure 2.

It is pointed out here that the parallel method in this paper has a fundamental difference with some

other parallel methods [23,24]. The others owe their decoupling to the so-called “mandatory delay”,

which may cause certain accuracy damage. On the contrary, the decoupling in this paper needs neither

“mandatory delay” nor engineering approximation and is achieved mainly by introducing the “useful”

data and subdividing the computation process. Essentially, it is the numerical characteristic of SINS/GPS

that brings up this special decoupling. Therefore, the parallel processing in this paper is an

accuracy-lossless method.

In respect of efficiency, the parallel optimization method can reduce much execution time needed in

updating both T

n n nΓ ΓQ and the “useless” blocks (including 918 multiplications and 603 additions in

updating T

n n nΓ ΓQ , and 1089 multiplications and 1107 additions in updating “useless” blocks). In comparison

with non-parallel methods, efficiency of parallel method increases by about 25%.

Figure 2. Filtering process with parallel computation.

Sensors 2015, 15 28415

4. Optimization Efficiency

According to the derivation result, we can figure out the optimization efficiency by counting and

comparing the computational counts needed in both the proposed method and the existing algorithm. In

detail, the discussion about counts proceeds on each parameter updating procedure, respectively. As

matrix multiplication is mainly involved, the calculation will focus on the floating-point operations of

multiplication and addition. Tables 2–6 will show the statistical details of each parameter. Then,

Tables 7 and 8 give the global efficiency and the comparison with other general algorithms, respectively.

As shown in the tables, the offline-derivation and parallel method saves about 90% of computational

time and 66% of memory space, while keeping the required accuracy level. Compared with general

decomposition optimization algorithms, the proposed method needs no complicated matrix theory but

producing higher efficiency. Under the condition that high hardware precision has guaranteed the

numerical robustness, our algorithm appears quite simple and practical.

Table 2. Optimization efficiency of n updating process.

 Offline-Derivation Method Traditional Method

Multiplication 3 2 242 3 36 3 13 3 3 1809        (I), 10% 3 23 18 3 18 18468    (II)

Addition 2 242 2 3 9 2 3 13 2 3 1044         (I), 6% 2 23 17 18 3 18 17496     (II)

Memory
232 3 8 Byte 2.3 KB     (III)

23 18 8 Byte 7.6 KB     (III)

In (I), 42 × 33 (42 × 2 × 32), 36 × 32 (9 × 2 × 3) and 13 × 3 × 32 (13 × 2 × 32) represent the counts on

multiplication (addition) of items in Equation (25) without special blocks, of items in Equation (25) with

special block and of items in Equation (27) respectively, and only 32 & 33 items are counted; In (II), the

first item represents the counts on operations of 18-order-matrix multiplication, the second item represents

that of multiplication by scalars or matrix addition; In (III), data are assumed to be double-precision (8-byte

word length); the percentages represent the efficiency in comparison with the traditional method.

Table 3. Optimization efficiency of T

n n nΓ ΓQ updating process.

 Offline-Derivation Method Traditional Method

Multiplication 3 2 224 3 18 3 12 3 918      , 6% 3 2 2 22 18 18 18 6 6 18 14580      

Addition 2 224 2 3 9 2 3 13 3 603        , 4% 2 22 17 18 18 5 6 18 17 18 6 13716         

Memory
213 3 8 Byte 0.9 KB    

23 18 8 Byte 7.6 KB    

Table 4. Optimization efficiency of  n P updating process.

 Offline-Derivation Method Traditional Method

Multiplication 3 2120 3 37 3 3573    , 31% 32 18 11664 

Addition 2 2120 2 3 18 2 3 134 3 3474        , 31% 2 22 17 18 18 11340   

Memory
260 3 8 Byte 4.2 KB    

23 18 8 Byte 7.6 KB    

Sensors 2015, 15 28416

Table 5. Optimization efficiency of
nK updating process.

 Offline-Derivation Method Traditional Method

Multiplication 3 224 3 6 3 702     , 11% 18 18 6 18 6 6 6 18 18 6 18 6 5184           

Addition 2 224 2 3 12 3 540      , 11% 17 18 6 17 6 6 5 18 6 17 18 6 4824           

Memory 216 3 8 Byte 1.1KB     3 6 18 6 6 8 Byte 2.8 KB       （ ）

Table 6. Optimization efficiency of  n eP updating process.

 Offline-Derivation Method Traditional Method

Multiplication 3 242 3 6 3 1188    , 15% 36 18 18 18 7776   

Addition 2 242 2 3 42 3 1134     , 15% 2 2 25 18 17 18 18 7452    

Memory
216 3 8 Byte 1.1KB     3 6 18 6 6 8 Byte 2.8 KB       （ ）

Table 7. Optimization efficiency of offline-derivation and parallel method.

 Offline-Derivation & Parallel Method Traditional Method

Multiplication 1809 2484 702 1188 6183    (IV), 10.7% 18468 14580 11664 5184 7776 57672    

Addition 1044 2475 540 1134 5193    (IV), 9.5% 17496 13716 11340 4824 7452 54828    

Memory 2.3 0.9 4.2 1.1 1.1 9.6 KB      7.6 7.6 7.6 2.8 2.8 28.4 KB     

In (IV), 2484 (2475) is the operation times of “useful” blocks updating.

Table 8. Comparison of offline-derivation & parallel method and general optimization filters.

 Multiplication Addition

SRIF filtering
3 27

18 36 18 18468
6
    (V)

3 27
18 36 18 18468

6
    (V)

U-D decomposing filtering
3 2 21 1

18 18 10 18 8 18 6462
2 2
        (VI)

3 2 21 1
18 18 9 18 9 18 6156

2 2
        (VI)

SVD filtering
3 226 18 78 18 176904    (VII) 3 226 18 78 18 176904    (VII)

offline-derivation and

parallel method
2484 702 1188 4374   (VIII) 2475 540 1134 4149   (VIII)

(V) is explained in Reference [3], while (VI) in Reference [25], Reference [26] and (VII) in

Reference [5]; Point out here that, (VI) relies on the precondition that n is already an upper-triangle

matrix in 9-order-block form (what is the conclusion of offline derivation), otherwise, 9702 multiplications

and 9396 additions are actually needed; concerning (VIII), the procedure of computing n is no longer

counted as no optimizations are against n in the general algorithms.

5. Simulation

To evaluate the method validity, we design a practical loosely-coupled SINS/GPS program in CCS v5.5

(a well-known programming tool on DSP platform). The program comprises three modules:

(1) Sensor data sampling module.

(2) SINS algorithm module. This module is designed to implement the calculation of attitude,

velocity and position independently (only the inertial sensors data is needed).

(3) Kalman filter module. This part is for data fusion. The system module is designed according to

Section 2, and the computation process is programmed using the offline and parallel method

Sensors 2015, 15 28417

described in Section 3. Besides, for accuracy evaluation, the classical KF is also designed as a

control group.

With the developed program, we can simulate filtering process and evaluate the performance of our

method in CCS. The simulation parameters and conditions are set as follows:

(1) DSP TMS320C6722, a famous float-point CPU, is chosen in CCS as the computing device.

(2) The carrier of the navigation system is assumed to be static. With this assumption, the

gyro/accelerometer would detect no valid rotate/velocity rate aside from devices noise.

Therefore, noise is considered the sampling data driving the SINS/GPS program. As the carrier

is static, velocity/position should stay at the zero/initial value in theory, thus, this assumption can

largely facilitate the evaluation of program results.

(3) Velocity/position measured by GPS is constantly set:

     0.6977686 2.0306150,0,0 , ? 0 2 9 .0
T T T

GPS GPSv L h    

Velocity/position calculated by SINS is initialized:

     0.6977680, 8370723981 2.0306153707784820,0 91, ? .0
T T T

SINS SINSv L h     

(4) IMU data rate (noise frequency): 100 Hz; SINS velocity/position updating rate: 50/20 Hz;

filtering rate: 10 Hz.

With the above setting, we run the program in CCS for 100 s and record the navigation outputs (e.g.,

the X-axis velocity and latitude). The simulation results are illustrated in Figures 3 and 4.

Figure 3. Latitude calculation by different methods.

Sensors 2015, 15 28418

Figure 4. Velocity calculation by different methods.

The results show that the proposed method effectively restrains the unbounded error accumulation in

SINS and keep the estimated variables around their mean values. On the aspect of estimation

performance, our method is nearly at par to the classical KF (the proposed-method curve does not

completely overlap the classical-KF one because of less calculation and less truncation errors).

This conclusion agrees with the theoretical analysis: our numerical method, needing no modification of

the system module and no engineering approximation, causes little damage to the estimation accuracy,

but from the point of view of real-time computation, our method is much more efficient than the classical

KF. In the DSP program, the proposed method needs 64,820 system clocks in each filtering cycle while

classical KF needs 390,480 clocks. If a clock frequency of 200 MHz, the typical frequency of a DSP

TMS320C6722 is chosen, then our method will cost only 324 μs in each filtering operation. Such a level

of real-time efficiency is highly valuable to the many accurate navigation applications.

6. Conclusions

Starting from a common classical-Kalman-fitler-based SINS/GPS model (position-speed integration

with 18 states and six measurements), we present an optimization algorithm based on the system’s

numerical characteristics. The algorithm employs a block-matrix technique in offline derivation, where

special blocks (e.g., zero blocks, diagonal blocks, etc.) are used to simplify the calculation. In this way,

plenty of invalid multiplying by zero and repeated operations are avoided offline. Furthermore, aiming at the

time-consuming update of  n P , a novel parallel method is implemented by defining “useful” data and

subdividing computational process, and the entire filtering procedure is greatly accelerated.

The statistical analysis and simulation results reveal that the offline algorithm, coupled with the parallel

method. can reduce the CPU processing time by 90% and the memory usage by 66%. Compared with

several general decomposition-optimization algorithms, the proposed method requires no complex

matrix theory rather more efficiency. The distinguished feature of the algorithm is that no modification

of the system module and no engineering approximation are needed, thus it causes little harm to the base

filter. It is pointed out that although the derivation is based on a specific integration model, the algorithm

as a complete numerical optimization approach can be transplanted to other advanced models of

SINS/GPS or other extended filters. With the powerful symbolic-operation function of the MATLAB

program, researchers can manipulate formulas involving high order matrices in an easy way.

Sensors 2015, 15 28419

Consequently, the proposed method is an engineering-tractable approach with high efficiency and high

precision for SINS/GPS integrated navigation systems.

Author Contributions

Shaoxing Hu and Shike Xu developed the overall algorithm and wrote the papers. Shike Xu coded

the program and performed the simulation. Wangdu Hu analyzed the experiment data. Aiwu Zhang

reviewed and revised the manuscript.

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Mohinder, S.G.; Angus, P.A. Global Navigation Satellite Systems, Inertial Navigation, and

Integration; John Wiley & Sons Inc.: New York, NY, USA, 2013.

2. Chui, C.K.; Chen, G. Kalman Filtering with Real-Time Applications; Tsinghua University Press:

Beijing, China, 2013.

3. Bierman, G.J. A comparison of discrete linear filtering algorithms. IEEE Trans. Aero. Electr. Syst.

1973, 9, 28–37.

4. Thornton, C.L.; Bierman, G.J. UDUT covariance factorization for Kalman filtering. Control Dyn.

1980, 16, 177–248.

5. Wang, L.; Libert, G.; Manneback, P. Kalman filter algorithm based on singular value

decomposition. In Proceedings of the 31st IEEE Conference on Decision and Control, Tucson, AZ,

USA, 16–18 December 1992.

6. Boncelet, C.; Dickinson, B. An extension of the SRIF Kalman filter. IEEE Trans. Autom. Control

1987, 32, 176–179.

7. Tsyganova, J.V.; Kulikova, M.V. State sensitivity evaluation within UD based array covariance

filters. IEEE Trans. Autom. Control 2013, 58, 2944–2950.

8. Tang, Y.; Deng, Z.; Manoj, K.K.; Chen, D. A practical scheme of the sigmapoint Kalman filter for

high-dimensional systems. J. Adv. Model. Earth Syst. 2014, 6, 21–37.

9. He, X.; Chen, Y.; Iz, H.B. A reduced-order model for integrated GPS/INS. IEEE Aerosp. Electron.

Syst. Mag. 1998, 13, 40–45.

10. Huang, J.; Tan, H.S. A low-order DGPS-based vehicle positioning system under urban

environment. IEEE ASME Trans. Mechatron. 2006, 11, 567–575.

11. Papazoglou, M.; Tsioras, C. Integrated SAR/GPS/INS for Target Geolocation Improvement.

J. Comput. Model. 2014, 4, 267–298.

12. Mutambara, A.G. Decentralized Estimation and Control for Multisensor Systems; CRC Press:

Boca Raton, FL, USA, 1998.

13. Zhu, Q.J.; Yan, G.M. A Rapid Computation Method for Kalman Filtering in Vehicular SINS/GPS

Integrated System. Appl. Mech. Mater. 2012, 182, 541–545.

Sensors 2015, 15 28420

14. Wei, C.; Fang, J.; Sheng, J. Fast data fusion method for integrated navigation system and hardware

in loop simulation. J. Beijing Univ. Aeronaut. Astronaut. 2006, 11, 1281–1285. (In Chinese)

15. Holmes, S.; Klein, G.; Murray, D.W. An O(N²) Square Root Unscented Kalman Filter for Visual

Simultaneous Localization and Mapping. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 31, 1251–1263.

16. González, R.; Giribet, J.I.; Patiño, H.D. An approach to benchmarking of loosely coupled low-cost

navigation systems. Math. Comput. Model. Dyn. Syst. 2015, 21, 272–287.

17. Quinchia, A.G.; Falco, G.; Falletti, E.; Dovis, F.; Ferrer, C. A comparison between different error

modeling of MEMS applied to GPS/INS integrated systems. Sensors 2013, 13, 9549–9588.

18. Falco, G.; Einicke, G.A.; Malos, J.T.; Dovis, F. Performance analysis of constrained loosely

coupled GPS/INS integration solutions. Sensors 2012, 12, 15983–16007.

19. Solimeno, A. Low-cost INS/GPS Data Fusion with Extended Kalman Filter for Airborne

Applications. Master’s Thesis, Universidade Technica de Lisboa, Lisboa, Portugal, 2007.

20. Farrell, J.A.; Barth, M. The Global Positioning Systems and Inertial Navigation; McGraw-Hill:

New York, NY, USA, 1999.

21. Wang, H. GPS Navigation Principle and Application; Science Press: Beijing, China, 2010. (In Chinese)

22. Wu, T.; Ma, L. Strapdown Inertial Navigation System Application Analysis; National Defence

Industry Press: Beijing, China, 2011. (In Chinese)

23. Brown, D.W.; Gaston, F.M.F. The design of parallel square-root covariance Kalman filters using

algorithm engineering. Integr. VLSI J. 1995, 20, 101–119.

24. Rosén, O.; Medvedev, A. Parallelization of the Kalman filter on multicore computational platforms.

Control Eng. Pract. 2013, 21, 1188–1194.

25. Bierman, G.J. Measurement Updating Using the U-D Factorization. Automatica 1976, 12, 375–382.

26. Bierman, G.J. Efficient Time Propagation of U-D Covariance Factors. IEEE Trans. Autom. Control

1981, 26, 890–894.

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article

distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/4.0/).

