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Abstract: Cyber-physical systems such as autonomous spacecraft, power plants and 

automotive systems become more vulnerable to unanticipated failures as their complexity 

increases. Accurate tracking of system dynamics and fault diagnosis are essential. This 

paper presents an efficient state estimation method for dynamic systems modeled as 

concurrent probabilistic automata. First, the Labeled Uncertainty Graph (LUG) method in 

the planning domain is introduced to describe the state tracking and fault diagnosis 

processes. Because the system model is probabilistic, the Monte Carlo technique is 

employed to sample the probability distribution of belief states. In addition, to address the 

sample impoverishment problem, an innovative look-ahead technique is proposed to 

recursively generate most likely belief states without exhaustively checking all possible 

successor modes. The overall algorithms incorporate two major steps: a roll-forward 

process that estimates system state and identifies faults, and a roll-backward process that 

analyzes possible system trajectories once the faults have been detected. We demonstrate 

the effectiveness of this approach by applying it to a real world domain: the power supply 
control unit of a spacecraft. 

Keywords: dynamic systems; fault diagnosis; concurrent probabilistic automata;  

Monte Carlo technique; labeled uncertainty graph 
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1. Introduction 

Today’s real-world engineering systems are a product of careful design and manufacturing. These 

systems usually undergo rigorous testing and validation before deployment. However, due to wear and 

tear from sustained operations, degradation and faults in system components still occur. In addition, 

unlikely events and unanticipated situations can also create faults. To avoid these negative effects, it is 

imperative to accurately track system behavior and timely detect and isolate faults [1–4]. 

Model-based diagnosis techniques are frequently used to solve these problems. The key idea is to 

detect the discrepancies between the actual system behavior and the predictions of a model [5]. 

Traditionally, two distinct scientific communities have employed different kinds of models to 

implement their own model-based diagnosis: 

• The Fault Detection and Isolation (FDI) methods capture system behavior using differential 

equation models, whose foundations are based on control and statistical decision theories. 

• The Diagnosis (DX) methods use qualitative model and logical approaches, with foundations in 

the fields of computer science and artificial intelligence. 

More specifically, the FDI community has proposed three typical methods to track and diagnose 

system behavior using the system model: (1) parameter estimation based methods that estimate the 

value of particular parameter [6]; (2) state estimation based methods that use observers or filters to 

estimate unknown variables [7]; and (3) parity space based methods that design a set of residuals by 

eliminating the unknown variables [5]. On the other hand, many researchers in DX community assume 

that the system can be modeled as a Discrete Event System (DES) [8] at some level of abstraction. A 

DES model is characterized by a set of discrete states, a set of observable and unobservable events, and 

transitions between discrete states. The dynamic behavior of DES is described by partitioning time into 

discrete points at which events occur [9]. On the basis of this system model, the goal of diagnosis is to 

find unobservable fault events or discrete fault states. Until now, this technique has been widely applied 

into many domains such as power transmission lines [10] and telecommunication networks [11,12]. 

Over the years, some researchers and practitioners in both communities are dedicated their efforts to 

understanding and bridging the FDI and DX approaches. Cordier et al. [13] gave a systematic 

comparison of the analytical redundancy relations (ARR) and conflicts, but their analysis was only 

applied to the diagnosis of static systems. Bregon et al. [14] compared three different structural fault 

isolation techniques from both communities for linear continuous dynamic systems. Meanwhile, 

Travé-Massuyès [15] further discussed the facets of diagnosis in the FDI and DX communities, and 

exemplified how different theories of these areas can be synergistically combined to provide better 

diagnostic solutions and achieve improved fault management. 

In this paper, we only focus on the DX area. In this area, a typical diagnosis approach of DES is 

based on a diagnoser [16,17], which uses a deterministic finite state machine without emitted events. 

The diagnosis problem is addressed by compiling the original finite state machine into one that 

contains only observable transitions and produces the same language in terms of observations. The 

weakness of this approach is the feasibility of the compilation of the large-scale complex system model 

into a reasonable size. Some approaches were put forward to overcome this dilemma such as off-line 

compiler technique [18], distributed diagnosis [19] and hierarchical diagnosis [20]. 
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Simulation-based approach [21,22] is another general method. In this approach, the temporal 

evolution of system is decomposed into a set of state constraints that hold for the state at each  

time-step and a set of sequence constraints that restrict the possible transition sequences of such state, 

so the diagnosis process is performed by checking whether the state constraints and sequence 

constraints are consistent with the observations. The main problem of this approach is that the number 

of all possible system trajectories becomes too large to process only after a few time steps. 

To address this problem, Williams [21] and Kurien [22] proposed a k Best-First Trajectory 

Enumeration (BFTE). Unfortunately, trajectory probability is significantly underestimated in this 

approach, because it ignores the additional trajectories that lead to the same state. Considering this 

shortcoming, Martin [23] presented a k Best-First Belief State Enumeration (BFBSE) that increases 

estimator accuracy and uses less memory and computation time. After that, Williams and Ragno [24] 

introduced a conflict-based A* (CDA*) search algorithm into these methods, so the belief state search 

process is further accelerated by eliminating subspaces around each state that are inconsistent with 

observations. For these k best methods, how to choose a suitable k value is the key issue. For real-time 

operation, a large value usually brings more computational complexity, while a small one loses 

estimator accuracy and even results in misdiagnosis. Moreover, symbolic techniques are also a feasible 

method. [9] exploited Ordered Binary Decision Diagrams (OBDD) to encode system model and belief 

state, so the complete belief state can be estimated. However, it still limits its applicability to relatively 

simple system. 

This paper develops a novel approximate simulation-based approach to track both a variety of 

operational modes of the system and arbitrary combinations of fault conditions, which will enable to 

determine the most likely system states and trajectories for dynamic diagnosis. First of all, LUG [25] is 

introduced to describe online monitoring and fault diagnosis of discrete systems. Moreover, the LUG 

scheme employs the Monte Carlo (MC) technique to sample belief state distribution. The differences 

between our approach and classical MC technique are twofold. First, the particles in our approach are 

only focused on sample but not on-line filtering, and particles are assumed to be unit weight 

throughout simulation. Second, every particle is tagged with unique symbol, so the system evolution 

trajectories can be easily obtained, and numerous trajectories do not need to be preserved as system 

evolves. Finally, since Monte Carlo techniques incur sample impoverishment problem, the observation 

information is combined with prior information to recursively generate the most likely belief states. 

Although this technique of using observation information has been employed in the literatures [7]  

and [26], our approach does not need to exhaustively consider all possible successor modes, so it can 

cope with large number of discrete modes. 

The rest of this paper is structured as follows: Section 2 gives some basic definitions about 

component and system model, simulation-based dynamic diagnosis, and classical belief state update. 

Section 3 introduces the LUG to describe the dynamic diagnosis process of discrete systems.  

In Section 4, our approach is formally illustrated and analyzed in detail. Section 5 describes the 

experimental results on a real-world model: a portion of the power supply control unit of spacecraft. 

Finally, a conclusion is presented in the last section. 
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2. Theoretical Background 

This section summarizes basic formalisms and concepts for dynamic diagnosis. The notion of time 

adopted in this paper consists of a discrete sequence of time step, which is derived from the 

assumption that the system can be viewed as a synchronous transition system [22]. 

2.1. Component and System Model 

Supposed that the system to be diagnosed has n individual components, the component model can 

be built as a tuple: 

( , , )iG CV CS δ=  (1)

where: 

• CV (component variable) is a set of variables for component i. It can be partitioned into mode 

variables, command variables and attribute variables. Mode variables define the possible behavioral 

modes for component. Command variables are the external controlled signals. Attribute variables 

include inputs, outputs and any other variables used to define the behavior of the component. 

• CS (component constraint) is a set of formulas constraints, which consists of mode constraints 

and other constraints. Mode constraints define the physical behavior in certain mode. Other 

constraints denote the remaining unchanged constraints i.e., structure constraints. 
• δ  (transition relation) is denoted as a tuple 1( , , , )t tS S Guard Prob+  from time t to time t + 1. tS  

and 1tS +  are the mode assignment at time t and t + 1, respectively. Guard is the transition event. 

Some events are observable (e.g., commands issued from external actuator), while the rest are 

unobservable (e.g., autonomous or fault events). Prob is a transition probability from tS  to 1tS + . 

The overall system model G is modeled as a composition of synchronous operation on components. 

Formally, we can give definition of system model as follows: 

1 2( ... , , )nG G G G SV SC=     (2)

where 1 2, ,..., nG G G  denote the n component model of the system. SV (system variable) is a set of 

system I/O variables, which establishes the interconnection with the outside world. SC (system 

constraint) is a set of constraints that captures the interconnections among components. 

2.2. Simulation-Based Dynamic Diagnosis 

In this subsection, we firstly give the formal definition of static diagnosis, and then extend it into 

simulation-based dynamic diagnosis. For static systems, the aim of diagnosis problem is to check the 

joint consistency between observation and a set of constraints including component constraints and 

system constraints [27]. Since the constraints for each component depend on certain nominal or fault 

behavior mode, the formal definition of static diagnosis can be given as follow: 

( ) |y stateconstraints mode ≠⊥  (3)

where y is the observation. State constraints ( )stateconstraints mode  are composed of the component 

constraints in particular behavior mode mode and system constraints. 
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If the observations are available not just for one snapshot of system behavior, but for a whole 

observation period, the diagnosis for static systems will be extended into dynamic systems. The 

behavior model for dynamic systems not only has the state constraints, but also the relations between 

states across time: 

( ) ( ) ( )dynamicmodel mode stateconstraints mode temporalconstraints mode=   (4)

According to the definition of component model, the relations between states 
( )temporalconstraints mode  correspond to the transition relation δ . Therefore, the dynamic diagnosis 

must check the individual observation snapshot for consistency with the state constraints, and satisfy 

the restriction of the pairs of adjacent states, which can be denoted as: 

( ) ( ) |y stateconstraints mode temporalconstraints mode ≠⊥   (5)

Formally, the definition of simulation-based dynamic system is modeled as follow: 

0( , , )SBDS G B σ=  (6)

where: 

• G is an entire system model. 
• 0 1,0 2,0 ,0( , ,..., )nB S S S=  is the initial belief state, which is constituted by the mode for each 

component at time step 0. 
• σ  is a observation sequence 0 1( , ,..., ,... )t ly y y y , where ty  are the observation variables or 

command variables at time step t. 

On the basis of Equations (5) and (6), the aim of simulation-based dynamic diagnosis is to find the 
system state tB  at each time step t, which is consistent with observation ty , and is transitioned  

from 1tB − . 

2.3. Classical Belief State Update 

A well known problem of model-based diagnosis is that the number of possible trajectories will 

become so large to be unmanageable as the system evolves. Typically, the number of trajectory 

hypotheses is exponential in the number of discrete modes and time steps considered. A general 

solution is the introduction of a preference criterion among belief states. 

Most of the preference criteria are based on quantitative probability. A belief state is a probability 

distribution over the states of a system, which represents the likelihood of the system in any single 

state given observation and command sequence. Assuming that the system is Markovian, the belief 

state is then computed using standard Hidden Markov Model (HMM) belief state update equations: 

1 1: 1 1 1: 1 1 1 1 1:

1 1 1 1:

( | ) ( | , ) ( | ) ( | )

( | ) ( | ) ( | )
i
t

j j j j
t t t t t t t t t

j j i i
t t t t t t

B

P B y P B y y P y B P B y

P y B P B B P B y

α
α

+ + + + + + +

+ + +

= =

=   (7)

where α  denotes the normalization term. This process is known as recursive estimation [28].  
It includes two steps: Prediction, in which given a current belief state prior distribution 1:( | )i

t tP B y , belief 
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state estimator selects a possible transition model 1= ( | )j i
T t tP P B B+  to predict a new state; Update, in which 

the predicted state is compared with an observation model 1 1( | )j
O t tP P y B+ +=  to adjust the probability. 

For simulation-based dynamic diagnosis, the Prediction step uses transition relation 

( )temporalconstraints mode  to propagate the system dynamics into the future by only considering the 

current belief state and commands, while the Update step evaluates the estimates by checking the 

consistency between observation y and state constraints ( )stateconstraints mode . In this paper, the 

observation probability distribution 1 1( | )j
O t tP P y B+ +=  is defined using a consistency approach similar 

to the Livingstone [21,22], and can be calculated as follow: 

1 1
1 1

1 1

1 ( ) |
( | )

0 ( ) |

j
j t t

O t t j
t t

if stateconstraints B y
P P y B

if stateconstraints B y
+ +

+ +
+ +

 =
= =  ≠

 (8)

3. Exploitation of LUG for State Tracking and Fault Diagnosis 

A planning graph represents a relaxed look-ahead of the belief state space that identifies 

propositions reachable at different depths. It can be typically described as layered graphs of vertices 

( )0 0 1, ,.., , , ,...t t tP A A P A− , where each level t consists of a proposition layer tP  and an action layer tA . 

More specifically, proposition layer tP  denotes the set of propositions at level t, while action layer tA  

includes all actions that have all of their precondition propositions in tP . Edges between the layers 

describe the propositions in action preconditions (from 1tP−  to 1tA − ) and effects (from 1tA −  to tP ) [29]. 

LUG, proposed by Bryce [25,29,30], extends traditional planning graph in the following two ways. 

Firstly, since uncertainty is considered in Bryce’s approach, an extra effect layer tε +Δ  is introduced 

into each level t, where 0Δ → . An effect is in the effect layer tε +Δ  if its associated action is in the 

action layer tA  and every one of its antecedent propositions is in tP . As a result, the uncertainty 

planning graph can be denoted as a sequence of layers ( )0 0 0 1 ( 1), , ,.., , , , ,...t t t tP A A P Aε ε+Δ − − +Δ . Secondly, 

LUG implicitly represents multiple uncertainty planning graphs by collapsing the graph connectivity 

into one uncertainty planning graph and uses annotations, called labels, to retain information about 

multiple worlds. Bryce has successfully applied this data structure to solve the probabilistic 

conformant planning problem with actions whose effects are uncertain. 

The probabilistic conformant planning problem is closely related to state tracking and fault 

diagnosis of discrete systems [31], because the task of generating most likely belief states to match 

given observations can be viewed as a probabilistic plan generation problem. In particular, both two 

problems exhibit many similar features, such as finite state space, the uncertainty of the initial state 

and action effects, reachable goals and so on. Therefore, LUG is introduced to represent dynamic 

diagnosis process of discrete systems. Proposition layer, action layer and effect layer in LUG 

correspond to the possible belief states, transition events and the possible results of transition in 

simulation-based dynamic diagnosis. 
In order to address the exponential increasing problem of possible belief states, the Monte Carlo (MC) 

technique [32] is employed to sample belief states in our method. First, unlike the traditional method 

using exact quantitative probability, we turn to approximation of probability by means of particles. The 

number of particles in a particular belief state represents the likelihood of this belief state. This 

approximate strategy allows our approach to focus on the highly probable belief states, without 
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checking a prohibitively large number of unlikely belief states. Second, the MC technique in this paper 

is only used for sampling, and particles are assumed to be unit weight throughout simulation. Unlike 

generic particle filter, our work does not use observations to weight particles for re-sampling.  

For instance, assuming that belief state 1B  has 100 particles and a transition occurs from belief state 1B  

to belief state 2B  with probability 0.95, there will be 95 particles in belief state 2B  after performing 

this transition. Third, every particle is tagged with unique symbol, which can be used to analyze the 

system possible evolution trajectories. 

A simple circuit shown in Figure 1 is used as an illustrative example. The relay in this circuit is 

modeled as an automaton with five discrete modes: S1: open, S2: closed, S3: stuck_open, S4: 

stuck_closed and S5: unknown. The mode transition is probabilistic. When the initial mode is S1: open 

with the command close, the possible successor modes include S2: closed, S3: stuck open and S5: 

unknown with the transition probability 0.989, 0.01 and 0.001, respectively. 

 

Figure 1. A simple circuit consisting of a battery, relay and a load. 

Figure 2 reports the LUG for this relay. The number of particles is set to 1000. Proposition layer tP  

and 1tP+  represent the possible belief states at time t and t + 1. Action layer tA  contains the transition 

events at time t. In this layer, controlled events and autonomous events are denoted by propositional 
logic formula and function, while idle events are drawn as dashed line. The effect layer tε +Δ  describes 

the possible transition effects after an infinitesimally time Δ  and depends on the proposition layer tP  

and action layer tA . According to the formal definition of classical belief state update in Section 2.3,  

the Prediction step in LUG is from proposition layer tP  to effect layer tε +Δ , and the Update step is 

between effect layer tε +Δ  and proposition layer 1tP+ . The label below each belief state contains the 

tagged particle ix . At time t, 1000 particles are initialized using prior distribution of current belief 

state. If current mode of relay is unknown, the uniform distribution will be adopted.  

First, the Prediction step is executed. Take a possible transition relation 
( 2 : , 1: , ,0.989)S closed S open cmd open=  for example, proposition logic 

( 2 : ) ( ) ( 1: )S closed cmd open S open=   is performed, and 200 0.989 198× ≈  particles are 

transitioned from 2 :S closed  to effect 1ϕ . After that, the observation at time step t + 1 is taken into 
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account. In case that the estimated belief state in effect 1ϕ  is consistent with observation 

( 1 1( ) | tstateconstraints yϕ += ), all the particles in effect 1ϕ  are moved further into belief state 1:S open . 

As can be seen from Figure 2, four possible belief states: S1, S3, S4 and S5 with 398, 200, 202 and 

200 particles are captured at time-step t + 1, and possible system evolution trajectories also can be 

obtained by the tagged particles. 

 

tP tA tε + 1tP+

1ϕ

2ϕ

3ϕ

1 200x x−

401 600x x−

601 800x x−

801 1000x x−

201 400x x−

201 398x x−

399 400x x−201 400x x−

1 398x x−

401 600x x−

399 400 601 800;x x x x− −

801 1000x x−  

Figure 2. Relay depicted by LUG. 

4. Proposed State Tracking and Fault Diagnosis Algorithm 

This section presents the dynamic diagnosis process of discrete systems based on LUG in greater 

detail. First of all, a novel one step look-ahead technique is introduced to capture the fault mode with 

low likelihood. Moreover, the overall algorithm is described. Finally, the correctness, incompleteness 

and computational complexity are analyzed from a theoretical view point. 

4.1. One Step Look-Ahead 

As mentioned earlier, this paper introduces unit weight particles to evaluate the likelihood of belief 

state and filter out a prohibitively large amount of unlikely belief states. However, unit weight particles 

will bring a serious problem called sample impoverishment. Now the relay example is also used to 

describe this situation. To simplify the problem, belief state estimation in a single time-step is 

illustrated by using one initial belief state S2 with 200 particles. As can be seen from Figure 3, 

Prediction step is firstly executed to generate two possible transition results: 1ϕ  with 198 particles and 

2ϕ  with two particles. Effect 3ϕ  is discarded, because it cannot be assigned a particle with the low 

transition probability 0.001. Then, Update step uses current observation to update belief state 

distribution. If successor belief state S1 at time t + 1 is in conflict with observation, only S4 will 

occupy all the 200 particles after normalization. In this case, classical method leads to losing the 

possible solution S5 resulted from effect 3ϕ . The reason is that fault events usually have a very low 

prior probability. When a system is in its normal condition, the high probability transition results are 
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consistent with observations, so only the solutions with low likelihood are removed. However, once a 

fault occurs, maybe no particles can transition into fault state. Therefore, the real fault cannot be 

reliably detected. 

tP tA +tε  1tP +

1ϕ

2ϕ

3ϕ

1 200x x− 1 200x x−

1 198x x−

199 200x x−

1 200x x−

 

Figure 3. Simple one-step belief state estimation. 

To tackle sample impoverishment problem, our proposed algorithm adopts a novel strategy that 

combines prior transition probability and observation information to choose the most likely successor 

belief states. In particular, best-first A* search [33] is employed to recursively calculate the a 

posteriori transition probability: 
i i i

R O TP P Pα= × ×  (9)

where i
OP  and i

TP  denote the observation probability and the prior probability for transition i, 

respectively. Once all the particles can be assigned according to a set of generated a posteriori 

transition probability 1 2{ , ,..., }iR R RP P P , the search process will be terminated. 

Unfortunately, computing the normalization term 
1

1 ( )
n

j j
O T

j

P Pα
=

= ×  exactly is intractable. 

Therefore, we transform this equation into another form, and then employ an approximate strategy to 

converge the real value: 

1 1 1

1 1 1

1 ( ) 1 ( )

1 ( ) 1 1 (1 )

n m n
j j j j j j

O T O T O T
j j j m

m m n
j j j j

O T T T
j j j m

P P P P P P

P P P P

α
= = = +

= = = +

= × = × + ×

= × = = −

  

  
 (10)

In Equation (10), all the possible transitions [1, ]j n=  are broken up into two parts: 

[1, ] [ 1, ]j m m n= + , where [1, ]m  denotes the consistent transitions whose successor belief states are 

entailed with observation ( 1oP = ), and [ 1, ]m n+  describes the inconsistent transitions whose successor 

belief states are refuted by the observation ( 0oP = ). Since it is hard to obtain all the inconsistent 

transitions [ 1, ]m n+  in each time-step, the normalization term can be approximated as follows: 
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1

: 1 (1 )
l

j
T

j

Pα
=

= −  (11)

where l  denotes a set of inconsistent transitions that have been generated during the enumeration 

process. Note that the normalization term needs to be recalculated, once a new inconsistent transition  

is determined. 

Table 1. Estimation process using look-ahead technique. 

Loop Path TP  OP RP  Number of Particles 

1 2 1S S→  0.989 0 0 0 
2 2 4S S→  0.01 1 0;0.91 182 
3 2 5S S→  0.001 1 0;0.91;0.09 18 

Table 1 shows the estimation process of the relay example using look-ahead technique, where RP  is 

a list to preserve all the obtained a posteriori transition probability. In first loop, path 2 1S S→  is 

generated. Since it is an inconsistent path, the a posteriori transition probability 1
RP  is set to 0. Second 

loop analyzes path 2 4S S→ , which is consistent with the observation. The a posteriori transition 

probability for this path is calculated as 2 0.01/ (1 0.989) 0.91RP = − ≈ . After that, we continue to generate 

the third path 2 5S S→ , because these two expanded paths cannot occupy all the 200 particles. 

Although the prior transition probability for this path is only 0.001, the a posteriori transition 

probability increases to 3 0.001/ (1 0.989) 0.09RP = − ≈ . Since 200 particles can be assigned using 

generated a posteriori transition probability list (0; 0.91; 0.09), the search is terminated. 

Correspondingly, belief state S4 and S5 own 182 and 18 particles. We see that our proposed algorithm 

can capture an additional belief state 5S , when compared to the traditional method. 

4.2. Description of the Approach 

Overall, our state tracking and fault diagnosis approach for dynamic systems are composed of two 

main steps: 

• A fast roll forward process that uses the forward propagation to extract the likely belief 

states at each time-step. 

• A quick roll back process using tagged particles to generate the possible trajectories. 

The roll forward process is shown in Algorithm 1. Since the procedures have been described in 

Section 4.1, we will not provide more explanations. 

Algorithm 2 describes the roll back process to generate the possible trajectories 

1 2{ , ,..., }nTrajectory T T T= , where trajectory ( , )n n nT Traj w=  can be defined as 

0 0 1 1 2{ , , , , ,...}nTraj B A B A B=  with corresponding weight nw . The key idea is to back-propagate using 

the serial number of each particle. In particular, if belief state 1tB −  and belief state tB  at adjacent  

time-steps capture the particles with the same serial number, a trajectory can be constructed between 
belief state 1tB −  and belief state tB , and the weight w  for this trajectory is the number of particles 

shared by both belief state 1tB −  and belief state tB . This algorithm is usually executed to analyze and 

evaluate the evolution history of the system, once the faults are detected. 
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Algorithm 1: Roll forward process 
1:  Input:    Initial belief state 1

0 0,..., nB B ; Number of the particles N 

2:  Output: LUG with the most likely belief state 0 ,... iB B at each time step 

3:  Sample N particles using the prior probability distribution 0( )P B  

4:  Add the initial belief state 1
0 0,..., nB B  to proposition layer 0P   

5:  For each time-step t >0 do 
6:        For each belief state i

tB in tP do 

7:             If all the particles can be assigned according to a set of obtained a posteriori transitions  
                       probability 1 2{ , ,...}R RP P Then break 

8:             Execute possible transitions 1: i j
t tk B B += →  and store the corresponding effect kϕ  into tε +Δ  

9:             If the successor belief state 1
j

tB +  is consistent with observation ty  

10:                  Save the belief state 1
j

tB + into proposition layer 1tP+   

11:                  Calculate the a posteriori transitions probability k
RP  

12:                  Insert k
RP  into a set of obtained a posteriori transitions probability 1 2{ , ,...}R RP P  

13:           Else 
14:                  Recalculate the normalization term α  
15:                  Update the set of obtained a posteriori transitions probability  1 2{ , ,...}R RP P  

16:           End If 
17:      End For 
18:    Assign the particles for the belief state 1tB + in 1tP+ according to a set of obtained a posteriori 

transitions probability 1 2{ , ,...}R RP P  

19: End For 

 

Algorithm 2: Roll back process 
1:  Input:    Label uncertainty graph LUG 
2:  Output: A set of possible trajectories 1 2{ , ,..., }nTrajectory T T T=  

3:  For each time-step t>0 do 
4:         For each belief state tB in proposition layer tP do 

5:               For each particle , 1,...,jp j N=  in belief state tB do 

6:                     Extract the belief state 1tB − in 1tP− which also contains the same particle jp  

7:                     Roll back to generate the trajectory 1 1{ , , }j t t tTraj B A B− −=  from tB to 1tB −  

8:                     Construct a new trajectory tuple ( , 1)j j jT Traj w= =  

9:                     Add jT  into obtained most likely trajectories  Trajectory  

10:                   Merge the same trajectory and update the weight  
11:               End For 
12:      End For 
13: End For 

The simple relay model is again considered as an example to further describe the combination of 

roll forward and roll back process. Assumed that only S2 with 1000 particles is available at time t − 1, 



Sensors 2015, 15 28042 

 

 

Command open is issued at time t − 1. At time t, S1 and S5 are consistent with observation. After 

executing command close at next time step, S3 and S5 match with measurement. Figure 4 shows the 

LUG structure for relay at these two successive time steps. It is easy to see that the probability of belief 

state S3 and S5 at time t + 1 are 90.8% and 9.2%. Three different evolution trajectories can be rolled 

back to obtain as Trajectory1 = {S2, open, S1, close, S3}, Trajectory2 = {S2, open, S1, close, S5} and 

Trajectory3 = {S2, open, S5, close, S5} with the probability 90.8%, 9.1% and 0.1%, respectively. 

-1tP -1tA -1 +tε （ ） tP

1ϕ

2ϕ

3ϕ

1 1000x x− 1 1000x x−

1 999x x−

1000x

tA +tε  1tP +

1ϕ

2ϕ

3ϕ

1 999x x−

1 908x x−

909 999x x−

909 1000x x−1000x

1 999x x−

1 908x x−

 

Figure 4. Two time-step state estimation using LUG for relay. 

4.3. Analysis of the Approach 

4.3.1. Correctness and Incompleteness 

Since the proposed approach runs for a whole observation period to track and diagnose the system, 

we should prove the correctness of the Prediction step and Update step at each single time-step. As 

mentioned earlier, the aim of the Prediction step is to estimate the system state at the next time-step 

based on the current belief state, commands and temporal constraints, while the Update step checks the 

consistency between observations and state constraints in the estimated system state. Struss and 

Dressler [34] derived a correctness result for the consistency test in a static system. This result is 

relevant to the present approach, because it guarantees the correctness of the Update step. In this 

subsection, we extend this analysis to our approximate simulation-based dynamic diagnosis. 

For the Prediction step, the proposition logics corresponding to the transition relation in each 

component model are performed to reason the possible successor modes. Without loss of generality, all 

the possible transition results in our proposed approach can be divided into three disjoint classes: 

• Case 1: the effect iϕ  can be assigned more than one particle according to the prior  

transition probability TP , and the observation is consistent with successor belief state  

(See path 2 in Figure 3). 
• Case 2: the effect iϕ  can also be distributed more than one particle, but the observation 

refutes the successor belief state (See path 1 in Figure 3). 
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• Case 3: the effect iϕ  cannot be assigned one particle using the prior transition probability 

TP  (See path 3 in Figure 3). 

For Case 1 and Case 2, these possible successor modes can be assigned more than one particle, and 

may be kept or dropped after the consistency test. In terms of Case 3, since these successor modes 

usually have low prior transition probability, the number of the remaining particles determines whether 

the proposed approach needs to check the consistency for these modes. Actually most of the 

probability space can be covered by just a few modes in the state estimation of discrete systems. If all 

the obtained belief distribution can reach the estimation accuracy determined by a predefined number 

of particles, all the remaining low likelihood modes can be discarded. 

On the basis of the above analysis, the present approach is more efficient than using a consistency 

test for every mode, and achieves a close enough approximation. Moreover, it can be implemented as 

an anytime algorithm, and the trade-off between accuracy and time efficiency can be achieved by 

varying the number of particles. Finally, this analysis process also reveals the correctness and 

incompleteness of our approach. 

4.3.2. Complexity 

In this subsection, the complexity in a single time-step will be analyzed. Previously, we assumed 

that the system to be diagnosed is modeled as n concurrent individual components with b possible 

successor modes, and the number of particles is p_num. In addition, the computational complexity for 

a single consistency test is evaluated as a constant C to simplify the problem. 

Martin et al. [23] analyzed the complexity of best-first A* search for a single initial state, and 

concluded that the best case complexity is roughly n b×  and the worst case complexity is nb . In terms 

of the roll forward process, since the number of all the possible successor modes is nb  in a single  

time-step, all the particles transition into the successor mode with the lowest prior probability in the 
worst case, and the complexity is roughly ( )n nO b b C+ × . In the best case, all the particles transition 

into the first possible successor mode, so the complexity is ( )O n b C× + . For the roll back process, the 

worst case has two different conditions: (1) all the particles exist in different modes ( _ np num b< ); or 

(2) each possible successor mode captures more than one particle ( _ np num b> ). Considering these 

two cases together, the complexity of this transversal process is (min( _ , ))nO p num b . On the other 

hand, the best case complexity is also (1)O  when all the particles are in a single mode. As a summary, 

Table 2 shows the complexity for our proposed algorithm. 

Table 2. The complexity for our proposed algorithm. 

 Best Case Worst Case 

Roll forward process ( )O n b C× + ( )n nO b b C+ ×  

Roll back process (1)O  (min( _ , ))nO p num b  

5. Experimental Results 

We apply our state tracking and fault diagnosis approach on a simulation model of a real-world 

system—a selected subset of the power supply control unit of a spacecraft. This subsystem, shown in 
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Figure 5, consists of an input Sig_in from a battery and five outputs: (1) output Sig_out1 directly 

connected to Load A; (2) output Sig_out2 connected to Load B that is controlled by relay K1;  

(3) output Sig_out3 connected to Load C that is controlled by hot backup DC/DC module (DC/DC_h); 

(4) output Sig_out4 connected to Load D that is controlled by both hot backup DC/DC module and 

relay K2; and (5) output Sig_out5 connected to Load E that is controlled by cool backup DC/DC 

module (DC/DC_c). An external actuator issues commands cmd1, cmd2, cmd3 and cmd4 to control the 

relay K1, K2 and cool backup module. In our experiment, six sensors are used to collect observations: 

system input: Sig_in and system outputs: Sig_out1, Sig_out2, Sig_out3, Sig_out4 and Sig_out5. 

The schematics of the hot backup DC/DC module and cool backup DC/DC module are presented in 

Figure 6. Four components main1, main2, spare1 and spare2 are voltage converting units. Figure 6a 

shows the hot backup DC/DC module. The function is that component selector selects the voltage with 

higher value from main1 and spare1 to output. In the cool backup DC/DC module (see Figure 6b), the 

external commands cmd3 or cmd4 switch relays K3 and K4 and determine the output voltage. 

 

Figure 5. Selected subset of the power supply control unit. 

 

Figure 6. DC/DC module. 
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This selected subset of the power supply control unit involves nine components: four voltage 

converting units, four relays and one selector. More specifically, the voltage converting unit has five 

different discrete modes: nominal (M1), overvoltage protection (M2), overvoltage protection failure 

(M3), voltage conversion failure (M4) and unknown mode (M5). Table 3 gives the mode transition 

matrix for this component. In addition, the relays and selector also contain five discrete modes. For 

lack of space, the transition matrixes for these components are not shown in this paper. Therefore, we 

can calculate that the system can potentially operate in roughly 95 1953125=  distinct modes at each 

time-step, and the full system trajectories will even reach up to 1953125t  as the system evolves. 

Table 3. The transition matrix for voltage converting unit. 

Source Mode Transition Constraint
Possible Successor Modes 

M1 M2 M3 M4 M5 

M1 sig_in < 97 0.989 0 0 0.01 0.001 

M1 
sig_in >= 97 

sig_in <= 103 
0.979 0 0 0.02 0.001 

M1 sig_in > 103 0 0.959 0.02 0.02 0.001 
M2 sig_in < 97 0.989 0 0 0.01 0.001 

M2 
sig_in >= 97 

sig_in <= 103 
0.979 0 0 0.02 0.001 

M2 sig_in > 103 0 0.959 0.02 0.02 0.001 
M3 - 0 0 1 0 0 
M4 - 0 0 0 1 0 
M5 - 0 0 0 0 1 

Several groups of simulations were conducted on a test set, which includes the nominal scenario 

and the occurrence of a fault in one, two components and three components at the same time. The 

experimental results refer to a C++ implementation of the diagnostic algorithm using a personal 

computer featuring an Intel (R) Core (TM) i3 CPU with 2.27 GHz, 4GB RAM (Lenovo, Kunshan, 

China), and are presented in the following subsections. 

5.1. Basic Results 

The aim of these simulations is to evaluate the space and time performance results of our state 

tracking and fault diagnosis method. For these simulations, nominal, single fault, two faults and three 

faults are considered, and the number of particles is set to 500. 

The good experimental time complexity results are confirmed by looking at the computational cost 

in terms of CPU time. Table 4 reports the average and the maximum CPU time for single-step mode 

estimation. The average time increases when more faults are injected. However, the CPU time is very 

low with three faults so that we claim that the algorithm can perform on-line. 

For the belief state search problem, the number of expanded nodes is used to measure the space 

performance of algorithms. Moreover, since the consistency function usually consumes plenty of 

computing resources, the so-called times of consistency function are also employed to qualitatively 

evaluate the time performance. On the basis of the above consideration, the average and maximum 

number for these two values are also evaluated in Table 5. As expected, these two values will increase 
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slowly as more faults are considered, and generally reach a maximum value at the fault detection time, 

because a large amount of nodes are expanded to check the consistency with observation at that time. 

Table 4. Time statistics with single-step mode estimation (confidence 95%). 

Scenario  Average Time (ms) Max Time (ms) 

Nominal 29.725 ± 0.634 85.46 
Single Fault 67.873 ± 1.770 143.68 

Double Faults 93.661 ± 5.198 328.65 
Three Faults 103.759 ± 6.866 423.57 

Table 5. The sizes of expanded nodes and the called times of consistency function per time 

step (confidence 95%). 

Scenario 
Expanded Nodes Called Times of Consistency Function

Average Number Max Number Average Number Max Number 

Nominal 96.538 ± 1.6221 116 8.2000 ± 0.1384 18 
Single Fault 103.455 ± 2.8798 151 14.4000 ± 0.6728 46 

Double Faults 108.727 ± 3.0792 202 22.7000 ± 1.8675 110 
Three Faults 115.545 ± 5.3045 273 24.5000 ± 2.1935 128 

5.2. Number of Particles 

In this subsection, we conduct a set of simulations in the nominal scenario with 10 time-steps to test 

the sensitivity of the number of particles to the performance of our approach. The number of particles 

varies from 100 to 1000 and typical experimental results are shown in Figure 7. As can be seen from 

this figure, the performance of our method is relevant to the number of particles. As the number of 

particles increases, more belief states and trajectories are obtained, and the time consumption also goes up. 

 

Figure 7. Effect of the number of particles. 
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5.3. Comparison with Other Algorithms 

We now compare the performance of our approach with two k best methods: (1) k best BFTE 

algorithm and (2) k best CDA* algorithm with respect to the following aspects: (1) estimation accuracy; 

(2) the consumed time as the number of obtained belief states increases; and (3) the sensitivity of 

different approaches’ performance to estimation time steps. 

 

Figure 8. Probability density maintained over time. 

As discussed earlier, k best methods choose k best trajectories or belief states to track system 

dynamics, and the value of k determines their estimation accuracy and performance. Blackmore et al. [35] 

pointed out that their estimation accuracy depends on whether or not k is large enough for real belief 

state distribution. In other words, when the distribution over belief state is relatively flat, k best 

methods maybe lead to losing the solution. Compared to these methods, our approach is robust for this 

situation. Generally speaking, the number of particles directly determines the estimation accuracy in 

our approach. Assumed that 100 particles are used, the loss of belief state probability density is less 

than 1% at each time step. If the particles increase to 500 or 1000, the loss will reduce to less than 

0.2% or even 0.1%. Therefore, the number of obtained belief states at each time-step is dynamic 

adaptive and critically dependent on current belief state distribution. For a relatively concentrated 

distribution, our algorithm just needs to calculate a smaller number of belief states. On the other hand, 

more belief states will be obtained, when the desired distribution is relatively flat. Figure 8 shows the 

maintained belief state probability density over many cycles. Since the k best CDA* algorithm only 

improves computational performance but not estimation accuracy when compared to k best BFTE 

algorithm, only k best CDA* algorithm is shown in this figure. It is easy to find that the reduction in 

probability density is exponential in the number of time steps for both LUG and k best algorithm, but 

the rate of decay is clearly slow for our proposed method. 

In second experiment, we investigate a set of simulations with 10 time-steps to show the time 
consumption of different algorithms varying predefined parameter. In Table 6, PN , BN  and TN  

denote the number of particles, belief states and trajectories, respectively. It is easy to see that k best 

CDA* algorithm has a better time performance than the k best BFTE algorithm. Moreover, the 
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difference between the proposed approach and k best CDA* algorithm can be analyzed in case that the 
same number of belief states BN  or trajectories TN  are obtained. When the k value is smaller than 3, 

the time performance of k best CDA* algorithm is good enough. However, when the k value is set to 
10 ( 10TN = ), k best CDA* algorithm captures four belief states, but the time result is 4185.69 ms.  

On the other hand, the proposed method ( 100pN = ) can captures eight belief states, and only 

consumes 263.87 ms. Therefore, the proposed method achieves more estimation accuracy and 

consumes less time, and this advantage becomes significantly apparent as the number of obtained belief 

states or trajectories increases. 

Table 6. The time consumption of different algorithms (confidence 95%). 

LUG BFTE CDA* 

PN  BN  TN  Time (ms) TN BN Time (ms) TN BN  Time (ms) 

100 8 35 263.87 ± 0.21 1 1 51.97 ± 0.08 1 1 27.38 ± 0.03 
200 8 67 276.70 ± 0.25 2 2 156.89 ± 0.12 2 2 82.15 ± 0.05 
300 8 117 277.38 ± 0.32 3 3 489.86 ± 0.43 3 3 194.76 ± 0.45 
400 8 117 289.23 ± 0.47 4 3 809.56 ± 0.54 4 3 375.23 ± 0.49 
500 8 152 292.08 ± 0.63 5 3 1352.88 ± 0.61 5 3 587.18 ± 0.58 
600 9 174 541.17 ± 0.67 6 3 2307.51 ± 0.65 6 3 961.42 ± 0.69 
700 13 280 559.83 ± 0.71 7 3 3573.87 ± 0.73 7 3 1276.36 ± 0.76
800 24 337 640.24 ± 0.77 8 3 4922.32 ± 0.82 8 3 2058.53 ± 0.71
900 25 408 638.71 ± 0.81 9 3 6214.18 ± 1.03 9 3 3468.74 ± 0.92

1000 28 419 692.72 ± 0.85 10 4 8446.02 ± 1.15 10 4 4185.69 ± 0.97

 

Figure 9. The performance results for different time step. 

Figure 9 shows the performance results as the estimated time-step increases for the third experiment. 

The number of particles in our approach is set to 100 and 500, while both BFTE and CDA* consider 

the value of k as 1 and 5 together. As can be seen from Figure 9a, the time consumption of BFTE and 

CDA* with k = 5 increase sharply, and the other curves go up smoothly. Since Figure 9a cannot clearly 

show the differences among our approach, BFTE and CDA* with single-estimation, Figure 9b zooms 

in these curves. This figure shows that our approach with 500 particles has more time consumption 

than 100 particles. It is in line with our previous analysis in Section 5.2. Similarly, we can also see that 

single-estimate results for BFTE and CDA* outperform our approach. 
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As a summary, k best BFTE and CDA* algorithm are well suited for a system with a relatively 

concentrated belief state distribution, while our approach can be applied for the systems with either 

concentrated or flat distributions. Moreover, our approach has better estimation accuracy and 

outperforms the k best BFTE and CDA* algorithms for sufficiently sized belief states. 

6. Conclusions 

In this paper, we propose a novel simulation-based fault diagnosis approach, which models the 

systems as concurrent probabilistic automata and applies LUG to state tracking and fault diagnosis of 

these systems. Moreover, the MC technique is introduced into this scheme, so our algorithm is anytime, 

and can balance between accuracy and time efficiency by varying the number of particles. On the one hand, 

the particles control the breadth of best-first A* search and maintain most likely belief states; on the other 

hand, the tagged particles can be used to generate system evolution trajectories. Finally, this paper analyzes 

the sample impoverishment problem resulted from the MC technique, and employs a novel recursively one 

step look-ahead strategy to mitigate this situation and improve the estimation accuracy. 

The method has been successfully applied to a non-trivial real-world example: a power supply 

control unit of a spacecraft. The experimental results show its satisfactory performance including 

estimation accuracy, time and space complexity. It is also possible to diagnose the system without 

making any simplifying assumption such as single fault. In future work, we will introduce some 

variance into our predefined probability transition matrix, because the fixed transition probability in 

our experiment is relatively simple. Moreover, distributed diagnosis techniques can efficiently 

decrease the computational complexity for large-scale complex systems, so this is another research 

direction for the future. 
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