
Sensors 2015, 15, 28031-28051; doi:10.3390/s151128031

sensors
ISSN 1424-8220

www.mdpi.com/journal/sensors

Article

State Tracking and Fault Diagnosis for Dynamic Systems Using
Labeled Uncertainty Graph

Gan Zhou, Wenquan Feng, Qi Zhao * and Hongbo Zhao

School of Electronic and Information Engineering, Beihang University, Beijing 100191, China;

E-Mails: zhouganterry@hotmail.com (G.Z.); buaafwq@buaa.edu.cn (W.F.); bhzhb@buaa.edu.cn (H.Z.)

* Author to whom correspondence should be addressed; E-Mail: zhaoqi@buaa.edu.cn;

Tel.: +86-10-8231-7211.

Academic Editor: Vittorio M. N. Passaro

Received: 19 July 2015 / Accepted: 29 October 2015 / Published: 5 November 2015

Abstract: Cyber-physical systems such as autonomous spacecraft, power plants and

automotive systems become more vulnerable to unanticipated failures as their complexity

increases. Accurate tracking of system dynamics and fault diagnosis are essential. This

paper presents an efficient state estimation method for dynamic systems modeled as

concurrent probabilistic automata. First, the Labeled Uncertainty Graph (LUG) method in

the planning domain is introduced to describe the state tracking and fault diagnosis

processes. Because the system model is probabilistic, the Monte Carlo technique is

employed to sample the probability distribution of belief states. In addition, to address the

sample impoverishment problem, an innovative look-ahead technique is proposed to

recursively generate most likely belief states without exhaustively checking all possible

successor modes. The overall algorithms incorporate two major steps: a roll-forward

process that estimates system state and identifies faults, and a roll-backward process that

analyzes possible system trajectories once the faults have been detected. We demonstrate

the effectiveness of this approach by applying it to a real world domain: the power supply
control unit of a spacecraft.

Keywords: dynamic systems; fault diagnosis; concurrent probabilistic automata;

Monte Carlo technique; labeled uncertainty graph

OPEN ACCESS

Sensors 2015, 15 28032

1. Introduction

Today’s real-world engineering systems are a product of careful design and manufacturing. These

systems usually undergo rigorous testing and validation before deployment. However, due to wear and

tear from sustained operations, degradation and faults in system components still occur. In addition,

unlikely events and unanticipated situations can also create faults. To avoid these negative effects, it is

imperative to accurately track system behavior and timely detect and isolate faults [1–4].

Model-based diagnosis techniques are frequently used to solve these problems. The key idea is to

detect the discrepancies between the actual system behavior and the predictions of a model [5].

Traditionally, two distinct scientific communities have employed different kinds of models to

implement their own model-based diagnosis:

• The Fault Detection and Isolation (FDI) methods capture system behavior using differential

equation models, whose foundations are based on control and statistical decision theories.

• The Diagnosis (DX) methods use qualitative model and logical approaches, with foundations in

the fields of computer science and artificial intelligence.

More specifically, the FDI community has proposed three typical methods to track and diagnose

system behavior using the system model: (1) parameter estimation based methods that estimate the

value of particular parameter [6]; (2) state estimation based methods that use observers or filters to

estimate unknown variables [7]; and (3) parity space based methods that design a set of residuals by

eliminating the unknown variables [5]. On the other hand, many researchers in DX community assume

that the system can be modeled as a Discrete Event System (DES) [8] at some level of abstraction. A

DES model is characterized by a set of discrete states, a set of observable and unobservable events, and

transitions between discrete states. The dynamic behavior of DES is described by partitioning time into

discrete points at which events occur [9]. On the basis of this system model, the goal of diagnosis is to

find unobservable fault events or discrete fault states. Until now, this technique has been widely applied

into many domains such as power transmission lines [10] and telecommunication networks [11,12].

Over the years, some researchers and practitioners in both communities are dedicated their efforts to

understanding and bridging the FDI and DX approaches. Cordier et al. [13] gave a systematic

comparison of the analytical redundancy relations (ARR) and conflicts, but their analysis was only

applied to the diagnosis of static systems. Bregon et al. [14] compared three different structural fault

isolation techniques from both communities for linear continuous dynamic systems. Meanwhile,

Travé-Massuyès [15] further discussed the facets of diagnosis in the FDI and DX communities, and

exemplified how different theories of these areas can be synergistically combined to provide better

diagnostic solutions and achieve improved fault management.

In this paper, we only focus on the DX area. In this area, a typical diagnosis approach of DES is

based on a diagnoser [16,17], which uses a deterministic finite state machine without emitted events.

The diagnosis problem is addressed by compiling the original finite state machine into one that

contains only observable transitions and produces the same language in terms of observations. The

weakness of this approach is the feasibility of the compilation of the large-scale complex system model

into a reasonable size. Some approaches were put forward to overcome this dilemma such as off-line

compiler technique [18], distributed diagnosis [19] and hierarchical diagnosis [20].

Sensors 2015, 15 28033

Simulation-based approach [21,22] is another general method. In this approach, the temporal

evolution of system is decomposed into a set of state constraints that hold for the state at each

time-step and a set of sequence constraints that restrict the possible transition sequences of such state,

so the diagnosis process is performed by checking whether the state constraints and sequence

constraints are consistent with the observations. The main problem of this approach is that the number

of all possible system trajectories becomes too large to process only after a few time steps.

To address this problem, Williams [21] and Kurien [22] proposed a k Best-First Trajectory

Enumeration (BFTE). Unfortunately, trajectory probability is significantly underestimated in this

approach, because it ignores the additional trajectories that lead to the same state. Considering this

shortcoming, Martin [23] presented a k Best-First Belief State Enumeration (BFBSE) that increases

estimator accuracy and uses less memory and computation time. After that, Williams and Ragno [24]

introduced a conflict-based A* (CDA*) search algorithm into these methods, so the belief state search

process is further accelerated by eliminating subspaces around each state that are inconsistent with

observations. For these k best methods, how to choose a suitable k value is the key issue. For real-time

operation, a large value usually brings more computational complexity, while a small one loses

estimator accuracy and even results in misdiagnosis. Moreover, symbolic techniques are also a feasible

method. [9] exploited Ordered Binary Decision Diagrams (OBDD) to encode system model and belief

state, so the complete belief state can be estimated. However, it still limits its applicability to relatively

simple system.

This paper develops a novel approximate simulation-based approach to track both a variety of

operational modes of the system and arbitrary combinations of fault conditions, which will enable to

determine the most likely system states and trajectories for dynamic diagnosis. First of all, LUG [25] is

introduced to describe online monitoring and fault diagnosis of discrete systems. Moreover, the LUG

scheme employs the Monte Carlo (MC) technique to sample belief state distribution. The differences

between our approach and classical MC technique are twofold. First, the particles in our approach are

only focused on sample but not on-line filtering, and particles are assumed to be unit weight

throughout simulation. Second, every particle is tagged with unique symbol, so the system evolution

trajectories can be easily obtained, and numerous trajectories do not need to be preserved as system

evolves. Finally, since Monte Carlo techniques incur sample impoverishment problem, the observation

information is combined with prior information to recursively generate the most likely belief states.

Although this technique of using observation information has been employed in the literatures [7]

and [26], our approach does not need to exhaustively consider all possible successor modes, so it can

cope with large number of discrete modes.

The rest of this paper is structured as follows: Section 2 gives some basic definitions about

component and system model, simulation-based dynamic diagnosis, and classical belief state update.

Section 3 introduces the LUG to describe the dynamic diagnosis process of discrete systems.

In Section 4, our approach is formally illustrated and analyzed in detail. Section 5 describes the

experimental results on a real-world model: a portion of the power supply control unit of spacecraft.

Finally, a conclusion is presented in the last section.

Sensors 2015, 15 28034

2. Theoretical Background

This section summarizes basic formalisms and concepts for dynamic diagnosis. The notion of time

adopted in this paper consists of a discrete sequence of time step, which is derived from the

assumption that the system can be viewed as a synchronous transition system [22].

2.1. Component and System Model

Supposed that the system to be diagnosed has n individual components, the component model can

be built as a tuple:

(, ,)iG CV CS δ= (1)

where:

• CV (component variable) is a set of variables for component i. It can be partitioned into mode

variables, command variables and attribute variables. Mode variables define the possible behavioral

modes for component. Command variables are the external controlled signals. Attribute variables

include inputs, outputs and any other variables used to define the behavior of the component.

• CS (component constraint) is a set of formulas constraints, which consists of mode constraints

and other constraints. Mode constraints define the physical behavior in certain mode. Other

constraints denote the remaining unchanged constraints i.e., structure constraints.
• δ (transition relation) is denoted as a tuple 1(, , ,)t tS S Guard Prob+ from time t to time t + 1. tS

and 1tS + are the mode assignment at time t and t + 1, respectively. Guard is the transition event.

Some events are observable (e.g., commands issued from external actuator), while the rest are

unobservable (e.g., autonomous or fault events). Prob is a transition probability from tS to 1tS + .

The overall system model G is modeled as a composition of synchronous operation on components.

Formally, we can give definition of system model as follows:

1 2(... , ,)nG G G G SV SC=    (2)

where 1 2, ,..., nG G G denote the n component model of the system. SV (system variable) is a set of

system I/O variables, which establishes the interconnection with the outside world. SC (system

constraint) is a set of constraints that captures the interconnections among components.

2.2. Simulation-Based Dynamic Diagnosis

In this subsection, we firstly give the formal definition of static diagnosis, and then extend it into

simulation-based dynamic diagnosis. For static systems, the aim of diagnosis problem is to check the

joint consistency between observation and a set of constraints including component constraints and

system constraints [27]. Since the constraints for each component depend on certain nominal or fault

behavior mode, the formal definition of static diagnosis can be given as follow:

() |y stateconstraints mode ≠⊥ (3)

where y is the observation. State constraints ()stateconstraints mode are composed of the component

constraints in particular behavior mode mode and system constraints.

Sensors 2015, 15 28035

If the observations are available not just for one snapshot of system behavior, but for a whole

observation period, the diagnosis for static systems will be extended into dynamic systems. The

behavior model for dynamic systems not only has the state constraints, but also the relations between

states across time:

() () ()dynamicmodel mode stateconstraints mode temporalconstraints mode=  (4)

According to the definition of component model, the relations between states
()temporalconstraints mode correspond to the transition relation δ . Therefore, the dynamic diagnosis

must check the individual observation snapshot for consistency with the state constraints, and satisfy

the restriction of the pairs of adjacent states, which can be denoted as:

() () |y stateconstraints mode temporalconstraints mode ≠⊥  (5)

Formally, the definition of simulation-based dynamic system is modeled as follow:

0(, ,)SBDS G B σ= (6)

where:

• G is an entire system model.
• 0 1,0 2,0 ,0(, ,...,)nB S S S= is the initial belief state, which is constituted by the mode for each

component at time step 0.
• σ is a observation sequence 0 1(, ,..., ,...)t ly y y y , where ty are the observation variables or

command variables at time step t.

On the basis of Equations (5) and (6), the aim of simulation-based dynamic diagnosis is to find the
system state tB at each time step t, which is consistent with observation ty , and is transitioned

from 1tB − .

2.3. Classical Belief State Update

A well known problem of model-based diagnosis is that the number of possible trajectories will

become so large to be unmanageable as the system evolves. Typically, the number of trajectory

hypotheses is exponential in the number of discrete modes and time steps considered. A general

solution is the introduction of a preference criterion among belief states.

Most of the preference criteria are based on quantitative probability. A belief state is a probability

distribution over the states of a system, which represents the likelihood of the system in any single

state given observation and command sequence. Assuming that the system is Markovian, the belief

state is then computed using standard Hidden Markov Model (HMM) belief state update equations:

1 1: 1 1 1: 1 1 1 1 1:

1 1 1 1:

(|) (| ,) (|) (|)

(|) (|) (|)
i
t

j j j j
t t t t t t t t t

j j i i
t t t t t t

B

P B y P B y y P y B P B y

P y B P B B P B y

α
α

+ + + + + + +

+ + +

= =

=  (7)

where α denotes the normalization term. This process is known as recursive estimation [28].
It includes two steps: Prediction, in which given a current belief state prior distribution 1:(|)i

t tP B y , belief

Sensors 2015, 15 28036

state estimator selects a possible transition model 1= (|)j i
T t tP P B B+ to predict a new state; Update, in which

the predicted state is compared with an observation model 1 1(|)j
O t tP P y B+ += to adjust the probability.

For simulation-based dynamic diagnosis, the Prediction step uses transition relation

()temporalconstraints mode to propagate the system dynamics into the future by only considering the

current belief state and commands, while the Update step evaluates the estimates by checking the

consistency between observation y and state constraints ()stateconstraints mode . In this paper, the

observation probability distribution 1 1(|)j
O t tP P y B+ += is defined using a consistency approach similar

to the Livingstone [21,22], and can be calculated as follow:

1 1
1 1

1 1

1 () |
(|)

0 () |

j
j t t

O t t j
t t

if stateconstraints B y
P P y B

if stateconstraints B y
+ +

+ +
+ +

 =
= =  ≠

 (8)

3. Exploitation of LUG for State Tracking and Fault Diagnosis

A planning graph represents a relaxed look-ahead of the belief state space that identifies

propositions reachable at different depths. It can be typically described as layered graphs of vertices

()0 0 1, ,.., , , ,...t t tP A A P A− , where each level t consists of a proposition layer tP and an action layer tA .

More specifically, proposition layer tP denotes the set of propositions at level t, while action layer tA

includes all actions that have all of their precondition propositions in tP . Edges between the layers

describe the propositions in action preconditions (from 1tP− to 1tA −) and effects (from 1tA − to tP) [29].

LUG, proposed by Bryce [25,29,30], extends traditional planning graph in the following two ways.

Firstly, since uncertainty is considered in Bryce’s approach, an extra effect layer tε +Δ is introduced

into each level t, where 0Δ → . An effect is in the effect layer tε +Δ if its associated action is in the

action layer tA and every one of its antecedent propositions is in tP . As a result, the uncertainty

planning graph can be denoted as a sequence of layers ()0 0 0 1 (1), , ,.., , , , ,...t t t tP A A P Aε ε+Δ − − +Δ . Secondly,

LUG implicitly represents multiple uncertainty planning graphs by collapsing the graph connectivity

into one uncertainty planning graph and uses annotations, called labels, to retain information about

multiple worlds. Bryce has successfully applied this data structure to solve the probabilistic

conformant planning problem with actions whose effects are uncertain.

The probabilistic conformant planning problem is closely related to state tracking and fault

diagnosis of discrete systems [31], because the task of generating most likely belief states to match

given observations can be viewed as a probabilistic plan generation problem. In particular, both two

problems exhibit many similar features, such as finite state space, the uncertainty of the initial state

and action effects, reachable goals and so on. Therefore, LUG is introduced to represent dynamic

diagnosis process of discrete systems. Proposition layer, action layer and effect layer in LUG

correspond to the possible belief states, transition events and the possible results of transition in

simulation-based dynamic diagnosis.
In order to address the exponential increasing problem of possible belief states, the Monte Carlo (MC)

technique [32] is employed to sample belief states in our method. First, unlike the traditional method

using exact quantitative probability, we turn to approximation of probability by means of particles. The

number of particles in a particular belief state represents the likelihood of this belief state. This

approximate strategy allows our approach to focus on the highly probable belief states, without

Sensors 2015, 15 28037

checking a prohibitively large number of unlikely belief states. Second, the MC technique in this paper

is only used for sampling, and particles are assumed to be unit weight throughout simulation. Unlike

generic particle filter, our work does not use observations to weight particles for re-sampling.

For instance, assuming that belief state 1B has 100 particles and a transition occurs from belief state 1B

to belief state 2B with probability 0.95, there will be 95 particles in belief state 2B after performing

this transition. Third, every particle is tagged with unique symbol, which can be used to analyze the

system possible evolution trajectories.

A simple circuit shown in Figure 1 is used as an illustrative example. The relay in this circuit is

modeled as an automaton with five discrete modes: S1: open, S2: closed, S3: stuck_open, S4:

stuck_closed and S5: unknown. The mode transition is probabilistic. When the initial mode is S1: open

with the command close, the possible successor modes include S2: closed, S3: stuck open and S5:

unknown with the transition probability 0.989, 0.01 and 0.001, respectively.

Figure 1. A simple circuit consisting of a battery, relay and a load.

Figure 2 reports the LUG for this relay. The number of particles is set to 1000. Proposition layer tP

and 1tP+ represent the possible belief states at time t and t + 1. Action layer tA contains the transition

events at time t. In this layer, controlled events and autonomous events are denoted by propositional
logic formula and function, while idle events are drawn as dashed line. The effect layer tε +Δ describes

the possible transition effects after an infinitesimally time Δ and depends on the proposition layer tP

and action layer tA . According to the formal definition of classical belief state update in Section 2.3,

the Prediction step in LUG is from proposition layer tP to effect layer tε +Δ , and the Update step is

between effect layer tε +Δ and proposition layer 1tP+ . The label below each belief state contains the

tagged particle ix . At time t, 1000 particles are initialized using prior distribution of current belief

state. If current mode of relay is unknown, the uniform distribution will be adopted.

First, the Prediction step is executed. Take a possible transition relation
(2 : , 1: , ,0.989)S closed S open cmd open= for example, proposition logic

(2 :) () (1:)S closed cmd open S open=  is performed, and 200 0.989 198× ≈ particles are

transitioned from 2 :S closed to effect 1ϕ . After that, the observation at time step t + 1 is taken into

Sensors 2015, 15 28038

account. In case that the estimated belief state in effect 1ϕ is consistent with observation

(1 1() | tstateconstraints yϕ +=), all the particles in effect 1ϕ are moved further into belief state 1:S open .

As can be seen from Figure 2, four possible belief states: S1, S3, S4 and S5 with 398, 200, 202 and

200 particles are captured at time-step t + 1, and possible system evolution trajectories also can be

obtained by the tagged particles.

tP tA tε + 1tP+

1ϕ

2ϕ

3ϕ

1 200x x−

401 600x x−

601 800x x−

801 1000x x−

201 400x x−

201 398x x−

399 400x x−201 400x x−

1 398x x−

401 600x x−

399 400 601 800;x x x x− −

801 1000x x−

Figure 2. Relay depicted by LUG.

4. Proposed State Tracking and Fault Diagnosis Algorithm

This section presents the dynamic diagnosis process of discrete systems based on LUG in greater

detail. First of all, a novel one step look-ahead technique is introduced to capture the fault mode with

low likelihood. Moreover, the overall algorithm is described. Finally, the correctness, incompleteness

and computational complexity are analyzed from a theoretical view point.

4.1. One Step Look-Ahead

As mentioned earlier, this paper introduces unit weight particles to evaluate the likelihood of belief

state and filter out a prohibitively large amount of unlikely belief states. However, unit weight particles

will bring a serious problem called sample impoverishment. Now the relay example is also used to

describe this situation. To simplify the problem, belief state estimation in a single time-step is

illustrated by using one initial belief state S2 with 200 particles. As can be seen from Figure 3,

Prediction step is firstly executed to generate two possible transition results: 1ϕ with 198 particles and

2ϕ with two particles. Effect 3ϕ is discarded, because it cannot be assigned a particle with the low

transition probability 0.001. Then, Update step uses current observation to update belief state

distribution. If successor belief state S1 at time t + 1 is in conflict with observation, only S4 will

occupy all the 200 particles after normalization. In this case, classical method leads to losing the

possible solution S5 resulted from effect 3ϕ . The reason is that fault events usually have a very low

prior probability. When a system is in its normal condition, the high probability transition results are

Sensors 2015, 15 28039

consistent with observations, so only the solutions with low likelihood are removed. However, once a

fault occurs, maybe no particles can transition into fault state. Therefore, the real fault cannot be

reliably detected.

tP tA +tε  1tP +

1ϕ

2ϕ

3ϕ

1 200x x− 1 200x x−

1 198x x−

199 200x x−

1 200x x−

Figure 3. Simple one-step belief state estimation.

To tackle sample impoverishment problem, our proposed algorithm adopts a novel strategy that

combines prior transition probability and observation information to choose the most likely successor

belief states. In particular, best-first A* search [33] is employed to recursively calculate the a

posteriori transition probability:
i i i

R O TP P Pα= × × (9)

where i
OP and i

TP denote the observation probability and the prior probability for transition i,

respectively. Once all the particles can be assigned according to a set of generated a posteriori

transition probability 1 2{ , ,..., }iR R RP P P , the search process will be terminated.

Unfortunately, computing the normalization term
1

1 ()
n

j j
O T

j

P Pα
=

= × exactly is intractable.

Therefore, we transform this equation into another form, and then employ an approximate strategy to

converge the real value:

1 1 1

1 1 1

1 () 1 ()

1 () 1 1 (1)

n m n
j j j j j j

O T O T O T
j j j m

m m n
j j j j

O T T T
j j j m

P P P P P P

P P P P

α
= = = +

= = = +

= × = × + ×

= × = = −

  

  
 (10)

In Equation (10), all the possible transitions [1,]j n= are broken up into two parts:

[1,] [1,]j m m n= + , where [1,]m denotes the consistent transitions whose successor belief states are

entailed with observation (1oP =), and [1,]m n+ describes the inconsistent transitions whose successor

belief states are refuted by the observation (0oP =). Since it is hard to obtain all the inconsistent

transitions [1,]m n+ in each time-step, the normalization term can be approximated as follows:

Sensors 2015, 15 28040

1

: 1 (1)
l

j
T

j

Pα
=

= − (11)

where l denotes a set of inconsistent transitions that have been generated during the enumeration

process. Note that the normalization term needs to be recalculated, once a new inconsistent transition

is determined.

Table 1. Estimation process using look-ahead technique.

Loop Path TP OP RP Number of Particles

1 2 1S S→ 0.989 0 0 0
2 2 4S S→ 0.01 1 0;0.91 182
3 2 5S S→ 0.001 1 0;0.91;0.09 18

Table 1 shows the estimation process of the relay example using look-ahead technique, where RP is

a list to preserve all the obtained a posteriori transition probability. In first loop, path 2 1S S→ is

generated. Since it is an inconsistent path, the a posteriori transition probability 1
RP is set to 0. Second

loop analyzes path 2 4S S→ , which is consistent with the observation. The a posteriori transition

probability for this path is calculated as 2 0.01/ (1 0.989) 0.91RP = − ≈ . After that, we continue to generate

the third path 2 5S S→ , because these two expanded paths cannot occupy all the 200 particles.

Although the prior transition probability for this path is only 0.001, the a posteriori transition

probability increases to 3 0.001/ (1 0.989) 0.09RP = − ≈ . Since 200 particles can be assigned using

generated a posteriori transition probability list (0; 0.91; 0.09), the search is terminated.

Correspondingly, belief state S4 and S5 own 182 and 18 particles. We see that our proposed algorithm

can capture an additional belief state 5S , when compared to the traditional method.

4.2. Description of the Approach

Overall, our state tracking and fault diagnosis approach for dynamic systems are composed of two

main steps:

• A fast roll forward process that uses the forward propagation to extract the likely belief

states at each time-step.

• A quick roll back process using tagged particles to generate the possible trajectories.

The roll forward process is shown in Algorithm 1. Since the procedures have been described in

Section 4.1, we will not provide more explanations.

Algorithm 2 describes the roll back process to generate the possible trajectories

1 2{ , ,..., }nTrajectory T T T= , where trajectory (,)n n nT Traj w= can be defined as

0 0 1 1 2{ , , , , ,...}nTraj B A B A B= with corresponding weight nw . The key idea is to back-propagate using

the serial number of each particle. In particular, if belief state 1tB − and belief state tB at adjacent

time-steps capture the particles with the same serial number, a trajectory can be constructed between
belief state 1tB − and belief state tB , and the weight w for this trajectory is the number of particles

shared by both belief state 1tB − and belief state tB . This algorithm is usually executed to analyze and

evaluate the evolution history of the system, once the faults are detected.

Sensors 2015, 15 28041

Algorithm 1: Roll forward process
1: Input: Initial belief state 1

0 0,..., nB B ; Number of the particles N

2: Output: LUG with the most likely belief state 0 ,... iB B at each time step

3: Sample N particles using the prior probability distribution 0()P B

4: Add the initial belief state 1
0 0,..., nB B to proposition layer 0P

5: For each time-step t >0 do
6: For each belief state i

tB in tP do

7: If all the particles can be assigned according to a set of obtained a posteriori transitions
 probability 1 2{ , ,...}R RP P Then break

8: Execute possible transitions 1: i j
t tk B B += → and store the corresponding effect kϕ into tε +Δ

9: If the successor belief state 1
j

tB + is consistent with observation ty

10: Save the belief state 1
j

tB + into proposition layer 1tP+

11: Calculate the a posteriori transitions probability k
RP

12: Insert k
RP into a set of obtained a posteriori transitions probability 1 2{ , ,...}R RP P

13: Else
14: Recalculate the normalization term α
15: Update the set of obtained a posteriori transitions probability 1 2{ , ,...}R RP P

16: End If
17: End For
18: Assign the particles for the belief state 1tB + in 1tP+ according to a set of obtained a posteriori

transitions probability 1 2{ , ,...}R RP P

19: End For

Algorithm 2: Roll back process
1: Input: Label uncertainty graph LUG
2: Output: A set of possible trajectories 1 2{ , ,..., }nTrajectory T T T=

3: For each time-step t>0 do
4: For each belief state tB in proposition layer tP do

5: For each particle , 1,...,jp j N= in belief state tB do

6: Extract the belief state 1tB − in 1tP− which also contains the same particle jp

7: Roll back to generate the trajectory 1 1{ , , }j t t tTraj B A B− −= from tB to 1tB −

8: Construct a new trajectory tuple (, 1)j j jT Traj w= =

9: Add jT into obtained most likely trajectories Trajectory

10: Merge the same trajectory and update the weight
11: End For
12: End For
13: End For

The simple relay model is again considered as an example to further describe the combination of

roll forward and roll back process. Assumed that only S2 with 1000 particles is available at time t − 1,

Sensors 2015, 15 28042

Command open is issued at time t − 1. At time t, S1 and S5 are consistent with observation. After

executing command close at next time step, S3 and S5 match with measurement. Figure 4 shows the

LUG structure for relay at these two successive time steps. It is easy to see that the probability of belief

state S3 and S5 at time t + 1 are 90.8% and 9.2%. Three different evolution trajectories can be rolled

back to obtain as Trajectory1 = {S2, open, S1, close, S3}, Trajectory2 = {S2, open, S1, close, S5} and

Trajectory3 = {S2, open, S5, close, S5} with the probability 90.8%, 9.1% and 0.1%, respectively.

-1tP -1tA -1 +tε （ ） tP

1ϕ

2ϕ

3ϕ

1 1000x x− 1 1000x x−

1 999x x−

1000x

tA +tε  1tP +

1ϕ

2ϕ

3ϕ

1 999x x−

1 908x x−

909 999x x−

909 1000x x−1000x

1 999x x−

1 908x x−

Figure 4. Two time-step state estimation using LUG for relay.

4.3. Analysis of the Approach

4.3.1. Correctness and Incompleteness

Since the proposed approach runs for a whole observation period to track and diagnose the system,

we should prove the correctness of the Prediction step and Update step at each single time-step. As

mentioned earlier, the aim of the Prediction step is to estimate the system state at the next time-step

based on the current belief state, commands and temporal constraints, while the Update step checks the

consistency between observations and state constraints in the estimated system state. Struss and

Dressler [34] derived a correctness result for the consistency test in a static system. This result is

relevant to the present approach, because it guarantees the correctness of the Update step. In this

subsection, we extend this analysis to our approximate simulation-based dynamic diagnosis.

For the Prediction step, the proposition logics corresponding to the transition relation in each

component model are performed to reason the possible successor modes. Without loss of generality, all

the possible transition results in our proposed approach can be divided into three disjoint classes:

• Case 1: the effect iϕ can be assigned more than one particle according to the prior

transition probability TP , and the observation is consistent with successor belief state

(See path 2 in Figure 3).
• Case 2: the effect iϕ can also be distributed more than one particle, but the observation

refutes the successor belief state (See path 1 in Figure 3).

Sensors 2015, 15 28043

• Case 3: the effect iϕ cannot be assigned one particle using the prior transition probability

TP (See path 3 in Figure 3).

For Case 1 and Case 2, these possible successor modes can be assigned more than one particle, and

may be kept or dropped after the consistency test. In terms of Case 3, since these successor modes

usually have low prior transition probability, the number of the remaining particles determines whether

the proposed approach needs to check the consistency for these modes. Actually most of the

probability space can be covered by just a few modes in the state estimation of discrete systems. If all

the obtained belief distribution can reach the estimation accuracy determined by a predefined number

of particles, all the remaining low likelihood modes can be discarded.

On the basis of the above analysis, the present approach is more efficient than using a consistency

test for every mode, and achieves a close enough approximation. Moreover, it can be implemented as

an anytime algorithm, and the trade-off between accuracy and time efficiency can be achieved by

varying the number of particles. Finally, this analysis process also reveals the correctness and

incompleteness of our approach.

4.3.2. Complexity

In this subsection, the complexity in a single time-step will be analyzed. Previously, we assumed

that the system to be diagnosed is modeled as n concurrent individual components with b possible

successor modes, and the number of particles is p_num. In addition, the computational complexity for

a single consistency test is evaluated as a constant C to simplify the problem.

Martin et al. [23] analyzed the complexity of best-first A* search for a single initial state, and

concluded that the best case complexity is roughly n b× and the worst case complexity is nb . In terms

of the roll forward process, since the number of all the possible successor modes is nb in a single

time-step, all the particles transition into the successor mode with the lowest prior probability in the
worst case, and the complexity is roughly ()n nO b b C+ × . In the best case, all the particles transition

into the first possible successor mode, so the complexity is ()O n b C× + . For the roll back process, the

worst case has two different conditions: (1) all the particles exist in different modes (_ np num b<); or

(2) each possible successor mode captures more than one particle (_ np num b>). Considering these

two cases together, the complexity of this transversal process is (min(_ ,))nO p num b . On the other

hand, the best case complexity is also (1)O when all the particles are in a single mode. As a summary,

Table 2 shows the complexity for our proposed algorithm.

Table 2. The complexity for our proposed algorithm.

 Best Case Worst Case

Roll forward process ()O n b C× + ()n nO b b C+ ×

Roll back process (1)O (min(_ ,))nO p num b

5. Experimental Results

We apply our state tracking and fault diagnosis approach on a simulation model of a real-world

system—a selected subset of the power supply control unit of a spacecraft. This subsystem, shown in

Sensors 2015, 15 28044

Figure 5, consists of an input Sig_in from a battery and five outputs: (1) output Sig_out1 directly

connected to Load A; (2) output Sig_out2 connected to Load B that is controlled by relay K1;

(3) output Sig_out3 connected to Load C that is controlled by hot backup DC/DC module (DC/DC_h);

(4) output Sig_out4 connected to Load D that is controlled by both hot backup DC/DC module and

relay K2; and (5) output Sig_out5 connected to Load E that is controlled by cool backup DC/DC

module (DC/DC_c). An external actuator issues commands cmd1, cmd2, cmd3 and cmd4 to control the

relay K1, K2 and cool backup module. In our experiment, six sensors are used to collect observations:

system input: Sig_in and system outputs: Sig_out1, Sig_out2, Sig_out3, Sig_out4 and Sig_out5.

The schematics of the hot backup DC/DC module and cool backup DC/DC module are presented in

Figure 6. Four components main1, main2, spare1 and spare2 are voltage converting units. Figure 6a

shows the hot backup DC/DC module. The function is that component selector selects the voltage with

higher value from main1 and spare1 to output. In the cool backup DC/DC module (see Figure 6b), the

external commands cmd3 or cmd4 switch relays K3 and K4 and determine the output voltage.

Figure 5. Selected subset of the power supply control unit.

Figure 6. DC/DC module.

Sensors 2015, 15 28045

This selected subset of the power supply control unit involves nine components: four voltage

converting units, four relays and one selector. More specifically, the voltage converting unit has five

different discrete modes: nominal (M1), overvoltage protection (M2), overvoltage protection failure

(M3), voltage conversion failure (M4) and unknown mode (M5). Table 3 gives the mode transition

matrix for this component. In addition, the relays and selector also contain five discrete modes. For

lack of space, the transition matrixes for these components are not shown in this paper. Therefore, we

can calculate that the system can potentially operate in roughly 95 1953125= distinct modes at each

time-step, and the full system trajectories will even reach up to 1953125t as the system evolves.

Table 3. The transition matrix for voltage converting unit.

Source Mode Transition Constraint
Possible Successor Modes

M1 M2 M3 M4 M5

M1 sig_in < 97 0.989 0 0 0.01 0.001

M1
sig_in >= 97

sig_in <= 103
0.979 0 0 0.02 0.001

M1 sig_in > 103 0 0.959 0.02 0.02 0.001
M2 sig_in < 97 0.989 0 0 0.01 0.001

M2
sig_in >= 97

sig_in <= 103
0.979 0 0 0.02 0.001

M2 sig_in > 103 0 0.959 0.02 0.02 0.001
M3 - 0 0 1 0 0
M4 - 0 0 0 1 0
M5 - 0 0 0 0 1

Several groups of simulations were conducted on a test set, which includes the nominal scenario

and the occurrence of a fault in one, two components and three components at the same time. The

experimental results refer to a C++ implementation of the diagnostic algorithm using a personal

computer featuring an Intel (R) Core (TM) i3 CPU with 2.27 GHz, 4GB RAM (Lenovo, Kunshan,

China), and are presented in the following subsections.

5.1. Basic Results

The aim of these simulations is to evaluate the space and time performance results of our state

tracking and fault diagnosis method. For these simulations, nominal, single fault, two faults and three

faults are considered, and the number of particles is set to 500.

The good experimental time complexity results are confirmed by looking at the computational cost

in terms of CPU time. Table 4 reports the average and the maximum CPU time for single-step mode

estimation. The average time increases when more faults are injected. However, the CPU time is very

low with three faults so that we claim that the algorithm can perform on-line.

For the belief state search problem, the number of expanded nodes is used to measure the space

performance of algorithms. Moreover, since the consistency function usually consumes plenty of

computing resources, the so-called times of consistency function are also employed to qualitatively

evaluate the time performance. On the basis of the above consideration, the average and maximum

number for these two values are also evaluated in Table 5. As expected, these two values will increase

Sensors 2015, 15 28046

slowly as more faults are considered, and generally reach a maximum value at the fault detection time,

because a large amount of nodes are expanded to check the consistency with observation at that time.

Table 4. Time statistics with single-step mode estimation (confidence 95%).

Scenario Average Time (ms) Max Time (ms)

Nominal 29.725 ± 0.634 85.46
Single Fault 67.873 ± 1.770 143.68

Double Faults 93.661 ± 5.198 328.65
Three Faults 103.759 ± 6.866 423.57

Table 5. The sizes of expanded nodes and the called times of consistency function per time

step (confidence 95%).

Scenario
Expanded Nodes Called Times of Consistency Function

Average Number Max Number Average Number Max Number

Nominal 96.538 ± 1.6221 116 8.2000 ± 0.1384 18
Single Fault 103.455 ± 2.8798 151 14.4000 ± 0.6728 46

Double Faults 108.727 ± 3.0792 202 22.7000 ± 1.8675 110
Three Faults 115.545 ± 5.3045 273 24.5000 ± 2.1935 128

5.2. Number of Particles

In this subsection, we conduct a set of simulations in the nominal scenario with 10 time-steps to test

the sensitivity of the number of particles to the performance of our approach. The number of particles

varies from 100 to 1000 and typical experimental results are shown in Figure 7. As can be seen from

this figure, the performance of our method is relevant to the number of particles. As the number of

particles increases, more belief states and trajectories are obtained, and the time consumption also goes up.

Figure 7. Effect of the number of particles.

Sensors 2015, 15 28047

5.3. Comparison with Other Algorithms

We now compare the performance of our approach with two k best methods: (1) k best BFTE

algorithm and (2) k best CDA* algorithm with respect to the following aspects: (1) estimation accuracy;

(2) the consumed time as the number of obtained belief states increases; and (3) the sensitivity of

different approaches’ performance to estimation time steps.

Figure 8. Probability density maintained over time.

As discussed earlier, k best methods choose k best trajectories or belief states to track system

dynamics, and the value of k determines their estimation accuracy and performance. Blackmore et al. [35]

pointed out that their estimation accuracy depends on whether or not k is large enough for real belief

state distribution. In other words, when the distribution over belief state is relatively flat, k best

methods maybe lead to losing the solution. Compared to these methods, our approach is robust for this

situation. Generally speaking, the number of particles directly determines the estimation accuracy in

our approach. Assumed that 100 particles are used, the loss of belief state probability density is less

than 1% at each time step. If the particles increase to 500 or 1000, the loss will reduce to less than

0.2% or even 0.1%. Therefore, the number of obtained belief states at each time-step is dynamic

adaptive and critically dependent on current belief state distribution. For a relatively concentrated

distribution, our algorithm just needs to calculate a smaller number of belief states. On the other hand,

more belief states will be obtained, when the desired distribution is relatively flat. Figure 8 shows the

maintained belief state probability density over many cycles. Since the k best CDA* algorithm only

improves computational performance but not estimation accuracy when compared to k best BFTE

algorithm, only k best CDA* algorithm is shown in this figure. It is easy to find that the reduction in

probability density is exponential in the number of time steps for both LUG and k best algorithm, but

the rate of decay is clearly slow for our proposed method.

In second experiment, we investigate a set of simulations with 10 time-steps to show the time
consumption of different algorithms varying predefined parameter. In Table 6, PN , BN and TN

denote the number of particles, belief states and trajectories, respectively. It is easy to see that k best

CDA* algorithm has a better time performance than the k best BFTE algorithm. Moreover, the

Sensors 2015, 15 28048

difference between the proposed approach and k best CDA* algorithm can be analyzed in case that the
same number of belief states BN or trajectories TN are obtained. When the k value is smaller than 3,

the time performance of k best CDA* algorithm is good enough. However, when the k value is set to
10 (10TN =), k best CDA* algorithm captures four belief states, but the time result is 4185.69 ms.

On the other hand, the proposed method (100pN =) can captures eight belief states, and only

consumes 263.87 ms. Therefore, the proposed method achieves more estimation accuracy and

consumes less time, and this advantage becomes significantly apparent as the number of obtained belief

states or trajectories increases.

Table 6. The time consumption of different algorithms (confidence 95%).

LUG BFTE CDA*

PN BN TN Time (ms) TN BN Time (ms) TN BN Time (ms)

100 8 35 263.87 ± 0.21 1 1 51.97 ± 0.08 1 1 27.38 ± 0.03
200 8 67 276.70 ± 0.25 2 2 156.89 ± 0.12 2 2 82.15 ± 0.05
300 8 117 277.38 ± 0.32 3 3 489.86 ± 0.43 3 3 194.76 ± 0.45
400 8 117 289.23 ± 0.47 4 3 809.56 ± 0.54 4 3 375.23 ± 0.49
500 8 152 292.08 ± 0.63 5 3 1352.88 ± 0.61 5 3 587.18 ± 0.58
600 9 174 541.17 ± 0.67 6 3 2307.51 ± 0.65 6 3 961.42 ± 0.69
700 13 280 559.83 ± 0.71 7 3 3573.87 ± 0.73 7 3 1276.36 ± 0.76
800 24 337 640.24 ± 0.77 8 3 4922.32 ± 0.82 8 3 2058.53 ± 0.71
900 25 408 638.71 ± 0.81 9 3 6214.18 ± 1.03 9 3 3468.74 ± 0.92

1000 28 419 692.72 ± 0.85 10 4 8446.02 ± 1.15 10 4 4185.69 ± 0.97

Figure 9. The performance results for different time step.

Figure 9 shows the performance results as the estimated time-step increases for the third experiment.

The number of particles in our approach is set to 100 and 500, while both BFTE and CDA* consider

the value of k as 1 and 5 together. As can be seen from Figure 9a, the time consumption of BFTE and

CDA* with k = 5 increase sharply, and the other curves go up smoothly. Since Figure 9a cannot clearly

show the differences among our approach, BFTE and CDA* with single-estimation, Figure 9b zooms

in these curves. This figure shows that our approach with 500 particles has more time consumption

than 100 particles. It is in line with our previous analysis in Section 5.2. Similarly, we can also see that

single-estimate results for BFTE and CDA* outperform our approach.

Sensors 2015, 15 28049

As a summary, k best BFTE and CDA* algorithm are well suited for a system with a relatively

concentrated belief state distribution, while our approach can be applied for the systems with either

concentrated or flat distributions. Moreover, our approach has better estimation accuracy and

outperforms the k best BFTE and CDA* algorithms for sufficiently sized belief states.

6. Conclusions

In this paper, we propose a novel simulation-based fault diagnosis approach, which models the

systems as concurrent probabilistic automata and applies LUG to state tracking and fault diagnosis of

these systems. Moreover, the MC technique is introduced into this scheme, so our algorithm is anytime,

and can balance between accuracy and time efficiency by varying the number of particles. On the one hand,

the particles control the breadth of best-first A* search and maintain most likely belief states; on the other

hand, the tagged particles can be used to generate system evolution trajectories. Finally, this paper analyzes

the sample impoverishment problem resulted from the MC technique, and employs a novel recursively one

step look-ahead strategy to mitigate this situation and improve the estimation accuracy.

The method has been successfully applied to a non-trivial real-world example: a power supply

control unit of a spacecraft. The experimental results show its satisfactory performance including

estimation accuracy, time and space complexity. It is also possible to diagnose the system without

making any simplifying assumption such as single fault. In future work, we will introduce some

variance into our predefined probability transition matrix, because the fixed transition probability in

our experiment is relatively simple. Moreover, distributed diagnosis techniques can efficiently

decrease the computational complexity for large-scale complex systems, so this is another research

direction for the future.

Acknowledgments

This research was supported by the Aeronautics Fund of China under contract number

2013ZD51055 and China Scholarship Council under contract number 201306020068.

Author Contributions

Gan Zhou and Wenquan Feng developed the overall algorithm and wrote the manuscript; Qi Zhao

performed the simulation and experiments; Hongbo Zhao analyzed the experimental data and reviewed

the manuscript.

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Roychoudhury, I.; Biswas, G.; Koutsoukos, X. Designing distributed diagnosers for complex

continuous systems. IEEE Trans. Autom. Sci. 2009, 6, 277–290.

2. Yi, C.; Lin, J.; Zhang, W.; Ding, J. Faults Diagnostics of Railway Axle Bearings Based on IMF’s

Confidence Index Algorithm for Ensemble EMD. Sensors 2015, 15, 10991–11011.

Sensors 2015, 15 28050

3. Lv, Y.; Zhu, Q.; Yuan, R. Fault Diagnosis of Rolling Bearing Based on Fast Nonlocal Means and

Envelop Spectrum. Sensors 2015, 15, 1182–1198.

4. Ranjbar, A.M.; Shirani, A.R.; Fathi, A.F. A new approach for fault location problem on power

lines. IEEE Trans. Power Deliv. 1992, 7, 146–151.

5. Gertler, J. Fault Detection and Diagnosis in Engineering Systems; CRC Press: New York, NY,

USA, 1998.

6. Jiang, T.; Khorasani, K.; Tafazoli, S. Parameter estimation-based fault detection, isolation and

recovery for nonlinear satellite models. IEEE Trans. Control Syst. Technol. 2008, 16, 799–808.

7. Dearden, R.; Willeke, T.; Simmons, R.; Verma, V.; Hutter, F.; Thrun, S. Real-time fault detection

and situational awareness for rovers: Report on the mars technology program task. In Proceedings

of the IEEE Aerospace Conference, Moffett Field, CA, USA, 6–13 March 2004; pp. 826–840.

8. Zaytoon, J.; Lafortune, S. Overview of fault diagnosis methods for Discrete Event Systems.

Annu. Rev. Control. 2013, 37, 308–320.

9. Torta, G.; Torasso, P. An on-line approach to the computation and presentation of preferred

diagnoses for dynamic systems. AI Commun. 2007, 20, 93–116.

10. Cerutti, S.; Lamperti, G.; Scaroni, M.; Zanella, M.; Zanni, D. A diagnostic environment for

automaton networks. Softw. Pract. Exp. 2007, 37, 365–415.

11. Pencolé, Y.; Cordier, M.O.; Rozé, L. A decentralized model-based diagnostic tool for complex

systems. Int. J. Artif. Intell. Tools 2002, 11, 327–346.

12. Pencolé, Y.; Cordier, M.O. A formal framework for the decentralised diagnosis of large scale

discrete event systems and its application to telecommunication networks. Artif. Intell. 2005, 164,

121–170.

13. Cordier, M.O.; Dague, P.; Lévy, F.; Montmain, J.; Staroswiecki, M.; Travé-Massuyès, L.

Conflicts versus analytical redundancy relations: A comparative analysis of the model based

diagnosis approach from the artificial intelligence and automatic control perspectives.

IEEE Trans. Syst. Man Cybern. Part B Cybern. 2004, 34, 2163–2177.

14. Bregon, A.; Biswas, G.; Pulido, B.; Alonso-Gonzalez, C.; Khorasgani, H. A Common Framework

for Compilation Techniques Applied to Diagnosis of Linear Dynamic Systems. IEEE Trans. Syst.

Man Cybern. Syst. 2014, 44, 863–876.

15. Travé-Massuyès, L. Bridging control and artificial intelligence theories for diagnosis: A survey.

Eng. Appl. Artif. Intell. 2014, 27, 1–16.

16. Sampath, M.; Sengupta, R.; Lafortune, S.; Sinnamohideen, K.; Teneketzis, D.C. Failure diagnosis

using discrete-event models. IEEE Trans. Control Syst. Technol. 1996, 4, 105–124.

17. Sampath, M.; Sengupta, R.; Lafortune, S.; Sinnamohideen, K.; Teneketzis, D. Diagnosability of

discrete-event systems. IEEE Trans. Autom. Control 1995, 40, 1555–1575.

18. Schumann, A.; Pencolé, Y.; Thiébaux, S. A Spectrum of Symbolic On-Line Diagnosis

Approaches. In Proceedings of the 18th International Workshop on Principles of Diagnosis,

Nashville, TN, USA, 29–31 May 2007; pp. 194–199.

19. Baroni, P.; Lamperti, G.; Pogliano, P.; Zanella, M. Diagnosis of large active systems. Artif. Intell.

1999, 110, 135–183.

20. Mohammadi-Idghamishi, A.; Hashtrudi-Zad, S. Hierarchical fault diagnosis: Application to an

ozone plant. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 2007, 37, 1040–1047.

Sensors 2015, 15 28051

21. Williams, B.C.; Nayak, P.P. A model-based approach to reactive self-configuring systems. In

Proceedings of the National Conference on Artificial Intelligence, Portland, OR, USA, 4–8 August

1996; pp. 971–978.

22. Kurien, J.; Nayak, P.P. Back to the future for consistency-based trajectory tracking. In Proceedings

of the National Conference on Artificial Intelligence, Austin, TX, USA, 30 July–3 August 2000;

pp. 370–377.

23. Martin, O.B.; Williams, B.C.; Ingham, M.D. Diagnosis as approximate belief state enumeration

for probabilistic concurrent constraint automata. In Proceedings of the National Conference on

Artificial Intelligence, Pittsburgh, PA, USA, 9–13 July 2005; pp. 321–326.

24. Williams, B.C.; Ragno, R.J. Conflict-directed A* and its role in model-based embedded systems.

Discret. Appl. Math. 2007, 155, 1562–1595.

25. Bryce, D.; Kambhampati, S.; Smith, D.E. Planning graph heuristics for belief space search.

J. Artif. Intell. Res. 2006, 26, 35–99.

26. Wang, M.; Dearden, R. Detecting and learning unknown fault states in hybrid diagnosis.

In Proceedings of the 20th International Workshop on Principles of Diagnosis, Stockholm,

Sweden, 14–17 June 2009; pp. 19–26.

27. Reiter, R. A theory of diagnosis from first principles. Artif. Int. 1987, 32, 57–95.

28. Verma, I.; Thrun, S.; Simmons, R. Variable resolution particle filter. In Proceedings of the

International Joint Conference of Artificial Intelligence, Acapulco, Mexico, 9–15 August 2003;

pp. 976–981.

29. Bryce, D.; Cushing, W.; Kambhampati, S. State agnostic planning graphs: Deterministic,

non-deterministic, and probabilistic planning. Artif. Int. 2011, 175, 848–889.

30. Bryce, D. Scalable Planning under Uncertainty. Ph.D. Thesis, Arizona State University, Tempe,

AZ, USA, 2007.

31. Haslum, P.; Grastien, A. Diagnosis as planning: Two case studies. In Proceedings of the

International Scheduling and Planning Applications workshop, Freiburg, Germany, 11–16 June 2011.

32. Gilks, W.R. Markov Chain Monte Carlo; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2005.

33. Russell, S.; Norvig, P. Artificial Intelligence: A Modern Approach, 3rd ed.; Prentice Hall: Upper

Saddle River, NJ, USA, 2010.

34. Struss, P.; Dressler, O. “Physical Negation” Integrating Fault Models into the General Diagnostic

Engine. In Proceedings of the International Joint Conference of Artificial Intelligence, Detroit, MI,

USA, 20–25 August 1989.

35. Blackmore, L.; Funiak, S.; Williams, B.C. A combined stochastic and greedy hybrid estimation

capability for concurrent hybrid models with autonomous mode transitions. Robot. Auton. Syst.

2008, 56, 105–129.

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article

distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/4.0/).

