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Abstract: We have developed a novel algorithm for sEMG feature extraction and 

classification. It is based on a hybrid network composed of spiking and artificial neurons. 

The spiking neuron layer with mutual inhibition was assigned as feature extractor. We 

demonstrate that the classification accuracy of the proposed model could reach high values 

comparable with existing sEMG interface systems. Moreover, the algorithm sensibility for 

different sEMG collecting systems characteristics was estimated. Results showed rather 

equal accuracy, despite a significant sampling rate difference. The proposed algorithm was 

successfully tested for mobile robot control. 
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1. Introduction 

Human machine interface (HMI) development is one of the modern trends in global 

interdisciplinary sciences and technologies. Generally the HMI is built using biomimetic signals 

including electroencephalography (EEG) and electromyography (EMG). The HMI is extremely 

important in the development of control systems for medical rehabilitation devices such as limb 

prostheses, exoskeletons, training setups, as well as for remote control of autonomous robots and 

avatars. At present the HMI based only on EEG has a number of limitations related primarily to the 
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need of a large number of recording channels at the input and poor ability to recognize commands on 

the output. Surface electromyography (sEMG) has advantages in this context. 

In the problem of external device control by sEMG one can use several strategies. Simple methods 

based on single-channel recording permit one to detect thresholds or to implement proportional control 

in case of continuous monitoring for certain characteristics of the sEMG. Multichannel recording 

considerably expands the control capabilities based on the sEMG. At the same time, it requires 

additional signal processing features such as classification (e.g., recognition) of sEMG patterns and 

multichannel regression proposed in recent studies [1,2]. Pattern classification was combined with 

command control and, hence, can be used in the case when the control device was equipped with an 

autonomous, local low-level control system capable of implementing some macro commands. 

In streaming classification, one usually does not use row data representing a sensor signal digitized 

at high sampling frequency. For classification, the sampling rate can be significantly lower than the 

data acquisition rate. The data stream is segmented into certain time windows, analyzed for each 

window, and then fed to the classifier. When a large number of features must be detected, different 

dimension reduction algorithms were applied. 

Artificial neural networks (ANN) represent one of the effective tools currently used for pattern 

recognition in many applications, both as classifiers and for dimension reduction. Moreover, neuron 

networks can be further implemented in neuro-interfaces providing along with signal processing 

conditional feedback to the nervous system. In this sense they can be regarded as an artificial 

continuation or expansion of the nervous system. Note, however, that a natural interface (in terms of 

analog signal characteristics) between living neurons (projected outside by muscle systems or the 

peripheral nervous system) requires quite detailed biological models of the artificial neurons used in 

the ANNs. One of the possible candidates for such models is a spiking neuron providing pulse 

excitation responding to an incoming stimulus and possessing many important features of living 

neurons [3]. In recent years researchers have noted the great potential of spiking neurons in many 

applications [4]. The use of spiking neurons as classifiers in pattern recognition problems of visual 

information recorded from a silicon retina [5], and in simulation of sound information processing in 

the auditory cortex [6] has been reported. Evolving spiking networks were also applied for recognition 

of spatio-temporal patterns [7]. Regarding streaming signal processing, the successful use of spiking 

neurons was reported in the task of speech recognition [8], in EEG studies with recognition of positive 

and negative peaks caused by potential P300 [9], as well as in detection of epileptiform conformal 

activity [10].  

In this paper we propose an ANN composed of spiking neurons capable of processing sEMG 

signals with high degree of fidelity compared with existing algorithmic classifiers. Communicating 

with spikes the system can be integrated with HMI based on the sEMG. The spiking neurons  

inter-connected with some perceptron-like architecture provide effective feature extraction with 

classification based on a back propagation error algorithm. 

2. Models and Methods 

The experiments involved 17 healthy research subjects (male and female) aged from 20 to 56 years. 

The study complied with the Declaration of Helsinki (Finland) adopted in June 1964 and revised in 
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October 2000 (Edinburgh, Scotland) and was approved by the Ethics Committee of Lobachevsky 

University. All subjects gave their written informed consent. 

Surface EMG registration was performed using two wireless MYO™ Thalmic and DELSYS® 

Trigno™ myographic setups. The first device targeted daily use by subjects as a sEMG-based HMI 

without any special training. To test our algorithms with data collected from a specialized myographic 

setup we used a DELSYS® Trigno™. The sampling rates in the MYO™ Thalmic and DELSYS® 

Trigno™ were 400 Hz and 2000 Hz, respectively. We used eight channel mode for signal registration. 

Location of the electrodes was determined by the form-factor of the MYO bracelet—a ring around the 

forearm (Figure 1). This placement of the electrodes in some sense complicated the task of the sEMG 

pattern recognition compared with experiments where the electrode position was guided by 

localization of motor points of the studied muscles (see, for example, [11]).  

  

Left Right 

Figure 1. Electrode placement: DELSYS® Trigno™ wireless sensors (left) and MYO™ 

Thalmic bracelet (right). 

The classification procedure involves collection of input data in some groups further referred to as 

classes. At the learning stage the classifier was introduced with a selection of a well-known set of input 

data and output classes. Then, the recognition process started again with the trained classifier. The goal 

was to identify certain class among the input data. The sEMG signals were used as the input data, and 

motor patterns, e.g., static hand gestures, were used as the output (Figure 2). During the experiment, all 

participants were asked to produce four series of nine gestures lasting 2–3 s in a random order. 

Between different gestures the wrist relaxed. For training and testing samples recording motor patterns 

are logged using the graphical user interface of the MyoClass software. 

Root Mean Square (RMS) of the signals was applied to calculate the muscle contraction amplitude. 

For each channel, we segmented the data into a window size of 40 samples (100 ms). This cropping 

was performed with a step size of 20 samples (50 ms). Next, RMS for each window was calculated: 

N
2

n

n 1

1
RMS  x

N 

   (1) 

where N is number of signal values in a time window, xn is signal value at time n. 
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To extract features from the sEMG signal by this approach we apply a pulse neuron model proposed 

by Izhekevich [12]: 

I+u+V+V=
dt

dV
14050.04 2  (2) 

 ubVa=
dt

du
  (3) 

with the auxiliary after-spike resetting: 

duucthenVmVifV  ,,30  (4) 

where V accounts for transmembrane potential, u is an auxiliary variable, a, b, c, d are the model 

parameters, I denotes the current applied to the membrane from the outside. The model can exhibit firing 

patterns of all known types of neurons with the choice of only four parameters. We used parameters 

reproducing “regular spiking” neuron dynamics [12]. Figure 3 (upper panel) shows the spike generation 

of this neuron in response to irregular pulse stimulation. Moreover, Izhikevich’s model has high 

computational efficiency that is important in design of real-time recognition systems [13]. 

 

Figure 2. Static gestures, using as motor patterns for EMG pattern recognition. 

The synaptic resource (implies a neurotransmitter) was used as the output neuronal signal yi(t), 

while the number of resources released in synapses with each spike was described by the model of 

short-term frequency-dependent plasticity proposed by Tsodyks and Markram [14]: 
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where x, y, z denote synaptic resource portion (mediator) located respectively in the reduced, active 

and inactivated states, tsp is the time moment of spike appearance, u is the variable responsible for the 

frequency-dependent facilitation/depression, τrec, τI, τfacil account for the characteristic times of the 

synaptic dynamics. The model can describe the decrease of synaptic responses in the case of high 

frequency spiking (depression) and the increase in the case of low frequency (facilitation). Figure 3 

(button panel) illustrates both effects. 

 

Figure 3. The example of dynamics of spiking neuron described by Izhekevich’s model 

and its output described by model of Tsodyks and Markram. Parameter values: a = 0.02,  

b = 0.2, c = −65, d = 8, U = 0.5, τrec = 100 ms, τI = 10 ms, τfacil = 1000 ms. 

Next, we used a multi-layer artificial neural network as the classifier based on the backpropagation 

learning rule. In a series of preliminary experiments where the RMS was used as a feature, parameters 

of the classifier were chosen to ensure a better recognition accuracy. As a result, we generated a 

network consisting of two layers of nine neurons in each layer. We used the sigmoid activation 

function. The learning rate was 0.01 (arb. units). In the learning process the classification error was 

calculated for the training and test set. It served as a criterion to stop the error increase for the test 

sample. It required approximately 1000–4000 iterations (epochs) for the training set, which took about 

15–60 s of calculation time on a PC equipped with a processor like the Intel® Core i3. 
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To test our feature extraction model in a real-time working HMI we included it in an on-line 

recognition system controlling a mobile robot. The robot was built from a LEGO NXT Mindstorms® 

kit. The wireless communication between the robot, the EMG system and the PC running the 

MyoClass software was implemented through a Bluetooth® interface. The on-line recognition system 

used the classifier preliminary (off-line) trained for the subject. The software generated 10 Hz 

commands to the robot corresponding to the recognized gesture. 

3. Feature Extraction by Spiking Neurons 

To use the spiking neuron as a features extractor, we assign it as a virtual sensory neuron by 

applying an external current drive directly to it. For this purpose we introduced the current I in 

Izhekevich’s model (2) as the sum of synaptic current, Isyn, and virtual stimulator current Ist. The 

synaptic current was calculated as the sum of weighted outputs of the neurons. We set the virtual 

stimulator current as absolute value of sEMG signal multiplying by a coefficient k: 

 EMG(t)k+(t)ygwIII ii

i

istsyn    
(9) 

where wi is a weight of the connection with i-th neuron, gi is the output current scaling coefficient, yi(t) 

is the output of the i-th neuron, and EMG(t) denotes a recorded sEMG signal. We assigned all 

connected neurons to be inhibitory, therefore gi was taken negative. We considered neuron output y(t) 

as a continuously changing feature which was monitored at certain discrete time steps defined by the 

classifier sampling frequency. Figure 4 illustrates the example of the input signal applied to the 

sensory spiking neuron (e.g., the sEMG signal) and its spiking dynamics in the output (e.g., the feature 

of sEMG signal).  

 

Figure 4. The dynamics of spiking neuron used as a feature extractor. Parameter values:  

a = 0.02, b = 0.2, c = −65, d = 8, U = 0.05, τrec = 1 ms, τI = 200 ms, τfacil = 1 ms, k = 2 × 106. 



Sensors 2015, 15 27900 

 

 

Next, we associated each of eight sEMG channels with eight real-time working spiking  

neurons (2–8). Each 50 ms values of their outputs were projected to the inputs of formal neurons for 

learning and classification. In simulations, we fixed the following parameters: a = 0.02, b = 0.2,  

c = –65, d = 8, U = 0.05, τrec = 1 ms, τI = 200 ms, τfacil = 1 ms and k = 2 × 106 (Figure 4). Primary 

spiking neurons were not connected with each other. In this model the feature extraction demonstrated 

a classification accuracy about 1%–3% worse compared with traditional model based on RMS (1). 

In sEMG we used the array of electrodes located in a ring with a small distance from each other. To 

improve signal processing efficiency for such closely located electrodes one can realize lateral 

inhibition in the detection strategy. The lateral inhibition represents a natural way to identify a desired 

signal and the widely presented in living organisms. In this mechanism neuron excitation (e.g., spikes) 

via inhibitory inter-neurons suppress the activity of neighboring neurons. In particular, it permits one 

to increase the contrast and spatial resolution of signal processing in sensory system [15]. 

Furthermore, we applied lateral inhibition in sEMG signal detection. We designed the network so that 

all sensory spiking neurons had equal inhibitory connections with each other. Figure 5 illustrates 

resulting hybrid neural network system solving the task of detection and classification of sEMG patterns. 

 

Figure 5. Hybrid neural network recognized sEMG patterns. Squares denote electrodes, 

blue circles illustrate spiking neurons with synaptic nodes, and red circles are formal 

neurons. Resulting motion class (No.4 in this case) is determined by the last layer neuron 

with maximal output (C4). 

Use of spiking neurons with mutual inhibition as feature extractors permitted us to achieve a 

classification accuracy comparable with RMS (see Tables 1 and 2). The inhibitory connections had the 

following parameters: w = 0.5, g = 60. One can compare the activity of virtual sensory neuron in the 

network with lateral inhibition (Figure 6) with the activity of equivalent neuron in isolated mode (e.g., 

in Figure 4). In particular, the background spiking activity (e.g., noise signal) was suppressed in such a 

network. In addition, the increase of classification accuracy can be explained by suppression of the  

in-phase activity of different channels because the in-phase component doesn’t carry useful 

information for the pattern recognition problem. 
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Figure 6. The dynamics of feature extracting neuron included in inhibitory network. 

Parameter values: a = 0.02, b = 0.2, c = –65, d = 8, U = 0.05, τrec = 1 ms, τI = 200 ms,  

τfacil = 1 ms, k = 2 × 106, w = 0.5, g = 60. 

Table 1. The accuracy of classification sEMG-patterns registered by MYO™ Thalmic. 

Comparison of standard feature of sEMG signal (RMS) spiking neural networks with 

lateral inhibition (SP_NEURO) used for classification. 

Subject RMS SP_NEURO DELTA 

Subject 1 91.30% 90.3% −1.00% 

Subject 2 93.60% 95.5% 1.90% 

Subject 3 89.40% 90.4% 1.00% 

Subject 4 97.85% 98.8% 0.95% 

Subject 5 88.40% 91.6% 3.15% 

Subject 6 97.25% 95.6% −1.65% 

Subject 7 84.65% 84.7% 0.00% 

Subject 8 93.35% 94.5% 1.10% 

Subject 9 93.80% 94.1% 0.25% 

Subject 10 84.60% 88.0% 3.35% 

Mean 91.4% 92.3% 0.9% 

Standard deviation 4.7% 4.2%  



Sensors 2015, 15 27902 

 

 

Table 2. The accuracy of classification sEMG-patterns registered by DELSYS® Trigno™. 

Notation as in Table 1. 

Subject RMS SP_NEURO DELTA 

Subject 11 90.5% 89.7% −0.80% 

Subject 12 86.5% 86.9% 0.45% 

Subject 13 97.7% 97.0% −0.70% 

Subject 14 93.0% 93.3% 0.30% 

Subject 15 85.7% 86.1% 0.40% 

Subject 16 92.7% 91.4% −1.30% 

Subject 17 89.0% 90.0% 1.00% 

Mean 90.7% 90.6% −0.1% 

Standard deviation 4.2% 3.7%  

Finally, we have illustrated the proposed approach of feature extraction in a simple on-line 

recognition system. In this example one can navigate a mobile LEGO robot by static hand gestures. 

Each gesture (except “Rest”) was associated with a command to the robot: “Drive”, “Reverse”, 

“Forward Right”, “Forward Left”, “Reverse Right”, “Reverse Left”, “Stop”, “Fire” (see 

Supplementary Materials). The recognition system undergoes a learning procedure for each user. 

Typically, there were one or two problem gestures recognized uncertainly or mismatched with another 

gesture. Due to the biological feedback mediated by vision users learned to compensate for such 

problems apparently by tuning their muscle contraction patterns. If such compensation failed, we 

excluded these gestures and used a reduced command set to achieve a classifier accuracy of 95%–99%. 

4. Discussion 

We propose a hybrid network model involving bio-mimetic spiking neurons for feature extraction 

and a formal neural network for pattern classification. Noticeably, the resulting recognition system 

displayed high accuracy on data recorded from Trigno and MYO systems (see Tables 1 and 2). Being 

tested with both systems our model demonstrated equal accuracy despite significant (five-fold) 

sampling rate differences. 

We also illustrated how biologically-based spiking neurons and formal artificial neurons linked in 

hybrid systems may provide new features to HMI systems enhancing their performance. For example, 

in our case the activity of virtual neurons in the detector was connected with the generic activity of 

motor units, and, hence with the activity of motor neurons in the spinal cord. With an increase of the 

number of registered channels improving the resolution one can expect a better degree of 

synchronization between individual living neurons and external virtual counterparts. In such an 

interface the virtual spiking neuron will serve as an artificial expansion of the nervous system that 

could provide additional functions and degree of flexibility for perspective HMI systems. 
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