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Abstract: Active-optical sensor readings from an N non-limiting area standard established 

within a farm field are used to predict yield in the standard. Lower yield predictions from 

sensor readings obtained from other parts of the field outside of the N non-limiting standard 

area indicate a need for supplemental N. Active-optical sensor algorithms for predicting corn 

(Zea mays, L.) yield to direct in-season nitrogen (N) fertilization in corn utilize red NDVI 

(normalized differential vegetative index). Use of red edge NDVI might improve corn yield 

prediction at later growth stages when corn leaves cover the inter-row space resulting in 

“saturation” of red NDVI readings. The purpose of this study was to determine whether the 

use of red edge NDVI in two active-optical sensors (GreenSeeker™ and Holland Scientific 

Crop Circle™) improved corn yield prediction. Nitrogen rate experiments were established 

at 15 sites in North Dakota (ND). Sensor readings were conducted at V6 and V12 corn.  

Red NDVI and red edge NDVI were similar in the relationship of readings with yield at V6. 

At V12, the red edge NDVI was superior to the red NDVI in most comparisons, indicating 

that it would be most useful in developing late-season N application algorithms. 
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1. Introduction 

Numerous methods have been used to manage N application to crops, including zone soil  

sampling [1], soil and plant analysis [2], use of nitrogen credit from the influence of previous crops [3], tissue 

analysis [4], fertilizer application timing and placement [5–8], leaf area index [9–13], and the use of 

spectral sensors [2,14–21]. Normalized Differential Vegetative Index (NDVI) has been used for decades 

as a predictor of vegetative biomass [22]. 

The use of active-optical sensors to direct in-season N application is being used in wheat  

(Triticum aestivum, L.) and corn (Zea mays, L.) growing areas of the USA. The algorithms developed 

to direct in-season N application use one of two methods. One method is to establish an N non-limiting 

area within the field at the time of preplant N application [20] or an N-rate “ramp” consisting of a 

continuous series of increasing N rates with the highest N rate designed to be non-limiting to the  

crop [23]. The second method is to use the variability in greenness already in the field by using the 

greenest area within the field as the N non-limiting standard [24]. Once an NDVI measurement is 

performed on the N non-limiting standard, by either method, the result is that the greatest yield possible 

for the variety within the soil where the N non-limiting area is located is predicted. Sensor measurements 

within the field less than the standard sensor measurement result in lower yield predictions. The yield 

difference is used to calculate the N required to increase yield from its predicted value if no additional 

N was added to a yield predicted in the standard area. 

Most of the algorithms developed for active-optical sensor use for in-season N fertilization utilize red 

NDVI. It is important to differentiate NDVI and specify red NDVI, even though NDVI is usually 

assumed to be based on red and near infrared calculations, because red edge NDVI is also utilized in 

these experiments. Red NDVI readings are an indication of the coverage of soil by leaves. Once leaves 

completely cover the row, as viewed from above the leaf canopy, differences in red NDVI readings fall 

into a narrow range, commonly from 0.85 to 1.0. Sensing differences in yield potential from leaf canopy 

closure on is difficult due to the narrow range of possible readings, referred to as “saturation” [24,25]. 

The plant pigments that are most involved in the photosynthetic process are chlorophylls a and b. 

These pigments absorb light in red and blue spectra and reflect green. Light reflectance from plants 

depends upon several factors such leaf surface area, surface properties, plant stress levels and internal 

structure [26]. Red and infrared wavelengths have been used frequently to assess the plant biomass [27]. 

There is more reflectance from plants in the near infrared (700–1400 nm) spectrum of light [28–30]. The 

Normalized Difference Vegetation Index (NDVI) is the most used vegetative index by researchers and 

practitioners for plant biomass prediction [31–33]. Measurement of normalized difference vegetative 

index (NDVI) and its conversion to in-season estimation of yield (INSEY) provides a convenient approach 

that can be used for variable in-season nitrogen (N) application [19–21,24,34,35] in corn. Within the red 

wavelength, green leaves have a reflectance of 20% or less in the 500 to 700 nm range (green to red) 

whereas within the red edge and near infrared wavelength, leaves reflect as much as 60% in the 700 to 

1300 nm range (near infrared) [15]. In addition, the red spectrum is highly sensitive to low chlorophyll 
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content (3–5 μg∙cm−2) whereas the red edge spectrum (700–750 nm) is sensitive to a wider range of 

chlorophyll (0.3–45 μg∙m−2) [15]. In pepper (Capsicum annuum), red edge was found to be the best 

wavelength describing the chlorophyll content [36]. 

Although the relationship between the red edge and leaf chlorophyll has been previously  

described [37,38], the application of the relationship on N status or yield prediction is unclear [36]. Part 

of the reason for uncertainty regarding the use of red edge NDVI is inconsistent past performance. For 

example, no correlation between red edge and leaf chlorophyll content in sugar beet (Beta vulgaris) was 

found by Demetriades-Shah and Steven [39]. In contrast, strong sensitivity of red edge NDVI to 

chlorophyll concentration in splash pine (Pinus elliottii) was reported in separate studies [40,41]. The 

performance of the red edge wavelength as a predictive tool for estimating potential yield depends not 

only on its sensitivity to chlorophyll concentration but also plant scattering properties inherent in total 

biomass, which change the peak light reflectance wavelength and the magnitude of reflectance from 

plants [38,41]. A strong relationship of red edge NDVI with yield was found at V12 stage in corn in 

recent North Dakota studies [25]. 

Plant growth stage is responsible for changes in the scattering behavior of light in several crops, 

including durum wheat (Triticum durum) [42], forage grasses [43], and barley (Hordeum vulgare, L.) [44]. 

In barley, the ratio of infrared to red changes with time, indicating that the ratio is growth dependent [44]. 

The reason of light scattering changes is the change in internal properties of plant leaves. Air space in 

mesophyll cells was reported to be less during younger growth stages compared to older leaves, which 

causes a change in the value of spectral reflectance [45]. Environmental stress such as water stress may 

also change reflective characteristics in red edge NDVI because water stress affects the internal structure 

of plant cells and leaves, which could influence the scattering of light [46]. 

The differences between red NDVI and red edge NDVI and their use as predictive tools have been 

studied in wheat [47], where it was found that red wavelength was more correlated to plant biomass. 

Numerous researchers have reported the differences between red NDVI and red edge NDVI  

in corn [20,48–55]. Generally, this research has found a weaker relationship with red NDVI and corn 

yield compared to earlier research with wheat. However, most of these studies did not include red edge 

NDVI. The red edge NDVI more closely relates to chlorophyll content than red NDVI [38]. The objective of 

this study was to determine the performance of red edge NDVI in yield prediction in corn compared to 

the yield prediction of red NDVI at early (V6) and later (V12) growth stages. The study also investigates the 

relative performance of two different red edge wavelengths through the use of two different ground-based 

active-optical sensors. The results of these experiments will be utilized to develop algorithms for the use 

of corn yield prediction with active-optical sensors for use in directing in-season N rates for corn. 

2. Materials and Methods 

2.1. Research Locations 

Fifteen sites on farmer cooperator fields were used for N rate trials on corn in eastern and western 

North Dakota in 2013 (Tables 1 and 2). The corn hybrid planted at each site was selected by the farmer 

and the site was planted at the same time as the rest of the field. The growers applied herbicides at their 

discretion but hand weeding was also carried where required. The experimental design was a randomized 
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complete block with four replications and six N treatments; 0, 45, 90, 134, 179 and 224 kg∙N∙ha−1  

as ammonium nitrate, hand broadcast about a week before planting. Each experimental unit (plot) was 

6.1-m long and 3.05-m wide. Locations were categorized into high clay conventional-till sites and  

medium-textured conventional-till sites, eastern long-term no-till (continuous no-till system for at least 

6 consecutive years) and western long-term no-till. 

Table 1. GPS coordinates and soil series for field experiments in 2013. 

Location GPS Coordinates Soil Type † 

Casselton 46°52′41.973′′ N, 97°14′55.894′′ W Fine-silty, mixed, superactive, frigid Typic Endoaquolls 

Durbin 46°51′22.072′′ N, 97°09′28.366′′ W Fine, smectitic, frigid Typic Epiaquerts  

Barney 46°15′07.560′′ N, 96°59′28.627′′ W Coarse-loamy, mixed, superactive, frigid Aquic Pachic Hapludolls 

Dwight 46°18′39.335′′ N, 96°47′12.237′′ W Fine, smectitic, frigid Vertic Argialbolls 

Gardner 47°10′28.482′′ N, 96°54′02.138′′ W Fine, smectitic, frigid Typic Epiaquerts  

Leonard-North 46°52′57.807′′ N, 97°17′44.945′′ W Fine, smectitic, frigid Typic Epiaquerts  

Walcott 46°30′02.359′′ N, 97°02′39.660′′ W Coarse-loamy, mixed, superactive, frigid Aeric Calciaquolls 

Leonard West 46°39′10.750′′ N, 97°18′12.980′′ W Coarse-loamy, mixed, superactive, frigid Pachic Hapludolls 

Arthur 47°06′50.963′′ N, 97°57′55.219′′ W Coarse-silty, mixed, superactive, frigid Pachic Hapludolls 

Rutland 45°57′50.176′′ N, 97°31′44.205′′ W Fine, smectitic, frigid Pachic Vertic Argiudolls 

Jamestown 46°45′58.571′′ N, 98°47′55.930′′ W Fine-loamy, mixed, superactive, frigid Calcic Hapludolls 

Mott 46°56′43.583′′ N, −102°19′10.919′′ W Fine-loamy, mixed, superactive, frigid Typic Haplustolls  

Richardton 46°35′0.095′′ N, −102°21′41.364′′ W Fine-loamy, mixed, superactive, frigid Typic Haplustolls 

Beach 46°49′3.0354′′ N, −103°59′40.451′′ W Fine-silty, mixed, superactive, frigid Typic Haplustolls 

New Leipzig 46°26′44.051′′ N, −101°56′31.379′′ W Fine, smectitic, frigid Vertic Natrustolls 

† Information collected from Soil Survey Staff, 2013. 

Table 2. Tillage system, planting date and date of the first and second sensing of each 

location in 2013.

Locations Soil/Tillage Category Planting Date V6 V6 GDD † V12 V12 GDD † Corn Variety 

Casselton High clay conventional-till 15/05/13 25/06/13 623 15/07/13 1095 P8640 

Durbin High clay conventional-till 15/05/13 25/06/13 623 15/07/13 1095 NA 

Barney High clay conventional-till 09/05/13 26/06/13 658 18/07/13 1227 P9917 

Dwight High clay conventional-till 16/05/13 26/06/13 605 09/07/13 898 DK 4837 

Gardner High clay conventional-till 10/05/13 25/06/13 581 10/07/13 1044 NutTech3A183 

Leonard-North High clay conventional-till 28/05/13 25/06/13 438 10/07/13 778 76R92 

Walcott Medium-textured conventional-till 18/05/13 02/07/13 700 18/07/13 1076 DeKalb 39-04 

Leonard West Medium-textured conventional-till 10/05/13 02/07/13 651 12/07/13 1107 76R92 

Arthur Medium-textured conventional-till 15/05/13 20/06/13 516 10/07/13 979 Mycogen-2T222 

Rutland Eastern no-till 08/05/13 18/0613 524 09/07/13 1012 Mycogen 2G-161 

Jamestown Eastern no-till 11/05/13 18/0613 424 09/07/13 870 Croplan 229VT2RTB 

Mott Western no-till 19/05/13 01/07/13 593 17/07/13 911 P8107 

Richardton Western no-till 13/05/13 No sensing - 17/07/13 517 P8107 

Beach Western no-till 15/05/13 01/07/13 498 17/07/13 804 Pioneer D-97 

New Leipzig Western clay no-till 07/05/13 01/07/13 662 17/07/13 980 P8954XR 

† GDD is growing degree days from planting to the date sensing at V6 or V12. 
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2.2. Soil Sampling and Analysis 

Five soil sample cores were taken from each site before planting and treatment application using a 

2.5-cm diameter hand probe to a depth of 0–15 cm for phosphorous (P), potassium (K), zinc (Zn), pH, 

and organic matter analysis, and three soil cores from 0 to 60 cm were obtained for determination of 

residual nitrate-N (Table 3). If N in the field was applied as a blend by the farmer to the rest of the field, 

P and K were applied by the researchers so that farmer application did not confound the N rate trial. 

When fertilizer P and K needed to be applied by the researchers, the sources were mono ammonium 

phosphate (11-52-0) and potassium chloride (0-0-60), at rates consistent with soil test analysis and 

NDSU Extension guidelines [56]. If Zn was deficient, zinc sulfate (36% granules) at a rate of 11 kg∙ha−1 

Zn was applied using a spinner spreader as a broadcast at the time of N treatment application. If any site 

was suspected to be S deficient due to sandy texture and high rainfall or snowmelt, 112 kg∙ha−1 of 

calcium sulfate (0-0-0-20S) was applied at the time of N application. When unanticipated S deficiency 

appeared later in the season due to higher rainfall, an application of calcium sulfate at 22 kg∙ha−1∙S  

(112 kg∙ha−1 gypsum) was applied as granules over the top of the corn. Soil pH was analyzed using a 

1:1 soil: deionized H2O solution method [57]; P was determined by the Olsen method [58], K was 

assessed using the 1-N ammonium acetate method [59]. The DTPA extraction method [60] coupled with 

atomic absorption spectroscopy detection was used for determination of available Zn. Organic matter 

was measured using the loss following ignition method [61]. 

Table 3. Relevant soil analysis for experimental locations. 

Location 
Depth Nitrate P K Zn Organic Matter 

pH 
cm kg∙ha−1         ---------mg kg−1--------- % 

Casselton 0–15 21 7 370 0.37 5.4 7.6 
 0–61 55      

Leonard North 0–15 6 18 380 0.95 5.7 6.6 
 0–61 15      

Durbin 0–15 6 34 460 0.62 5.9 7.5 
 0–61 45      

Arthur 0–15 6 9 110 1.16 2.2 6.6 
 0–61 12      

Leonard West 0–15 7 8 125 3.75 2.2 7.3 
 0–61 12      

Barney 0–15 24 12 110 1.21 2.9 7.8 
 0–61 91      

Walcott 0–15 13 9 347 0.78 4.2 6.9 
 0–61 29      

Dwight 0–15 35 63 540 2.37 4 7.7 
 0–61 26      

Rutland 0–15 20 8 415 0.72 6.1 7 
 0–61 54      

Jamestown 0–15 10 8 220 1.14 3.3 5.7 
 0–61 12      

Dwight 0–15 12 8 185 0.45 3.5 7.9 
 0–61 72      

Mott 0–15 18 4 230 0.95 5.2 7.6 
 0–61 10      

Richardton 0–15 11 33 170 0.65 3.2 5.1 
 0–61 9      

Beach 0–15 17 22 300 0.85 3 6.2 
 0–61 7      

New Leipzig 0–15 23 16 560 1.46 5.2 5.6 
 0–61 18      
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2.3. Sensor Description and Sensing Procedure 

The ground-based active-optical (GBAO) sensors use diodes to generate modular light pulses of 

particular wavelengths absorbed by plant tissues. Two handheld GBAO sensors were used for this study: 

GreenSeeker™ (GS; Trimble Navigation Limited, Sunnyvale, CA, USA) and the Holland Scientific 

Crop Circle™ A470 sensor (CC; Holland Scientific, Inc., Lincoln, NE, USA). The GS sensor measures 

incident and reflected light from plants at 660 ± 15 nm (red) and 770 ± 15 nm (NIR). In the GS, light is 

emitted from diodes in alternating bursts of different duration such that the visible source pulses for  

1 ms and then the NIR diode source pulses for 1 ms at 40,000 Hz. Each burst from a given source 

amounts to about 40 pulses before pausing for the other diode to emit its radiation (another 40 pulses). 

The illuminated area is about 60 cm wide by 1 cm long, with the long dimension positioned 

perpendicular to the direction of travel. The field of view is approximately constant for heights between 

60 and 120 cm above the canopy because of light collimation within the sensor. Outputs from the sensor 

are red NDVI and simple ratio (red/NIR). 

The CC sensor simultaneously emits three bands; two in the visible range (red 650 nm, red edge  

730 nm) and one in the NIR (760 nm). The light source of the CC is a modulated polychromatic LED 

array. It can emit and measure light spectrums in the range from 430 nm to 850 nm band width (BW). 

The sensor has a measurement filter range including wavelengths of 450 nm (BW ± 20 nm), 550 nm 

(BW ± 20 nm), 650 nm (BW ± 20 nm), 670 nm (BW ± 11 nm), 730 nm (BW ± 10 nm) and 760 nm (LWP). 

The sensor was calibrated using software developed by Holland Scientific. Measurements can be 

collected at a rate of 2–20 readings per second, so each recorded value in a 20 foot length of plot, moving 

about 5 km∙hr−1 is the average of about 4000 readings. Outputs of the sensor are reflectance values that 

allow calculation of vegetation indices. 

The formula for red NDVI and red edge NDVI follows: 

𝑅𝑒𝑑 𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑
 (1) 

𝑅𝑒𝑑 𝐸𝑑𝑔𝑒 𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅𝑒𝑑 𝐸𝑑𝑔𝑒

𝑁𝐼𝑅 + 𝑅𝑒𝑑 𝐸𝑑𝑔𝑒
 (2) 

Wavelengths values used for GreenSeeker® and Holland Scientific Crop Circle Sensor® are  

defined below: 

GS emits four bands: red (660 nm), two red edge (710 nm and 735 nm), and near infrared (774 nm): 

NDVI = (NIR − Red)/(NIR + Red) 

(774 nm reading − 660 nm reading)/(774 nm + 660 nm) 

Or red edge NDVI (710 nm) 

(774 nm reading − 710 nm reading)/(774 nm + 710 nm) 

Or red edge (735 nm) 

(774 nm reading − 735 nm reading)/(774 nm + 735 nm) 

CC emits three bands: red (670 nm), red edge (730 nm), and near infrared (760 nm): 

NDVI = (NIR − Red)/(NIR + Red) 

(760 nm reading − 670 nm reading)/(760 nm + 670 nm) 

Or red edge NDVI (730 nm) 
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NDVI= (NIR − Red Edge)/(NIR + Red Edge) 

(760 nm reading − 730 nm reading)/(760nm + 730 nm) 

The sensing with GS and CC were conducted at the V6 growth stage and V12 growth stage. Sensor 

readings were obtained 50 cm over the top of the corn whorls from the middle row of each plot. All 

reflectance data (NDVI) were inserted within the generalized expression: 

NDVI = (NIR − red or red-edge)/(NIR + red or red-edge) (3) 

Within each experimental unit, 30–50 individual readings were obtained. The mean of GS and CC 

readings were calculated using in-house macro programs for Visual Basic within Excel [62]. To normalize 

NDVI over a range of sites where small differences in growth stage were found (i.e., V5.5 to V6.5) the 

normalizing factor of INSEY was used. The INSEY (in-season estimate of yield) [19] was calculated by 

dividing the NDVI with the growing degree days from planting date to date of sensing using the closest 

NDAWN data to each site [63]. Sensing was conducted by positioning the GS and CC at an approximate 

distance of 50 cm above the canopy, resulting in similar intensity of reflectance at each site and each 

growth stage reading [64]. 

2.4. Harvesting and Statistical Analysis 

Harvest was conducted between 15 September and 15 October 2013. The sensed row of each 

experimental unit (plot) was hand harvested, leaving the outside ears at each end of the plot intact due 

to alleyway effect, taken from the field and then shelled using an Almaco® corn sheller (Almaco, Nevada, 

IA, USA). Grain moisture and test weight was determined on a subsample of shelled grain using a 

Dickey-John GAC500XT moisture-test weight instrument (Dickey-John, Auburn, IL, USA). 

Regression analyses were conducted on sensor readings converted to INSEY and yield with yield as 

the dependent variable and INSEY as the independent variable. The exponential regression model was 

superior to other possible regression models, so the regression relationships in Tables 4 and 5 are 

expressed from the exponential model for red and red edge generated data. Multiple regression analysis 

was used to determine whether the data should be segregated into long-term no-till sites, high clay 

conventional and, medium texture conventional sites. The analysis confirmed that segregation of the 

data into those categories improved the relationship between INSEY and yield [25]. 

The coefficient of determination (r2) value was used to evaluate the relationship of crop yield and 

sensor reading at V6 and V12. The SAS program for Windows V9.2 (SAS Institute, Cary, NC, USA), 

using the procedure PROC REG, was used to calculate the r2 and evaluate regression models of. SAS 

procedure GLM was used to compare the N treatments for treatment differences in yield and the INSEY 

calculated from five sensor wavelengths. A p-value of 5% probability was used to differentiate between 

treatment differences using the LSD derived from ANOVA. Coefficient of variation (CV) was also 

calculated from wavelength INSEY, and bar graphs were prepared to check the variation of red and red 

edge wavelength INSEY at V6 and V12. In addition, bar and line graphs between treatment and INSEY 

as well as wavelength and INSEY were also prepared to check the sensitivity and response of wavelength 

at different treatment levels as well to compare the wavelength peaks within their category. 
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Table 4. Exponential regression equations for Yield and INSEY for five wavelengths of two 

ground-based active-optical sensors under high clay (n = 143) and medium textured 

conventional-till (n = 71) sites at V6 and V12 corn growth stages. 

Corn Growth 

Stage 
Sensor/Wavelength 

Regression Equation and 

r2 High Clay Soils 
Sig † 

Regression Equation and r2 

Medium Textured Soils 
Sig † 

V6 

CC††/730 nm (red edge) 
y = 6709.78e1052.3x  

r2 = 0.20 
* 

y = 6351.09e2807x  

r2 = 0.40 
*** 

CC/670 nm (red) 
y = 6915.99e427.26x  

r2 = 0.17 
* 

y = 5787.54e1503.4x  

r2 = 0.42 
*** 

GS/660 nm (red) 
y = 7816.47e267.19x  

r2 = 0.06 
NS 

y = 5312.75e1452.4x  

r2 = 0.39 
** 

GS/710 nm (red edge) 
y = 7722.99e600.1x  

r2 = 0.07 
NS 

y = 5893.79e2693.3x  

r2 = 0.41 
*** 

GS/735 nm (red edge) 
y = 7437.18e2398.2x  

r2 = 0.08 
NS 

y = 5747.19e9351.6x  

r2 = 0.33 
** 

V12 

CC/730 nm (red edge) 
y = 4492.97e2002.9x  

r2 = 0.18 
* 

y = 2111.65e4626.1x  

r2 = 0.58 
*** 

CC/670 nm (red) 
y = 3736.41e1273.9x  

r2 = 0.18 
* 

y = 1423.68e2914.9x  

r2 = 0.47 
*** 

GS/660 nm (red) 
y = 3650.33e1324.7x  

r2 = 0.20 
* 

y = 995.97e3431.9x  

r2 = 0.47 
*** 

GS/710 nm (red edge) 
y = 6139.93e999.23x  

r2 = 0.06 
NS 

y = 1511.98e49°5.3x  

r2 = 0.55 
*** 

GS/735 nm (red edge) 
y = 7078.74e2065.4x 

r2 = 0.04 
NS 

y = 3583.75e8914.5x  

r2 = 0.49 
*** 

† NS denotes non-significance at p < 0.05; *** denotes significance at 0.001; ** denotes significance at 0.01; 

* denotes significance at 0.05; †† CC is Holland Crop Circle™ and GS is GreenSeeker™. 

Table 5. Exponential regression equations of Yield and INSEY from five wavelengths of 

two ground-based active-optical sensors in eastern North Dakota (n = 47) and western North 

Dakota no-till (n = 95) systems at V6 and V12 growth stages of corn. 

Corn Growth 

Stage 
†† Sensor/Wavelength 

Regression Equations 

and r2 for Eastern ND 

Long-Term No-till Sites 

Sig † 

Regression Equations and r2 

for Western ND Long-Term 

No-Till Sites 

Sig † 

V6 

CC/730 nm (red edge) 
y = 7525.95e456.92x  

r2 = 0.00 
NS 

y = 4464.06e3529.3x  

r2 = 0.32 
** 

CC/670 nm (red) 
y = 10096.92e−604.5x  

r2 = 0.01 
NS 

y = 3700.77e2211.2x  

r2 = 0.38 
*** 

GS/660 nm (red) 
y = 15252.57e−1310x  

r2 = 0.06 
NS 

y = 3331.57e1775.7x  

r2 = 0.39 
** 

GS/710 nm (red edge) 
y = 10362.54e−1101x  

r2 = 0.02 
NS 

 y = 3805e3245.8x  

 r2 = 0.37 
** 

GS/735 nm (red edge) 
y = 9581.11e−2145x  

r2 = 0.01 
NS 

y = 3687.96e10657x  

r2 = 0.36 
** 

V12 

CC/730 nm (red edge) 
y = 794.96e5744.7x  

 r2 = 0.39 
* 

y = 4564.26e1201.1x  

r2 = 0.34 
** 

CC/670 nm (red) 
y = 2474.80e1555.3x  

r2 = 0.06 
NS 

y = 4479.52e650.89x  

r2 = 0.29 
* 

GS/660 nm (red) 
y = 3591.15e1088.3x  

r2 = 0.02 
NS 

y = 5005.42e434.32x  

r2 = 0.20 
* 

GS/710 nm (red edge) 
y = 1663.77e3531.2x  

r2 = 0.18 
* 

y = 5079.39e759.99x  

r2 = 0.23 
* 

GS/735 nm (red edge) 
y = 1733.03e10841x  

r2 = 0.36 
* 

y = 5262.99e2122.4x  

r2 = 0.19 
* 

† NS denotes non-significance at p < 0.05; * denotes significance at 0.05; ** denotes significance at 0.01;  

*** denotes significance at 0.001; †† CC is Holland Crop Circle™ and GS is GreenSeeker™. 
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3. Results 

3.1. Regression Analysis 

The exponential relationships between INSEY and yield at V6 and V12 stages of corn where five 

wavelengths were used to compare the coefficient of determination (r2) between corn yield and sensor 

reading are provided in Table 4. The exponential relationships were roughly linear, but the r2 values 

from the exponential models were nearly always superior to that of the linear model. In high clay sites 

at V6 using the CC, the red edge NDVI-based INSEY was significantly related to yield whereas both 

GS red edge NDVI-based INSEY was unrelated to yield. At V12 CC red NDVI, CC red edge NDVI, 

and GS red NDVI based INSEY were related to yield, while both wavelengths of GS red edge NDVI 

were not. In medium textured sites, the INSEY derived from wavelengths of both active-sensors at both 

growth stages were significantly related to yield (Table 4). 

In eastern North Dakota (ND) long-term no-till sites, there were no INSEY relationships between 

yield and sensor readings at V6 (Table 5). In western ND long-term no-till sites, there were significant 

relationships between INSEY and yield using both sensors and all wavelengths at V6 (Table 5). In 

previous research, there was no clear trend in the effect of crop residues on wavelength absorption and 

reflectance compared to soil; residue coverage of the soil can vary, with the effect of residue coverage 

influenced by residue moisture content and the origin of residue [65–67]. More consistent identification 

and quantification of residue appears to be only possible using bands in wavelengths greater than 1110 nm. 

It is noteworthy that eastern no-till sites tended to have denser residue cover, partially due to the tendency 

of eastern site cooperators to utilize more fall cover crops, and the tendency at some eastern sites to 

follow small grain with corn, whereas western sites tended to follow a lower residue crop. At V12 in 

western ND there were no INSEY relationships with yield in eastern ND sites using red NDVI or red 

edge NDVI. Using red edge NDVI, the relationship between INSEY and yield was significant at eastern 

ND long-term no-till sites. At V12 in eastern ND, the relationships between INSEY and yield were 

significant with both sensors and all wavelengths. The r2 values in eastern ND for V12 tended to be less 

than those at V6. 

3.2. Wavelength Sensitivity and Absorption Spectra 

The N rate treatments resulted in significant yield differences, with increased yield as N rate increased 

in eastern ND high clay conventional-till sites (Figure 1a) and eastern ND medium textured 

conventional-till sites (Figure 1b). There were no yield responses due to N rate at eastern ND no-till sites 

(Figure 1c) or western ND no-till sites (Figure 1d). The INSEY varied similarly to yield. In Figure 2a,c, 

and Table 6, with yield and INSEY at eastern ND high clay sites, yield response and INSEY response 

to N rate were similar. The sensitivity, which is the ability of a measurement to relate to an outcome, 

was greater for the INSEY developed from red wavelengths of the GS (660) and CC (670) compared to 

red edge INSEYs (Figure 2b, d, Table 6), meaning that the separation of INSEY values with N rate was 

greater for INSEY developed under the red wavelengths than those developed under red-edge. At V6, 

although there appears to be a similar response of 710 nm and 730 nm (Figure 2a) wavelengths with N 

rates the INSEY relationship using the 710 nm red edge NDVI was not significant, while the red edge 

INSEY relationship using 730 nm was significant (Table 4). At V12, the sensitivity of both the 710 nm 
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and 730 nm derived INSEY was similar (Figure 2b) and the relationship to yield was also similar  

(Tables 4 and 6). The INSEY values at high clay sites increased from V6 to V12, which is commonly 

observed due to greater biomass with growth (Figure 2a,b). The absorption spectrum trends of INSEY 

with wavelength at three different N rates were similar at V6 and V12 (Figure 2b,d). 

 

Figure 1. Corn yield difference in response to N fertilizer rates under high clay  

conventional-till (a); medium textured conventional-till (b); eastern ND no-till (c); and 

western ND no-till (d) sites. Bars with different letters indicate significance at p < 0.05. Bars 

represent the range of yields within each N rate. 

 

Figure 2. Cont. 

(a) 
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Figure 2. Variation of INSEY for corn at high clay conventional-till sites calculated from 

CC active-sensor spectra (670 nm and 730 nm) and GS spectra (660 nm, 710 nm and  

735 nm) with N rate compared to yield variation with N rate at V6 (upper left) and V12 

(lower left). Trend for INSEY at three N rates (control, 134∙kg∙ha−1 and 224∙kg∙ha−1) over 

the five wavelengths represented as a continuous spectrum is displayed at V6 in figures at 

(upper right) and at V12 in (lower right). 

Table 6. Treatment differences between INSEY developed from five wavelengths  

utilizing two ground-based active-optical sensors in eastern high clay (n = 143) and eastern 

medium-textured (n = 71) categories under conventional tillage at two corn growth stages 

from nitrogen rate treatments. 

Soil Type/ 

Tillage System 

Growth 

Stage 

N Treatment 

kg·N·ha−1 

INSEY † X 10,000 

Holland Crop Circle GreenSeeker 

Red Edge 730 * Red 670 Red 660 Red Edge 710 Red Edge 735 

High Clay  

V6 

0 0.000249 b 0.000572 a 0.000519 a 0.000244 a 0.000078 a 

45 0.000275 ab 0.000623 a 0.000564 a 0.000265 a 0.000082 a 

90 0.000311 ab 0.000694 a 0.000618 a 0.000296 a 0.000088 a 

135 0.000293 ab 0.000636 a 0.000571 a 0.000277 a 0.000085 a 

179 0.000315 a 0.000685 a 0.000598 a 0.000291 a 0.000089 a 

224 0.000310 ab 0.000682 a 0.000605 a 0.000295 a 0.000090 a 

V12 

0 0.000311 d 0.000650 c 0.000647 b 0.000362 b 0.000110 c 

45 0.000338 cd 0.000684 bc 0.000668 b 0.000378 b 0.000114 c 

90 0.000350 bc 0.000703 ab 0.000694 ab 0.000393 ab 0.000122 bc 

135 0.000365 abc 0.000711 ab 0.000693 ab 0.000397 ab 0.000120 c 

179 0.000376 ab 0.000720 ab 0.000720 a 0.000423 a 0.000135 ab 

224 0.000382 a 0.000737 a 0.000727 a 0.000426 a 0.000137 a 

Medium- textured  

V6 

0 0.000160 a 0.000360 a 0.000423 a 0.000190 a 0.000062 a 

45 0.000164 a 0.000365 a 0.000452 a 0.000206 a 0.000063 a 

90 0.000190 a 0.000426 a 0.000502 a 0.000225 a 0.000065 a 

135 0.000186 a 0.000399 a 0.000483 a 0.000223 a 0.000066 a 

179 0.000212 a 0.000460 a 0.000515 a 0.000242 a 0.000072 a 

224 0.000196 a 0.000429 a 0.000503 a 0.000235 a 0.000069 a 

V12 

0 0.000306 c 0.000646 b 0.000651 b 0.000359 c 0.000104 c 

45 0.000337 bc 0.000675 ab 0.00068 ab 0.000388 bc 0.000114 bc 

90 0.000357 ab 0.000702 a 0.000706 a 0.000406 ab 0.000126 ab 

135 0.000362 ab 0.000704 a 0.000696 ab 0.000403 ab 0.000125 ab 

179 0.000374 a 0.000713 a 0.000711 a 0.00042 a 0.000135 a 

224 0.000365 ab 0.000704 a 0.000701 a 0.000414 ab 0.00013 a 

† INSEY is the sensor reading divided by growing degree days from planting date; * Wavelength in nm. 
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In eastern ND medium textured sites (Figure 3a–d), wavelength sensitivity of active-optical sensor 

INSEY to yield was similar at V6 (Figure 3a) and V12 (Figure 3c) with sensitivity greater with red 

NDVI derived INSEY ranges at V6 and V12. At V6 and V12, the sensitivity of red NDVI INSEY in 

both sensors to N rates was similar and both were similarly related to yield at both growth stages  

(Table 4). The trend for greater INSEY with N rate was less clear at V6 (Table 6). At V6, there were no 

significant relationships between INSEY and yield for all wavelengths. At V12, the relationships 

between INSEY and yield were significant for all wavelengths. Yield is influenced by factors other than 

N rate [68–71], which is why an N non-limiting area should be established within a field where  

active-optical sensors will be used to help determine in-season supplemental N fertilization [72]. 

 

Figure 3. Variation of INSEY for corn at medium-textured conventional-till sites calculated 

from CC active-sensor spectra (670 nm and 730 nm) and GS spectra (660 nm, 710 nm and 

735 nm) with N rate compared to yield variation with N rate at V6 (upper left) and V12 

(lower left). Trend for INSEY at three N rates (control, 134 kg∙ha−1 and 224 kg∙ha−1) over 

the five wavelengths represented as a continuous spectrum is displayed at V6 (upper right) 

and at V12 (lower right). 

In eastern ND no-till sites, yield did not increase with N rate. At V6, there was no relationship between 

INSEY and yield (Table 5) or INSEY or N rate (Table 7). Yield trends depicted in Figure 4a,c are not 

significant. At V12, the r2 between CC 730 nm NDVI derived INSEY and yield and the GS 735 nm 

NDVI derived INSEY and yield were significant. The INSEY from all wavelengths of both sensors at 

V12 was also related to N rate (Table 7). 



Sensors 2015, 15 27844 

 

 

Table 7. Treatment differences between INSEY developed from five wavelengths utilizing 

two ground-based active-optical sensors in eastern North Dakota (ND) (n = 47) and western ND 

no-till (n = 95) systems at two corn growth stages from nitrogen rate treatments. 

Soil Category Growth Stage 
N Treatment  

kg·N·ha−1 

INSEY † X 10,000 

Holland Crop Circle GreenSeeker 

Red Edge 730 Red 670 Red 660 Red Edge 710 Red Edge 735 

Eastern ND 

V6 

0 1.65 a 3.65 a 4.83 a 2.28 a 0.83 a 

45 1.72 a 3.73 a 5.03 a 2.35 a 0.83 a 

90 1.52 a 3.46 a 4.67 a 2.12 a 0.76 a 

135 1.70 a 3.72 a 4.85 a 2.23 a 0.76 a 

179 1.58 a 3.52a 4.65 a 2.09 a 0.73 a 

224 1.65 a 3.66 a 4.89 a 2.28 a 0.76 a 

V12 

0 3.74 c 7.31 b 7.22 b 4.21 b 1.29 c 

45 3.97 bc 7.57 ab 7.38 ab 4.37 ab 1.36 bc 

90 3.99 bc 7.61 ab 7.55 ab 4.52 ab 1.42 abc 

135 4.09 ab 7.60 ab 7.52 ab 4.54 ab 1.47 ab 

179 4.16 ab 7.74 ab 7.55 ab 4.54 ab 1.46 abc 

224 4.31 a 7.96 a 7.70 a 4.73 a 1.54 a 

Western ND 

V6 

0 9.45 a 2.35 a 3.53 a 1.51 a 4.88 a 

45 9.07 a 2.26 a 3.33 a 1.41 a 4.74 a 

90 1.15 a 2.69 a 3.85 a 1.68 a 5.40 a 

135 1.09 a 2.56 a 3.92 a 1.74 a 5.68 a 

179 1.14 a 2.73 a 3.98 a 1.79 a 5.63 a 

224 1.08 a 2.58 a 3.83 a 1.69 a 5.40 a 

V12 

0 2.85 a 5.61 a 6.27 a 3.30 a 1.01 a 

45 2.85 a 5.58 a 6.12 a 3.26 a 1.00a 

90 3.33 a 6.48 a 6.70 a 3.64 a 1.12 a 

135 3.19 a 6.16 a 6.56 a 3.61 a 1.14 a 

179 3.36 a 6.45 a 6.87 a 3.80 a 1.20 a 

224 3.10 a 5.92 a 6.40 a 3.47 a 1.08 a 

† INSEY is the sensor reading divided by growing degree days from planting date. 

 

Figure 4. Cont. 
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Figure 4. Variation of INSEY for corn at eastern no-till sites calculated from CC active-sensor 

spectra (670 and 730 nm) and GS spectra (660, 710 and 735 nm) with N rate compared to 

yield variation with N rate at V6 (upper left) and V12 (lower left). Trend for INSEY at 

three N rates (control, 134 kg·ha−1 and 224 kg·ha−1) over the five wavelengths represented 

as a continuous spectrum is displayed at V6 (upper right) and at V12 (lower right). 

At western ND no-till sites, there was no response to N. However, there were significant relationships 

between all wavelengths of both sensors and yield (Table 4), and N rate at V12 (Table 7). The sensitivity 

of INSEY to yield was low at V6 and V12 in western ND no-till sites. The lack of relationship was 

particularly evident at the lower N rates (Figure 5). 

 

Figure 5. Variation of INSEY for corn at western ND no-till sites calculated from CC  

active-sensor spectra (670 and 730 nm) and GS spectra (660, 710 and 735 nm) with N rate 

compared to yield variation with N rate at V6 (upper left) and V12 (lower left). Trend for 

INSEY at three N rates (control, 134 kg·ha−1 and 224 kg·ha−1) over the five wavelengths 

represented as a continuous spectrum is displayed at V6 (upper right) and at  

V12 (lower right). 
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3.3. Coefficient of Variation among Treatments 

During early growth stages, the leaf surface area obtained from NADIR-aimed imagery is small, 

therefore most sensor reflectance comes from the soil surface. Variations in residue cover and type as 

well as other surface soil and early plant size variation due to uneven emergence probably contributed 

to the high coefficient of variation (CV) values with red NDVI- and red edge NDVI-based INSEY under 

all soil and tillage system categories (Figure 6a–d). The CVs at V12 were generally less than those at 

V6 for all categories except at western no-till sites. The CVs for the control (zero-N) treatments were 

larger than other treatments. The CVs were particularly large in western no-till control plots, which may 

be one reason why there was no statistical response to N at these sites. In previous research, the N 

response in long-term no-till fields was low, presumably due to greater efficiency of N utilization in 

long-term no-till systems in North Dakota [70]. Future work will explore methods to filter out residue 

effects from crop growth crop canopy NDVI measurements. 

 

Figure 6. Percent CV (coefficient of variation) calculated from INSEY derived from sensor 

red or red edge NDVI in response to N rate under high clay conventional-till (upper left); 

medium textured conventional-till (upper right); eastern ND no-till (lower left); and 

western ND no-till (lower right) sites at V6 and V12 corn growth stages. 

4. Discussion 

It was necessary to segregate different soils and tillage categories to help explain relational differences 

in this study [25]. At eastern ND high clay sites, the red NDVI- and red edge NDVI- based INSEY were 

similar in their prediction of yield at V6 and V12. However, although red or red edge sensors could be 

used to estimate corn yield at V6 or V12, there are some fundamental differences in their modes of 
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action. Red-based sensors are useful at early (V6) growth stages due to their reliance on the proportion 

of soil covered with leaves for measurement differences. The red edge-based sensors do not respond to 

leaf area differences, and measure differences in leaf color, “tint”, which is highly related to chlorophyll 

content. Therefore, we found that the red edge NDVI-based INSEY was predictive at V6 and V12 stages 

consistently at our sites. Similar results were being reported where red- and red edge-based sensors were 

compared at V6 [71]. Algorithms for use in directing in-season N application for corn have been 

developed [34] using two different wavelength ranges from two different sensors (GreenSeeker and Crop 

Circle ACS-210). Several N rate algorithms using red and red edge wavelengths in corn have been 

developed [69]; however, algorithms are only available for sensor wavelength and growth stage that 

have yield predictive capabilities. 

The weakness of the red wavelength to estimate yield at V12 stage was due to the saturation effect. 

Several studies have suggested early (V6) sensing and N application in corn [34,71–73] to alleviate N 

deficiencies; however, the relationship between yield and INSEY tends to increase when the crop is 

sensed at later growing stages, especially using red edge NDVI-based INSEY [71]. In addition, N status 

of a crop is not only related to leaves, but N content of stems as well [74]. A “vertical footprint” of sensor 

measurements was used to characterize N uptake in corn [75]. While this approach is not currently practical 

in commercial corn production, it emphasized that use of an over-canopy optical sensor has limitations for 

N status prediction simply because it is only using the upper leaf canopy for its assessment. 

The problem associated with low yield predictability using the red NDVI-based INSEY once corn 

leaves cover the row, as at V12, is due to the difficulty in sensor ability to distinguish differences in plant 

health because reflection differences are small, even though to an observer clear differences in yellow 

to green tints are evident [76]. Similar results were reported [24] where low sensitivity of corn to the red 

wavelengths at V12 stage was recorded. Not only was a better relationship of red edge measurements to 

N rate found, but also a higher correlation of chlorophyll content with advances in growth stage. 

Differences in the INSEY and yield relationships between high clay and medium texture soils were 

probably due to high rainfall in May and early June through V6. Rainfall was more than 10 cm above 

normal rainfall from planting through V6 [63]. In high clay soils, small pore saturation with water results 

in denitrification [77,78]. At the high clay sites, yields increased to the 224 kg∙ha−1 rate whereas medium 

textured sites seldom responded to N rates greater than 179 kg∙ha−1 although they obtained greater yields 

than high clay sites. The tendency for medium textured soils to drain better compared to high clay soils 

aided their greater N use efficiency, while apparently not leaching N excessively. 

The relationships found in this study were specific to the wavelengths and the instrument used to 

generate the data. Crop Circle red NDVI-based INSEY regression equations were different than GS red 

NDVI-based INSEY relationships for example. This study is not the first conclude that relationships are 

defined by the instrument and wavelength used [78]. In addition, release of algorithms for yield 

prediction and use in directing in-season N application to any crop is not recommended with a one-year 

data base. Multiple years and environments would be necessary to recommend any active-optical sensor 

algorithm, and they must be specific to the instrument and wavelengths utilized in developing the 

algorithm. However, this study showed that the red NDVI-based or red edge NDVI-based INSEY data 

from either instrument could be used at V6 to develop a yield prediction-based in-season N rate 

algorithm for corn, and the red edge NDVI-based INSEY from the Crop Circle, or the GreenSeeker 
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using the 710 nm wavelength, could be used to develop a yield prediction-based in-season N rate 

algorithm for corn at V12. 

These results were generated from 15 sites across a geography of over 500 km in longitude and  

150 km in latitude in North Dakota, spanning conventional tilled and long-term no-till sites and sites 

with high clay as well as those with lower clay content. Environmental conditions were different at each 

site with respect to rainfall and its distribution. Each site was seeded to a different hybrid. The yields 

within the study ranged from about 6000 kg∙ha−1 to about 12,000 kg∙ha−1, which spans the range of 

average yield of all major corn growing US states [79]. The diversity of conditions of these experiments 

and the similar response between sites of similar soil and tillage strongly suggest that these results would 

be expected to be replicated by anyone conducting a similar study on corn using these instruments. 

5. Conclusions 

Corn yield prediction using the GS red NDVI INSEY and CC red NDVI INSEY were similar. The 

red NDVI-based INSEY and red edge NDVI-based INSEY were similar in yield prediction at V6.  

At V12, the red edge NDVI-based INSEY provided consistently greater r2 values when predicting yield. 

Long-term no-till sites gave inconsistent INSEY measurements at V6, presumably due to ground residue 

cover. The r2 values of the relationships of INSEY and yield in all soil and tillage categories were 

superior at V12 compared to the V6 growth stage. Within the red edge spectrum of the GS sensor, the 

710 nm wavelength was superior at corn yield prediction compared to 735 nm. 
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