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Abstract: In this paper, a new method for mass air flow (MAF) sensor error compensation
and an online updating error map (or lookup table) due to installation and aging in a diesel
engine is developed. Since the MAF sensor error is dependent on the engine operating
point, the error model is represented as a two-dimensional (2D) map with two inputs, fuel
mass injection quantity and engine speed. Meanwhile, the 2D map representing the MAF
sensor error is described as a piecewise bilinear interpolation model, which can be written
as a dot product between the regression vector and parameter vector using a membership
function. With the combination of the 2D map regression model and the diesel engine air
path system, an LPV adaptive observer with low computational load is designed to estimate
states and parameters jointly. The convergence of the proposed algorithm is proven under
the conditions of persistent excitation and given inequalities. The observer is validated
against the simulation data from engine software enDYNA provided by Tesis. The results
demonstrate that the operating point-dependent error of the MAF sensor can be approximated
acceptably by the 2D map from the proposed method.

Keywords: linear parameter varying (LPV) system; adaptive observer; sensor error
compensation; map (or lookup table) estimation; mass air flow; diesel engine
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1. Introduction

Accurate exhaust gas recirculation (EGR) rate control and air-fuel ratio (AFR) control are important
technologies to satisfy the increasingly stringent emission regulations, which are dependent on the
precise calculation of the EGR rate and AFR [1,2]. The accuracy of the EGR rate and AFR can be
improved by a mass air flow (MAF) sensor, in which a sensor element is heated to a fixed temperature,
and the difference in temperature attributed to heat transfer from the heating element to the air flow is
a measure of the air mass flow [3–5]. However, there are many different local flow fields within the
inlet piping due to the three-dimensional turbulence flow, leading to measurement biases in the MAF
sensor installed between the air filter and the intake manifold. In addition, the MAF sensor is also
subjected to aging phenomena owing to the accumulation of dust on the sensing element, which causes
the deterioration of the measurement accuracy [6,7]. These errors will bring about an inaccurate EGR
rate and AFR and have adverse impacts on the emission performance of diesel engine.

It is difficult to accurately establish an analytical model for the MAF sensor error. In view of
the relatively low computational load, maps (or lookup tables) have been widely used to characterize
systems where the functional relationship is unavailable or too complex to represent analytically [8].
Therefore, the relative error of the MAF sensor is described as a one-dimensional (1D) map taking
compressor mass air flow as input [2]. In order to track MAF sensor aging, the extended Kalman
filter (EKF) for updating maps is presented in [9–11], in which the 1D map is represented as a
piecewise linear interpolation model and the map parameters are considered as parameter states.
Due to the piecewise linear interpolation model having the characteristic of partition calculation
and due to the the map input being able to enter only one input interval of the 1D map at any
time, then only two parameter states participating in linear interpolation are observable and the
other not. Therefore, the error covariance matrix elements of EKF corresponding to the locally
unobservable parameter states will increase linearly. Although the solution is to limit this growth
in [9–11], the convergence of EKF with a confined covariance matrix cannot be guaranteed. In addition,
the measurement error of the MAF sensor depends on the engine operating point, which is usually
defined as fuel mass injection quantity and engine speed. The 1D map representing MAF sensor error
ignores the engine speed, reducing the accuracy when the diesel engine is run over a wide speed range.

The adaptive observer with the advantage of simple convergence conditions is an alternative method
for updating maps. Recursive algorithms designed for joint estimation of states and parameters in state
space systems are usually known as adaptive observers, and some early works with adaptive observers
to jointly estimate states and parameters in multi-input-multi-output linear time varying systems can be
found in [12,13]. In order to estimate sensor faults, adaptive observers for linear time varying systems
with unknown parameters in output equations have been studied [14,15]. However, the existing adaptive
observers cannot directly update maps.

In this paper, an adaptive observer is developed to update the map, in which the MAF sensor error
is described as a two-dimensional (2D) map taking the operating point as the input to improve the
model accuracy comparing the 1D map. Then, two problems are studied. First, in order to expediently
analyze and design the parameter estimation method, the input-output relationship of the MAF sensor
error 2D map is expressed as a dot product between the regression vector and the unknown parameter
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vector. Second, based on the linear parameter varying (LPV) system of the diesel engine with EGR and
variable geometry turbocharger (VGT), a 2D map estimation method with a simple structure and low
computational load is designed to facilitate the algorithm implementation.

This paper is organized as follows. In Section 2, the 2D map is expressed as the dot product between
the regression vector and the unknown parameter vector, and the estimation problem for a class of LPV
systems with an unknown parameter vector is given. In Section 3, the LPV adaptive observer is proposed,
as well as the convergence analysis. Simulation results from enDYNA are presented in Section 4, and
the conclusions are summarized in Section 5.

2. Problem Formulation

2.1. A Diesel Engine Air Path LPV Model

Figure 1 shows the model structure of a diesel engine with EGR and VGT, and the model can be
expressed as [16]:

ṗim =
RaTim
Vim

(Wc +Wegr −Wei)

ṗem =
ReTem
Vem

(Wf +Wei −Wt −Wegr)

ω̇t =
Ptηm − Pc
Jtωt

(1)

where Wc is the compressor mass air flow, Wegr is the EGR mass flow, Wei is the cylinder mass flow,
Wf is the fuel rate injected to cylinder, Wt is the turbine mass flow, Pt is the turbine power, Pc is the
compressor power, ηm is the turbocharger mechanical efficiency, pim is the intake manifold pressure, pem
is the exhaust manifold pressure and ωt is the turbine speed.

t

c

egr

eoei

egr

vgt

 

t
im em

Figure 1. Schematic of the diesel engine model with exhaust gas recirculation (EGR) and
variable geometry turbocharger (VGT).
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Meanwhile, Wc, Wegr, Wei, Wt, Wf , Pc and Ptηm in Equation (1) can be obtained as follows:

Wc =
pambπR

3
c · Φc (pim, ωt)

RaTamb
ωt,Wegr =

Aegr (uegr) ·Ψegr (pim, pem)√
TemRe

pem

Wei =
ηvol (pim, ne) · neVd

120RaTim
pim,Wt =

Avgtmax · fΠt (pem) · fvgt (uvgt)√
TemRe

pem

Wf =
10−6

120
ncylneuδ, Pc =

Wc (pim, ωt) · cpaTamb ·
(

Π
1−1/γa
c − 1

)
ηc (pim, ωt)

Ptηm = ηtm (pem, ωt) ·Wt (pem, uvgt) · cpeTem ·
(

1− Π
1−1/γe
t

)
(2)

However, it is difficult to estimate the measurement error of the MAF sensor based on the complicated
nonlinear model Equation (1). In order to simply present the state space equation and the error
estimation, define variables:

ρ1 =
pambπR

3
c · Φc (pim, ωt)

RaTamb
, ρ2 =

Aegr (uegr) ·Ψegr (pim, pem)√
TemRe

ρ3 =
ηvol (pim, ne) · neVd

120RaTim
, ρ4 =

Avgtmax · fΠt (pem) · fvgt (uvgt)√
TemRe

ρ5 =
cpapambπR

3
c · Φc (pim, ωt) ·

(
Π

1−1/γa
c − 1

)
JtωtRa · ηc (pim, ωt)

(3)

According to Equation (3), the variables ρi (i = 1, 2, 3, 4, 5) are available in real-time since pim,
pem, ωt, uegr, uvgt, uδ and ne can be measured or estimated online. Therefore, the nonlinear model
Equation (1) can be cast into an LPV system:

ẋ = A (ρ)x+ E (4)

where:

ρ =
(
ρ1 ρ2 ρ3 ρ4 ρ5

)
x =

 pim

pem

ωt

 , A (ρ) =

 −a1ρ3 a1ρ2 a1ρ1

a2ρ3 −a2ρ2 − a2ρ4 0

0 0 −ρ5


E =

 0

a2Wf

Ptηm/Jtωt

 , a1 =
RaTim
Vim

, a2 =
ReTem
Vem

(5)

In order to determine the bounds on the parameter vector ρ, a simulation study is performed
using a 1.9 L four-cylinder common rail turbo diesel engine of enDYNA provided by Tesis [17,18].
The bounds of the parameter vector ρ are found using the simulation data from enDYNA over the
European Transient Cycle (ETC), Federal Test Procedure 75 (FTP75) and New European Drive Cycle
(NEDC) [19–21]. Then, the results are listed in Table 1. It follows that each parameter ρi from parameter
vector ρ is bounded by a minimum and maximum value ρ

i
and ρi.
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Table 1. Bounds on the parameter vector ρ under three conditions. ETC, European Transient
Cycle; FTP75, Federal Test Procedure 75; NEDC, New European Drive Cycle.

Parameter ETC FTP75 NEDC

ρ1 [19, 150]× 10−7 [146, 110]× 10−7 [49, 130]× 10−7

ρ2 [−1.65, 1.6]× 10−7 [−0.56, 1.15]× 10−7 [−0.003, 1.0]× 10−7

ρ3 [1.09, 6.4]× 10−7 [1.18, 6]× 10−7 [1.1, 5.4]× 10−7

ρ4 [0.61, 6.01]× 10−7 [0.75, 5.4]× 10−7 [0.62, 4.7]× 10−7

ρ5 [0, 3.15] [0, 2.78] [0, 2.67]

2.2. 2D Map Description for the MAF Sensor Error

The intake manifold pressure pim, turbine speed ωt and compressor mass air flow Wc are the outputs
of interest to analyze the MAF sensor error, which is:

y =

(
y1

y2

)
=

 pim

ωt

Wc

 (6)

where y1 =
(
pim ωt

)T

, y2 = Wc. Due to the existence of MAF sensor error, the output
Equation (6) becomes:

ym =

(
y1m

y2m

)
=

(
y1

y2 + ∆Wc

)
(7)

where ym is the measured value from sensors. ∆W c is the measurement error of the MAF sensor,
which depends on the engine operating point (fuel mass injection quantity uδ and engine speed ne), i.e.,
∆Wc (uδ.ne). Since it is difficult to accurately build an analytical model for ∆Wc (uδ.ne), a 2D map
is adopted in this paper to describe ∆Wc (uδ, ne). Therefore, define the partition of the 2D map input
υ = (uδ, ne) as:

a = u1
δ < u2

δ < . . . < up1δ = b

c = n1
e < n2

e < . . . < np2e = d (8)

where a, b ∈ R are the minimum and maximum values of uδ and p1 is the number of the grid points in
[a, b]. c, d ∈ R are the minimum and maximum values of ne, and p2 is the number of the grid points
in [c, d].

Assume that the measurement error of the input grid points (uiδ, n
j
e) is θi,j , i.e.,

θi,j = ∆Wc

(
uiδ, n

j
e

)
i = 1, 2, · · · p1; j = 1, 2, · · · p2 (9)
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Then, for ∀υ ∈
[
uiδ, u

i+1
δ

]
× [nje, n

j+1
e ], ∀i ∈ [1, 2, · · · , p1 − 1] and ∀j ∈ [1, 2, · · · , p2 − 1], we

can hold the ne value fixed and apply one dimensional (1D) linear interpolation in the uδ direction.
Using the Lagrange form, the result is:

qjuδ
(
θi,j
)

=
ui+1
δ − uδ
ui+1
δ − uiδ

θi,j +
uδ − uiδ
ui+1
δ − uiδ

θi+1,j

uδ ∈
[
uiδ, u

i+1
δ

]
, i = 1, 2, · · · p1 − 1 (10)

Equation (10) can then be used to linearly interpolate along the ne dimension to yield the piecewise
bilinear interpolation model of the measurement error ∆Wc,T (θi,j, υ) as:

∆Wc,T

(
θi,j, υ

)
=
nj+1
e − ne
nj+1
e − nje

qjuδ
(
θi,j
)

+
ne − nje
nj+1
e − nje

qj+1
uδ

(
θi,j
)

υ ∈
[
uiδ, u

i+1
δ

]
×
[
nje, n

j+1
e

]
, i = 1, · · · p1 − 1; j = 1, · · · p2 − 1 (11)

For the undefined region υ ∈ (R× R) \ ([a, b]× [c, d]), we extend Equation (11) to the final result:

∆Wc,T

(
θi,j, υ

)
=


q1
uδ

(θi,j) , u ∈ R× R0
ne

nj + 1
e − ne
nj + 1
e − nje

qjuδ
(
θi,j
)

+
ne − nje
nj + 1
e − nje

qj + 1
uδ

(
θi,j
)

, u ∈ R× Rj
ne

qp2uδ (θi,j) , u ∈ R× Rp2
ne

(12)

where:

qjuδ
(
θi,j
)

=


θ1,j , uδ ∈ R0

uδ

ui+1
δ − uδ
ui+1
δ − uiδ

θi,j +
uδ − uiδ
ui+1
δ − uiδ

θi+1,j , uδ ∈ Ri
uδ

θp1,j , uδ ∈ Rp1
uδ

i = 1, 2, · · · p1 − 1; j = 1, 2, · · · p2 − 1 (13)

and:

Rk
uδ

=


(−∞, u1

δ ] , k = 0(
ukδ , u

k+1
δ

]
, k = 1, . . . , p1 − 1

(up1δ ,+∞) , k = p1

(14)

Rl
ne =


(−∞, n1

e] , l = 0(
nle, n

l+1
e

]
, l = 1, . . . , p2 − 1

(np2e ,+∞) , l = p2

(15)

For the purposes of estimating unknown parameter θi,j in ∆Wc,T (θi,j, υ) expediently, Equation (12)
in vector-vector form is needed. According to the input interval Equations (14) and (15), we define
membership function as:

δkuδ =

{
1, uδ ∈ Rk

uδ

0, other

k = 0, 1, · · · , p1 (16)
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and:

δlne =

{
1, ne ∈ Rl

ne

0, other

l = 0,1, . . . , p2 (17)

Using membership function Equations (16) and (17), Equation (12) becomes:

∆Wc,T

(
θi,j, υ

)
= δ0

neq
1
uδ

(
θi,j
)

+

p2−1∑
j=1

δjne

(
nj+1
e − ne
nj+1
e − nje

qjuδ
(
θi,j
)

+
ne − nje
nj+1
e − nje

qj+1
uδ

(
θi,j
))

+ δp2neq
p2
uδ

(
θi,j
)

= Ψne · quδ
(
θi,j
)

(18)

where:

Ψne =



δ0
ne + δ1

ne

n2
e − ne
n2
e − n1

e

δ1
ne

ne − n1
e

n2
e − n1

e

+ δ2
ne

n3
e − ne
n3
e − n2

e...

δp1−2
ne

ne − np2−2
e

np2−1
e − np2−2

e

+ δp1−1
ne

np2e − ne
np2e − np2−1

e

δp1−1
ne

ne − np2−1
e

np2e − np2−1
e

+ δp1ne



T

, quδ
(
θi,j
)

=


q1
uδ

(θi,j)

q2
uδ

(θi,j)
...

qp2−1
uδ

(θi,j)

qp2uδ (θi,j)

 (19)

and:

qjuδ
(
θi,j
)

= δ0
uδ
θ1,j +

p1−1∑
i=1

δiuδ

(
ui+1
δ − uδ
ui+1
δ − uiδ

θi,j +
uδ − uiδ
ui+1
δ − uiδ

θi+1,j

)
+ δp1uδθ

p1,j

= Ψuδ · θjuδ (20)

where:

Ψuδ =



δ0
uδ

+ δ1
uδ

u2
δ − uδ
u2
δ − u1

δ

δ1
uδ

uδ − u1
δ

u2
δ − u1

δ

+ δ2
uδ

u3
δ − uδ
u3
δ − u2

δ...

δp1−2
uδ

uδ − up1−2
δ

up1−1
δ − up1−2

δ

+ δp1−1
uδ

up1δ − uδ
up1δ − u

p1−1
δ

δp1−1
uδ

uδ − up1−1
δ

up1δ − u
p1−1
δ

+ δp1uδ



T

, θju
δ

=


θ1,j

θ2,j

...
θp1−1,j

θp1,j

 (21)

and Ψne ∈ R1×p1 ,Ψne ∈ R1×p2 , θju
δ
∈ Rp1×1, quδ (θi,j) ∈ Rp2×1.

Now, following Equations (18)–(21), ∆Wc,T (θi,j, υ) can be written as a dot product between
regression vector Ψ (υ) and unknown parameter vector θ as follows:

∆Wc,T (θ, υ) = Ψ (υ) · θ, ∀υ ∈ R× R (22)



Sensors 2015, 15 27149

where:

Ψ (υ) = Ψne ·


Ψuδ 0 · · · 0

0 Ψuδ · · · 0
...

... . . . ...
0 0 · · · Ψuδ

 , θ =


θ1
uδ

θ2
uδ
...
θp2uδ

 (23)

and Ψ (υ) ∈ R1×p, θ ∈ Rp×1, p = p1 · p2.
With the combination of Equations (4), (7) and (22), the diesel engine air path LPV model can be

described by the following state space equation:

ẋ = A (ρ)x+ E

ym = C (ρ)x+GΨ (υ) θ (24)

where:

C (ρ) =

 1 0 0

0 0 1

0 0 ρ1

 , G =

 0

0

1

 (25)

Equation (24) indicates that the estimation of the MAF sensor error ∆Wc (uδ, ne) becomes joint
estimation of state x and parameter θ for LPV system Equation (24).

3. Adaptive Observer Design

The observer to estimate state x and parameter θ jointly for the LPV system Equation (24) is given:

˙̂x = A (ρ) x̂+ E + L
(
ym − C (ρ) x̂−GΨ (υ) θ̂

)
˙̂
θ = ΓΨ(υ)T

(
ym2 − C2 (ρ) x̂−Ψ (υ) θ̂

)
(26)

where C2 (ρ) =
(

0 0 ρ1

)
, x̂ ∈ R3×1 is the state estimate, θ̂ ∈ Rp×1 is the parameter estimate, gain

Γ ∈ Rp×p is the positive definite diagonal matrix and L ∈ R3×3 is the feedback gain matrix.
The asymptotical stability of the proposed algorithm Equation (26) is analyzed in the

following theorem.

Theorem 1. If the following Conditions (1) and (2) hold, then LPV adaptive observer Equation (26) is
asymptotically stable, i.e., for any initial conditions x (0) , x̂ (0) , θ̂ (0) and parameter vector θ, the errors
x̂− x and θ̂ − θ tend to zero asymptotically when t→∞.

(1) There exist matrices L, P = PT > 0, Q = QT > 0 and constant ε1, ε2 > 0, such that the
following set of linear matrix inequalities (LMIs) is feasible for ∀ρi ∈

[
ρ
i
, ρi

]
, i = 1, 2, 3, 4, 5:

M (ρ) =

 Acl(ρ)TP + PAcl (ρ) +Q PLG CT
2 (ρ)

GTLTPT −ε1I 0

C2 (ρ) 0 −ε2I

 < 0 (27)
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2− ε1 − ε2 > 0 (28)

where Acl (ρ) = A (ρ)− LC (ρ).
(2) There exists map input υ, such that the regression vector Ψ (υ) is persistently exciting, i.e.,

∃δ1, δ2 > 0; ∃T > 0;∀t ≥ 0:

δ1Ip ≤
∫ t+T

t

Ψ(υ (τ))TΨ (υ (τ)) dτ ≤ δ2Ip (29)

Proof. Set the estimation error x̃ = x̂ − x, θ̃ = θ̂ − θ. Notice that θ̇ = 0; the error dynamic system
between Equations (24) and (26) is:

˙̃x = (A (ρ)− LC (ρ)) x̃− LGΨ (υ) θ̃

˙̃θ = −ΓΨ(υ)T
(
C2 (ρ) x̃+ Ψ (υ) θ̃

)
(30)

A valid Lyapunov function candidate is considered as V = ηTPη+θ̃TΓ−1θ̃. For ∀x̃ 6= 0, the derivative
of V along with the error dynamic system Equation (30) is:

V̇ = 2x̃TP ˙̃x+ 2θ̃TΓ−1 ˙̃θ

= 2x̃TPAcl (ρ) x̃− 2θ̃TΨ(υ)TΨ (υ) θ̃ − 2x̃TPLGΨ (υ) θ̃ − 2θ̃TΨ(υ)TC2 (ρ) x̃ (31)

There exist ε1, ε2 > 0, such that the following inequalities hold:

−2x̃TPLGΨ (υ) θ̃ 6

∥∥∥∥ 1
√
ε1

x̃TPLG

∥∥∥∥2

+
∥∥∥√ε1Ψ (υ) θ̃

∥∥∥2

−2θ̃TΨ(υ)TC2 (ρ) x̃ 6

∥∥∥∥ 1
√
ε2

C2 (ρ) x̃

∥∥∥∥2

+
∥∥∥√ε2θ̃

TΨ(υ)T
∥∥∥2

According to Condition (1) and Equation (31), the following inequality holds:

V̇ ≤ x̃T

(
Acl(ρ)TP + PAcl (ρ) +

1

ε1

PLGGTLTP +
1

ε2

CT
2 (ρ)C2 (ρ)

)
x̃

− (2− ε1 − ε2) θ̃TΨ(υ)TΨ (υ) θ̃

< −x̃TQx̃ < 0

That is V̇ < −ω (t) < 0, for ∀ρi ∈
[
ρ
i
, ρi

]
, i = 1, 2, 3, 4, 5, where ω (t) = x̃TQx̃. Based on the

Lyapunov stability theory, we know that the equilibrium x̃ = 0 and θ̃ = 0 are stable. Now, integrating
V̇ < −ω (t) from zero to t yields:

V (t) +

∫ t

0

ω (τ) dτ < V (0) (32)

and this means that
∫ t

0
ω (τ) dτ < V (0) since V > 0. Therefore, we have lim

t→∞

∫ t
0
ω (τ) dτ ≤ V (0),

and this implies that lim
t→∞

∫ t
0
ω (τ) dτ exists and is finite. By Barbalat’s Lemma [22], we know that

lim
t→∞

ω (t) = 0, and this leads to lim
t→∞

x̃ (t) = 0.

Under Condition (2), the vector Ψ (υ) is persistently exciting, that is we have lim
t→∞

θ̃ (t) = 0 [22].
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Remark 1. With the concept of multi-convexity [23], the solution of the infinite LMI Equation (27) can
be reduced to be a solution of the finite LMIs for the vertex set, that is:

M (w) < 0,∀w ∈ V =
{

(w1, · · · , w5)|wi ∈
{
ρ
i
, ρ̄i

}
, i = 1, 2, 3, 4, 5

}
(33)

Therefore, feedback gain L can be obtained by the solution of inequality Equations (28) and (33).

Remark 2. With the membership function δkuδ , δ
l
ne in Equations (16) and (17), we know that δkuδ = δlne= 1

when υ ∈ Rk
uδ
× Rl

ne and δkuδ = δlne = 0 when υ /∈ Rk
uδ
× Rl

ne . Therefore, the regression vector Ψ (υ) is
a sparse vector.

According to the partition of the map input υ = (uδ, ne) defined in Equation (8) and the piecewise
bilinear interpolation model Equation (12), the input υ (engine operating point) moves in only one region
Rk
uδ
×Rl

ne at any time, and only the parameters θ̂i,j corresponding to the region Rk
uδ
×Rl

ne can participate
in the interpolation. That is, for ∀υ ∈ Rk

uδ
× Rl

ne:
Case 1: (k, l) ∈ {0, p1}× {0, p2}. Only one parameter θ̂i,j, (i, j) ∈ {1, p1}× {1, p2} takes part in the

interpolation, i.e., ∆Wc,T

(
θ̂i,j, υ

)
= θ̂i,j .

Case 2: (k, l) ∈ {1, 2, · · · p1 − 1} × {0, p2}. Two parameters θ̂i,j, θ̂i+1,j, (i, j) ∈ {1, 2, · · · p1 − 1} ×
{1, p2} take part in the interpolation, i.e.,

∆Wc,T

(
θ̂i,j, υ

)
=
ui+1
δ − uδ
ui+1
δ − uiδ

θ̂i,j +
uδ − uiδ
ui+1
δ − uiδ

θ̂i+1,j

Case 3: (k, l) ∈ {0, p1} × {1, 2, · · · p2 − 1}. Two parameters θ̂i,j, θ̂i,j+1, (i, j) ∈ {1, p1} ×
{1, 2, · · · p2 − 1} take part in the interpolation, i.e.,

∆Wc,T

(
θi,j, υ

)
=
nj + 1
e − ne
nj + 1
e − nje

θ̂i,j +
ne − nje
nj + 1
e − nje

θ̂i,j+1

Case 4: (k, l) ∈ {1, 2, · · · p1 − 1} × {1, 2, · · · p2 − 1}. Four parameters θ̂i,j , θ̂i+1,j , θ̂i,j+1, θ̂i+1,j+1,
(i, j) ∈ {1, 2, · · · p1 − 1} × {1, 2, · · · p2 − 1} take part in the interpolation, i.e.,

∆Wc,T

(
θ̂i,j, υ

)
=
nj + 1
e − ne
nj + 1
e − nje

ui+1
δ − uδ
ui+1
δ − uiδ

θ̂i,j +
nj + 1
e − ne
nj + 1
e − nje

uδ − uiδ
ui+1
δ − uiδ

θ̂i+1,j

+
ne − nje
nj + 1
e − nje

ui+1
δ − uδ
ui+1
δ − uiδ

θ̂i,j+1 +
ne − nje
nj + 1
e − nje

uδ − uiδ
ui+1
δ − uiδ

θ̂i+1,j+1

In order to expediently discuss the convergence of the parameter estimate θ̂i,j corresponding to
different regions Rk

uδ
× Rl

ne , a local regression vector Ψl (υ) is defined based on the above four
classifications of the region partition as follow:

Ψl (υ) =



1 if υ ∈
(
R0
uδ
∪ Rp1

uδ

)
×
(
R0
ne ∪ Rp2

ne

)(
1− η1 η1

)
if υ ∈ Ri

uδ
×
(
R0
ne ∪ Rp2

ne

)(
1− η2 η2

)
if υ ∈

(
R0
uδ
∪ Rp1

uδ

)
× Rj

ne
(1− η1) (1− η2)

η1 (1− η2)

(1− η1) η2

η1η2



T

if υ ∈ Ri
uδ
× Rj

ne

(34)
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where:

η1 =
uδ − uiδ
ui+1
δ − uiδ

, η2 =
ne − nje
nj+1
e − nje

i = 1, 2, · · · p1 − 1; j = 1, 2, · · · p2 − 1 (35)

When υ ∈ Rk
uδ
× Rl

ne , regression vector Ψ (υ) in Equation (26) can be replaced by local regression
vector Ψl (υ); then, observer Equation (26) can be replaced by:

˙̂x = A (ρ) x̂+ E + L
(
ym − C (ρ) x̂−GΨl (υ) θ̂i,jl

)
˙̂
θi,jl = ΓlΨl(υ)T

(
ym2 − C2 (ρ) x̂−Ψl (υ) θ̂i,jl

)
(36)

where θ̂i,jl is the local parameter estimate of appropriate size and Γl is a local positive definite diagonal
matrix of appropriate size.

According to Theorem 1, the local parameter estimate θ̂i,jl is convergent if local regression vector
Ψl (υ) is persistently exciting. Meanwhile, the parameter estimate θ̂ is also convergent if the trajectory
of the map input υ passes through all of the interpolation regions Rk

uδ
× Rl

u2
.

There are heavy matrices calculated in real time for the covariance matrix equation of EKF in [9–11],
preventing it from being implemented in commercial electronic control units (ECUs) for map adaptation.
Nevertheless, the computational burden of the proposed observer Equation (26) without the additional
matrix equation is lower. Moreover, the number of parameter estimates θ̂ updated in Equation (26) is no
more than four at any time; then, the computational load can be further reduced by stopping estimating
θ̂i,j corresponding to υ /∈ Rk

uδ
× Rl

ne .

Remark 3. For the area S where the trajectory of the map input υ does not move, the parameters θ̂i,j

corresponding to the interpolation region belonging to S cannot be estimated by observer Equation (26).
In order to get the map parameters corresponding to S, an extrapolation model can be taken as follows:

∆Wc,e (uδ, ne) = a2u
2
δ + a1uδ + b2n

2
e + b1ne + c2uδne + c1 (37)

where a2, a1, b2, b1, c2, c1 are polynomial parameters. Based on the data from the estimated map
parameters, extrapolation model Equation (37) can be fitted by polynomial fitting approach, and then
map parameters corresponding to S can be obtained.

4. Simulation Results

In this section, the simulation study of 2D map estimation is presented in the environment of a
1.9 L four-cylinder common rail turbo diesel engine of enDYNA, in which the ETC and FTP75 are used
as test conditions, respectively. The observer architecture is illustrated in Figure 2, where ∆Wc (uδ, ne)

is the additive reference error as the true measurement error from enDYNA.
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Figure 2. Schematic diagram of the adaptive observer.

Bounds on the parameter vector ρ are presented in Table 1. When the inequality Equations (28)
and (33) are solved with ε1 = 0.25 and ε2 = 0.11, the gain matrix L can be given by:

L =

 1635.83 −124.95 6.52× 10−7

−16,063.4 3135.43 1.67× 10−7

4.2 29.7 4.55× 10−20

 (38)

The initial values of observer Equation (26) used in the simulation are

x̂ (0) =
[

9.8× 105 9.8× 105 0
]T

, θ̂ (0) = 0, and the parameter gain is Γ = 200I .
Here, the reference error ∆Wc (uδ, ne) assumed as MAF sensor measurement error is depicted
in Figure 3, which is superimposed on the signal Wc in enDYNA as the measured value ym2 in
the simulation.
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Figure 3. Reference error ∆Wc (uδ, ne) used as the mass air flow (MAF) sensor error
in enDYNA.
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4.1. 2D Map Estimation under ETC

There are three parts of the ETC representing three different driving conditions, including urban,
rural and motorway driving. Due to the engine speed range from ETC Part 1 covering the other two
parts, ETC Part 1 is employed as the test condition in this section. Accordingly, the fuel mass injection
quantity uδ and engine speed ne from ETC Part 1 are plotted in Figure 4a, and the trajectory of the
operating point υ = (uδ, ne) is depicted in Figure 4b, in which the trajectory does not move in area
S = [(0, 56)× (0, 800)] ∪ [(40, 56)× (0, 2000)]. According to the range uδ ∈ [0, 56] and ne ∈ [0, 3100]

from Figure 4a, an average partition can be respectively given as [0:4:56] and [0:250:3000].
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Figure 4. Evolution of operating point υ = (uδ, ne) during ETC part one. (a) Evolution of
uδ and ne. (b) Trajectory of operating point υ = (uδ, ne).

The estimation results of the MAF sensor error using observer Equation (26) under ETC Part 1 are
shown in Figure 5a, in which the map parameters have been estimated, except area S. According to
Remark 3, the map parameters corresponding to area S can be obtained from the extrapolation model
Equation (37). Based on the estimated map parameters from Figure 5a, the polynomial parameters in
Equation (37) can be fitted as follows:

a2 = 9.12× 10−6, a1 = −4.39× 10−4, b2 = 1.30× 10−9

b1 = −5.74× 10−6, c2 = −5.37× 10−8, c1 = 0.0012887 (39)

The parameters corresponding to area S obtained from Equation (37) are presented in Figure 5b,
which can roughly reflect the trend of the map.

In order to evaluate the accuracy of the estimated 2D map shown in Figure 5a, the comparison between
the reference error ∆Wc (uδ, ne) and the estimated 2D map during the ETC segment is presented in
Figure 6a. Accordingly, the true mass air flow y2, measured mass air flow ym2 and map compensation
are shown in Figure 6b. The mean relative error between reference error ∆Wc (uδ, ne) and estimated
2D map is 10.41%, which demonstrates that the measured output ym2 of the MAF sensor after map
correction can approximate the true value of Wc acceptably.
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Figure 5. The estimated 2D map for the MAF sensor error. (a) Estimation results of the 2D
map under ETC Part 1; (b) Extrapolation results based on the estimated 2D map.
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Figure 6. 2D map compensation during the ETC segment. (a) Simulation results between
reference error ∆Wc (uδ, ne) and the estimated 2D map; (b) Simulation results of true mass
air flow y2, measured mass air flow ym2 and the map compensation.

4.2. 2D Map Estimation under FTP75

In order to verify the effectiveness of the proposed method under different conditions, the cold
start transient phase of the FTP75 is used in this section. Accordingly, uδ and ne are plotted in
Figure 7a, and the trajectory of υ is depicted in Figure 7b, in which the trajectory does not move in area
S = [(0, 56)× (0, 650)] ∪ [(25, 37)× (0, 2000)] ∪ [(37, 56)× (0, 3500)].
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Figure 7. Evolution of operating point υ = (uδ, ne) FTP75 cold start transient phase.
(a) Evolution of uδ and ne; (b) Trajectory of operating point υ = (uδ, ne).

0
20

40

0
1000

2000
3000

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

n
e
 [r/min]u

δ
 [mg/cycle]

E
st

im
at

ed
 e

rr
o

r 
[k

g
/s

]

S

(a)

01020304050

0

1000

2000

3000

−0.02

−0.01

0

0.01

0.02

u
δ
 [mg/cycle]n

e
 [r/min]

E
st

im
at

ed
 e

rr
o
r 

[k
g
/s

]

S

(b)

Figure 8. The estimated 2D map for the MAF sensor error. (a) Estimation results of the 2D
map under FTP75 cold start transient phase; (b) Extrapolation results based on the estimated
2D map.

The estimation results of the MAF sensor error under the cold start transient phase of the FTP75 are
shown in Figure 8a, and the polynomial parameters in Equation (37) are fitted as follows:

a2 = 2.10× 10−5, a1 = −8.62× 10−4, b2 = 1.46× 10−9

b1 = −6.40× 10−6, c2 = −1.84× 10−8, c1 = 0.0032316 (40)

The map added the parameters corresponding to area S are shown in Figure 8b, which can also
roughly reflect the trend of the map. Under the FTP75 segment, the comparison between the reference
error ∆Wc (uδ, ne) and the estimated 2D map from Figure 8a is shown in Figure 9a. Accordingly, the
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MAF sensor measured value ym2 using map compensation is presented in Figure 9b. The mean relative
error between reference error ∆Wc (uδ, ne) and the estimated 2D map is 5.28%, demonstrating that the
measured output ym2 after map correction can approximate the true value of Wc acceptably.
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Figure 9. 2D map compensation during the FTP75 segment. (a) Simulation results between
reference error ∆Wc (uδ, ne) and the estimated 2D map; (b) Simulation results of true mass
air flow y2, measured mass air flow ym2 and the map compensation.

5. Conclusions

A method for updating and storing sensor bias from different operating points is developed and
investigated. This method achieves simultaneous estimation of model states and map parameters and
applies to updating the MAF sensor error 2D map in the engine. The map in the form of a vector-vector
dot product is given to conveniently analyze and design the parameter estimation method. An LPV
adaptive observer to estimate map parameters is designed, which has the advantage of a simple structure
and low computational load. Under ETC Part 1 and the cold start transient phase of the FTP75, the
effectiveness of the presented algorithm is verified and validated in the engine software enDYNA.
The results demonstrate that the proposed method can estimate the MAF sensor error acceptably.
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Nomenclature

pamb ambient pressure (Pa) pim intake manifold pressure (Pa)
pem exhaust manifold pressure (Pa) ωt turbine speed (rad/s)
ne engine speed (rpm) Wc compressor mass air flow (kg/s)
Wegr EGR mass flow (kg/s) Wei cylinder mass flow (kg/s)
Wf fuel rate injected to cylinder (kg/s) Wt turbine mass flow (kg/s)
Pc compressor power (W) Pt turbine power (W)
Φc volumetric flow coefficient Ψegr energy transfer coefficient
ηvol volumetric efficiency ηtm turbine efficiency
ηm turbocharger mechanical efficiency ηc compressor efficiency
Tamb ambient temperature (K) Tim intake manifold temperature (K)
Tem exhaust manifold temperature (K) Vim intake manifold volume (m3)
Vem exhaust manifold volume (m3) Vd displaced volume (m3)
Ra air gas constant (J/(kg·K)) Re exhaust gas constant (J/(kg·K))
Rc compressor blade radius (m) γa air specific heat capacity ratio
γe exhaust specific heat capacity ratio Πc compressor pressure quotient
Πt turbine pressure quotient Jt turbine inertia (kg·m2)
ncyl number of cylinders Aegr EGR valve effective area (m2)
Avgtmax VGT nozzle maximum effective area (m2) fΠt choking function
fvgt effective area ratio function uegr EGR valve opening percentage (%)
uvgt VGT vane opening percentage (%) uδ injected amount of fuel (mg/cycle)
cpa air specific heat capacity at constant pressure (J/(kg·K))
cpe exhaust specific heat capacity at constant pressure (J/(kg·K))
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