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Abstract: In this paper, a discrete wavelet transform (DWT) based de-noising with its 

applications into the noise reduction for medical signal preprocessing is introduced.  

This work focuses on the hardware realization of a real-time wavelet de-noising procedure. 

The proposed de-noising circuit mainly consists of three modules: a DWT, a thresholding, 

and an inverse DWT (IDWT) modular circuits. We also proposed a novel adaptive 

thresholding scheme and incorporated it into our wavelet de-noising procedure. 

Performance was then evaluated on both the architectural designs of the software and.  

In addition, the de-noising circuit was also implemented by downloading the Verilog codes 

to a field programmable gate array (FPGA) based platform so that its ability in noise 

reduction may be further validated in actual practice. Simulation experiment results 

produced by applying a set of simulated noise-contaminated electrocardiogram (ECG) 

signals into the de-noising circuit showed that the circuit could not only desirably meet the 

requirement of real-time processing, but also achieve satisfactory performance for noise 

reduction, while the sharp features of the ECG signals can be well preserved. The proposed 

de-noising circuit was further synthesized using the Synopsys Design Compiler with an 

Artisan Taiwan Semiconductor Manufacturing Company (TSMC, Hsinchu, Taiwan) 40 nm 

standard cell library. The integrated circuit (IC) synthesis simulation results showed that 

the proposed design can achieve a clock frequency of 200 MHz and the power 

consumption was only 17.4 mW, when operated at 200 MHz. 
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1. Introduction 

Signal integrity always plays a crucial role for applications into medical signal sensing and 

processing. In general, determination of the use of an appropriate noise-reduction procedure in order to 

ensure the reliability for signal integrity is of paramount importance to the designs of the system-level 

medical products or devices. For example, a measured electrocardiogram (ECG) is mainly composed 

of actual cardiac activity and a variety of noise sources such as electromyogram (EMG), power-line 

interference and motion artifacts. In order to effectively perform the tasks of cardiac signal analyses, 

such as the QRS detection or arrhythmic event detection, simple and reliable signal preprocessing 

approaches for noise reduction are essentially demanded. In this regard, there are a number of 

traditional noise reduction methods, but most of them are usually operated in frequency domains with 

only limited frequency range. For instance, band-pass filtering has been known as one of the most 

common methods applied for this purpose. However, such a simple frequency-selective filtering 

operation may sometimes seriously destroy sharp features in ECG such as the QRS complexes [1].  

On the other hand, in some existing cardiac signal processing such as the task of QRS detection for 

example, the correlation-based noise reduction method may be considered one of the best ways used to 

prevent the subsequent signal processing performance from being degraded by the undesired noise 

sources as described above [1]. However, since the technique involves intensive cross-correlation 

computation between a pre-selected QRS template and the raw ECG data, such a heavy computational 

burden could also undesirably restrict its use to quite a limited number of applications [2]. 

In fact, there actually exist a number of different types of other possible techniques for noise 

reduction. Among these methods, the wavelet based de-noising has been considered as one of the most 

effective techniques [3]. Since decades ago, wavelet-based methods have been widely used in 

biomedical signal processing [4,5]. In short, wavelet transforms represent the temporal characteristics 

of a signal by its spectral components in frequency domain. The theory of wavelet transforms asserts 

that signals to be analyzed can be decomposed into a variety of scales with different time and 

frequency resolutions using the so-called multi-resolution analysis algorithm [5,6]. Continued research 

investigations have addressed important issues across many applications spanning from data 

compression [7,8] to biomedical signal and image processing [9–12]. In addition to data compression, 

signal and image processing, it has been known that the wavelet transform-based technique can be also 

applied for the purpose of signal de-noising, as mentioned above. In this regard, the noise level can be 

effectively reduced while the sharp features or known noise characteristics of the signal can be  

well preserved [1,13,14]. For example, Du et al. have proposed a wavelet de-noising based method to 

well separate 1/fγ noise from white noise in time domain with higher accuracy than  

classical frequency-domain based methods, even when the ratio of 1/fγ noise to white noise or when 

the signal-to-noise ratio (SNR) is low [15]. 
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In representing a signal that is contaminated by additive unstructured noise using discrete wavelet 

transform (DWT), we may hypothesize that most larger wavelet coefficients may generally result from 

the signal portion, while the small-valued wavelet coefficients should be attributed to the noise portion 

(which could possibly contaminate all wavelet coefficients). Thus, reconstructing the signal from the 

thresholded wavelet coefficients would provide a de-noised version of the original signal. Note that 

here the signal reconstruction is actually done by computing the inverse DWT (IDWT) [13,14]. 

Therefore, the fact as indicated above leads to the idea of de-noising a noisy signal in its wavelet 

domain. In addition, the DWT based de-noising method has been also widely applied in biomedical 

signal analysis [16–18]. Ahsan et al. have presented a fast and reliable prototyping of DWT as a 

VHDL (hardware description language) model for de-noising EMG signals [16]. Although their results 

indicated that the performance of the model was satisfactory, the computational cost in time and 

memory complexity could be greatly enhanced if higher precision is demanded. As for ECG 

applications, there was another work in literature demonstrating that the DWT was implemented using 

MATLAB to reduce the instrumentation and biological noise so the ECG parameters can be accurately 

estimated [17]. However, in that work, the de-noising scheme was only realized in software manner. 

Moreover, some researchers proposed to use the dual tree complex wavelet transform (DTCWT) to  

de-noise ECG signals [18]. Although they claimed that the DTCWT showed better performance for all 

types of noise than did the DWT, DTCWT actually requires high computational complexity and high 

redundancy in the output, which may not be desirable. In this paper, a novel, simple, and reliable 

wavelet-based de-noising algorithm and its hardware realization for real-time medical signal 

preprocessing and analysis is presented. This study mainly evaluated the proposed DWT de-noising 

method and its circuit architecture in both software and hardware manners. It is also worth noting that 

in such a circuit, the real-time implementation of DWT computation requires substantially smaller 

memory storage, as compared to that required by the direct computation of DWT, thus permitting a 

time- and memory-efficient architecture. Simulation experiment results obtained from both the 

software and hardware simulations indicated that the proposed wavelet de-noising scheme could 

robustly and effectively reduce the noise level in a real-time manner. 

2. Methodology 

2.1. Overall Structure 

Figure 1 shows a schematic block diagram of the overall wavelet de-noising process. According to 

Figure 1, the procedure of the wavelet de-noising scheme is briefly described as follows. First, the 

three-level, four-tap DWT of a noise-contaminated medical signal is computed. Next, a so-called 

thresholding process is applied to the DWT by throwing away the wavelet coefficients (i.e., resetting 

them to zero) whose absolute magnitudes are less than some preset threshold [13,14]. The rationale 

behind the thresholding process is based on an assumption that the noise generally results in  

small-valued wavelet coefficients while the large coefficients should be mostly due to the actual signal. 

Then, the de-noised signal can be synthesized simply by computing the IDWT on the thresholded 

wavelet coefficients and thus the SNR of the de-noised signal is finally enhanced. In short, the wavelet 
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de-noising circuit to be designed here in this study mainly consists of three modules: a DWT, a 

thresholding, and an IDWT, which are respectively presented in the subsequent sections. 

 

Figure 1. A schematic block diagram of the wavelet de-noising process. 

2.2. First Stage: DWT 

In this section, a real-time DWT structure is briefly described. First, note that computing DWT in a 

real-time fashion with low memory complexity is desirable in many aspects of medical signal 

processing applications. On the other hand, being implemented by convolution, the DWT computation 

requires both a large number of arithmetic operations (i.e., multiplication and addition) and a large 

storage in memory, which are not desirable for high-speed or low-power signal or image processing 

applications. In fact, direct computation of an N-point DWT, referred to as the Pyramid Algorithm 

(PA) [19,20], requires O(N) storage in memory and this obviously costs too much. Meanwhile, to 

achieve real-time wavelet de-noising, it is neither practical nor possible to directly compute the DWT 

for the entire signal that is supposed to be quasi-infinite in length. Fortunately, there were a number of 

efficient scalable VLSI (Very-large-scale integration architectures) for real-time computation of DWT 

developed previously [21–25]. Among all these efficient VLSI architectures, a structure referred to as 

the lifting-based scheme demands much fewer computations than do the conventional ones and thus 

has been proposed for the DWT implementation for the past several years [24,25]. However, since the 

lifting scheme can be only applied for constructing biorthogonal wavelets, it may not be well suited to 

our applications. Therefore, in this study an existing structure of one-dimensional (1D) DWT 

decomposition developed by Yu et al. [21] was thus incorporated into the de-noising circuit, as shown 

in Figure 2. Unlike the lifting based scheme, the DWT architecture we adopted here can be applied for 

constructing any wavelet filters. 

 

Figure 2. A three level 1D DWT structure as developed in [21]. 
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According to [21], computations of all the wavelet coefficients after the second level can be folded 

into the second stage filter bank in Figure 2 by interleaving the computations of the second level with 

those of the remaining levels (note that there are three dyadic levels in this study). Such an operation 

scheduling approach results in the architectures of the first and second stages for realizing the 

decimation filter process G(z) as indicated in Figures 3 and 4, respectively. Similarly, H(z) filtering 

operations can be realized in the same way. 
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Figure 3. The first stage architecture of the 1D DWT as developed in [21]. 

 

Figure 4. The second stage architecture of the 1D DWT as developed in [21]. 

From the architectures as shown in Figures 3 and 4, one may see that the number of Multiplications 

and Accumulations (MAC’s) is reduced by exactly 50%, in comparison to the conventional cases [21]. 

Consequently, for an M-tap filter, the total number of MAC’s in the architecture adopted in this study 

is 2M (i.e., 2 modules/stage × M/2 MAC’s/module × 2 stages) which is the same as most of the 

existing folded architectures; however, the adopted folded architecture can provide an ideally high 

throughput rate. Moreover, for a J-level DWT the architecture requires only JM registers, even much 

less than the conventional ones (note that in our case, M = 4, J = 3). 
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2.3. Middle Stage: Thresholding 

As stated previously, given a raw measured signal, in order to effectively reduce the noise level and 

simultaneously preserve the sharp features of the signal, a deliberately designed thresholding stage 

needs to be incorporated into the de-noising circuit. In this study, a novel adaptive thresholding scheme 

was devised. Such a thresholding process is applied to the wavelet coefficients generated from the 

DWT module for reducing the noise level while preserving the sharp features of the signal. It should 

be noted that there was an adaptive threshold assigned for each DWT level (or dyadic level) and used 

to perform the thresholding process on the wavelet coefficients generated at that level. Here, the 

adaptive threshold applied for the j-th dyadic level is defined as 

j
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where y1(k) represents the wavelet coefficients at the first dyadic level; thj(i) represents the i-th 

threshold value used for performing the thresholding process on the wavelet coefficients at the j-th 

level. Obviously, the thresholds used for different levels were all related one another because 

according to Equation (2) they were all determined using the wavelet coefficients at the 1st level. In 

order to explain the calculation of the thresholds more clearly, first we consider the threshold for the 

1st level (i.e., let j = 1). 
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kyth  obviously, we may see that the adaptive threshold th1(i) applied for the 1st 

level DWT coefficients was simply determined and updated by the running estimate of twice as much 

as the average of the absolute 1st-level wavelet coefficients over a 32-point non-overlapping window. 

Here, 32 is an empirical choice of the moving window length. Furthermore, according to Equation (2) 

we then have 

2)()( 12 ×= ithith  (4)
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That is, the threshold would be elevated by a factor of 2 as the dyadic level is increased by 1. 

Therefore, the threshold thj(i) is updated every 32 first-level wavelet coefficients. Also note that since 

the scaling factor (i.e., 2j/32) in Equation (2) can be represented as a power of 2, the computation in 

Equation (2) is thus accomplished by performing a number of additions first and then a simple shift 

operation at the end. Moreover, the thresholding scheme can be formulated as 
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where ytj(k) represents the new value of the k-th wavelet coefficient at the j-th level obtained after 

thresholding, where k = Bj(i − 1) ∼ Bji−1 (Bj = 32/2(j−1)). Note further according to Equations (2) and 

(6), one may see that the threshold is applied and updated in a block-wise manner. Therefore, in order 

to synchronously perform the thresholding process on the wavelet coefficients throughout all levels, a 

threshold th2(i) is applied for the i-th block consisting of 16 consecutive wavelet coefficients at the 

second level (B2 = 16); similarly, th3(i) is applied for the i-th block consisting of 8 consecutive wavelet 

coefficients at the third level (B3 = 8). 

Figure 5 shows the architecture of the proposed thresholding circuit. Three computation paths 

respectively filter three level data (i.e., wavelet coefficients) obtained from the DWT output based on 

the corresponding thresholds in a nonlinear manner, as indicated in Equation (6). The threshold 

calculation consists of two steps described as follows. First, the average of the absolute values of  

32 consecutive wavelet coefficients at the first level is computed using an ABS averaged circuit.  

The thresholds used for all the three computation paths, denoted as th1(i), th2(i), and th3(i), can be then 

obtained by right shifting 4-bit, 3-bit, and 2-bit, respectively. In addition, the shift registers D2, D4, and 

D8 permute the data sequences derived from the DWT and feed them into the inverse DWT after the 

thresholding process. Due to the down sampling of the DWT and up-sampling of IDWT operations, 

their update frequencies are 1/2, 1/4, and 1/8 fold, respectively, to the system clock, and thus, the 

proposed adaptive thresholding scheme, as indicated in Equations (2) and (6), can be successfully 

executed by the proposed circuit. Note further that due to the algorithmic regularity, the proposed 

thresholding architecture can be easily scaled up with the block size and the number of dyadic levels. 

 

Figure 5. The architecture of the proposed thresholding circuit. 
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2.4. Final Stage: IDWT 

At the final stage, the de-noised signal is generated by computing the inverse DWT (IDWT) on the 

thresholded wavelet coefficients. Figure 6 gives an illustrative structure of the three-level 1D IDWT 

synthesis. In fact, the computation of all the scaling (or coarse) coefficients over all levels can be 

folded into the first stage filter bank as shown in Figure 6. This folded structure is illustrated in Figure 7. 

Moreover, given the first level scaling and thresholded wavelet coefficients, the de-noised signal is 

then synthesized at the second stage filter bank, as illustrated in Figure 8. With a switch-based 

connection of the architectures of Figures 7 and 8, the IDWT module derived for this research would 

work perfectly in accordance with the preceding DWT and thresholding modules to produce the  

de-noised signal in a real-time manner. Figure 9 depicts a schematic block diagram illustrating how the 

DWT, the thresholding, and the IDWT modules connect to perform the de-noising function. 

 

Figure 6. A three level 1D IDWT structure. 
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Figure 7. The first stage architecture of the 1D IDWT. Note that the output of the circuit is 

switched between the scaling coefficient input of this circuit itself and the coarse 

coefficient input of the next stage circuit (i.e., the second stage circuit, as depicted in Figure 8). 
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Figure 8. The second stage architecture of 1D IDWT. 

 

Figure 9. A schematic block diagram of the three-level wavelet based de-noising structure. 

In addition, it should be also noted that there are a number of thresholded wavelet coefficients 

obtained after applying the thresholding process throughout all the levels waiting to be input into the 

IDWT module, and thus, one may expect that the number of registers required for the implementation 

of the wavelet de-noising algorithm as shown in Figure 9 would be greatly increased. Therefore, the 

focus of the next step design is on minimizing the number of registers used in the circuit so the chip 

size due to the registers remains optimally small. For this purpose, here a lifetime analysis used to 

systematically evaluate the minimum number of registers was further adopted. That is, after the 

minimum number of registers required for the implementation of the circuit was determined, a 

technique, referred to as the forward-backward register allocation, was then used for allocating the 

intermediate thresholded wavelet data to these registers [26,27]. 
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3. Simulation Experiment Results of Performance Evaluation and FPGA Implementation 

To evaluate the performance of the proposed de-noising algorithm as well as to demonstrate its 

noise reduction capability under a field programmable gate array (FPGA) design, simulation 

experiments were conducted in both software and hardware manners. It should also be noted that since 

a practically measured ECG signal is mainly composed of actual cardiac activity and noise due to 

various sources, such as electromyogram (EMG), power-line interference and motion artifacts. In this 

performance evaluation task, we consider the de-noising performance upon the white Gaussian noise 

first, and then upon the 60 Hz power interference when combined with white Gaussian noise, which 

can be thought of as being a more realistically encountered type of noise. 

3.1. Simulation Results of White Gaussian Noise Reduction 

Here, given a noiseless ECG signal, a simulated noise-contaminated ECG signal was then 

composed by adding a zero-mean white Gaussian noise signal to the noiseless ECG. The sampling rate 

of the ECG signal was 250 Hz. Figure 10 shows an example of the simulated Gaussian noise corrupted 

ECG signal used in this performance validation task. 

 

Figure 10. A simulated noise-contaminated electrocardiogram (ECG) signal. 

First, in software/floating-point simulation the proposed de-noising algorithm was realized using 

MATLAB codes and then tested on the raw ECG signal as shown in Figure 10. Figure 11 shows  

the appearance of the output generated simply by executing the MATLAB codes. Apparently, the  

de-noised signal as shown in Figure 11 looks much cleaner and thus, most of the important features or 

components of ECG may be clearly observed, indicating that the wavelet de-noising could faithfully 

and robustly recover the desired ECG signal from the noise-contaminated situation. 
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Figure 11. De-noised ECG signal (by software simulation). 

Next, as for the hardware/fixed-point simulation, we realized the de-noising circuit using the Verilog 

Hardware Description Language (Verilog/HDL) and then simulated the circuit. Figure 12 shows the 

hardware simulation results. The fixed-point word length of the circuit was set to 11 bits plus one sign 

bit. In fact, the correlation coefficient between both the software and hardware de-noised ECG signals 

is over 0.99. 

 

Figure 12. De-noised ECG signal (by hardware simulation). 
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We also implemented the circuit on a commercial PC-based high-speed field programmable gate 

array (FPGA) platform, called the SMIMS VeriEnterprise (SMIMS Technology Corporation, Taipei, 

Taiwan) so that its actual processing capability in the form of hardware may be faithfully validated. 

The SMIMS VeriEnterprise is a PC-based high-speed FPGA platform. It provides a hardware-software  

co-design, co-simulation, and co-verification environment and is thus very suitable for a complete 

application specific integrated circuit (ASIC) logic emulation, prototyping verification and IP 

development. In such a hardware experimental platform, we imported the input signals from PC into 

our designed circuit on the FPGA of VeriEnterprise and exported the output signals to PC for 

observation. Consequently, the de-noised ECG signal generated by the FPGA module was exactly  

the same as that obtained from the hardware simulation results as depicted in Figure 12. It should be  

noted that the design and testing procedure, as described above, is also useful in designing either a 

stand-alone processor, or a coprocessor that may work in conjunction with medical embedded systems 

and/or systems on a chip. 

3.2. Simulation Results of 60 Hz Power Interference Mixed with Gaussian Noise Reduction 

Since, as stated previously, raw ECG usually presents different kinds of noise sources such as 

EMG, 60 Hz power-line interference, and motion artifacts, only white Gaussian noise used in the 

performance evaluation may limit the extent and scope of the investigation. Thus, it is necessary to 

include other noise types in the performance evaluation. Here, simulation results of a mixed  

60 Hz power line interference and Gaussian noise reduction are presented. Similarly, given the  

same noiseless ECG signal, a simulated 60 Hz power interference mixed with white Gaussian  

noise-contaminated ECG signal was thus composed, as depicted in Figure 13. 

 

Figure 13. A simulated 60 Hz power interference mixed with white Gaussian  

noise-contaminated ECG signal. 
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Figures 14 and 15 present the appearances of the de-noised output signals produced by the software 

and hardware simulations, respectively. Similarly, observing either Figure 14 or 15, one may see that 

most of the important features of ECG were preserved, thus indicating that the wavelet de-noising could 

still robustly recover the desired ECG signal from the noise-contaminated situation, even under the 

presence of the 60 Hz power-line interference. 

 

Figure 14. De-noised ECG signal obtained after suppressing mixed noise (by software simulation). 

 

Figure 15. De-noised ECG signal obtained after suppressing mixed noise (by hardware simulation). 

3.3. Performance Evaluation and Discussion 

In order to understand how the SNR affects the performance of the proposed DWT based de-noising 

architecture, we experimentally studied its de-noising performance on a set of simulated noisy ECG 

signals at a variety of SNR levels ranging from 0 to 12 dB. As described previously, we had taken a 

case where the simulated ECG measurement was a composite signal of a noiseless ECG and a  

zero-mean white Gaussian noise with variance σ2. That is, given a noiseless ECG, each simulated 
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noise-contaminated ECG signal with a preset SNR value (ranging from 0–12 dB) can be then 

composed by adding a white Gaussian noise signal with the estimated variance σ2 (corresponding to 

the given SNR value) to the noiseless ECG. Both the de-noising algorithmic and its architectural 

performances were evaluated against all these simulated ECG measurements (with different SNR 

values). That is, we tested and examined the capability of the proposed DWT de-noising in its software 

and hardware realizations. For this purpose, a quantitative measure, referred to as the Percent Error 

Energy (PEE), was further used. It is defined as the percentage of the magnitude-squared difference 

between the noiseless ECG and the de-noised ECG, that is, 

%100 PEE
2

2

2

2 ×
−

=
0

0

x

xx
 (7)

where x and x0 represent the de-noised ECG and the noiseless ECG, respectively. In addition, a similar 

metric typically used for quantitatively evaluating the de-noising performance, called the percent root 

mean square difference (PRD) can be also used for the performance evaluation [28,29]. In fact, PRD 

can be simply estimated from PEE using 

10PEE PRD ×=  (8)

Table 1. SNR versus the PEE values obtained before applying wavelet de-noising, after 

applying software- and hardware-based wavelet de-noising, respectively, i.e., the 

numerical results as shown in Figure 16. Note that in order to make a performance 

comparison between the proposed method (and its circuit) and an existing de-noising 

method [28], we here also included the percent root mean square differences (PRDs) when 

SNR levels were at 6 dB and 10 dB, respectively. 

SNR (dB) 
PEE (%) 

Before De-Noising After De-Noising (SW) After De-Noising (HW) 

0 71.4768 20.2165 35.4926 
1 55.3751 11.5416 26.8590 
2 47.1088 14.7589 24.1877 
3 38.1031 10.2151 20.6781 
4 29.8481 6.8174 16.5251 
5 24.3355 7.8158 13.1456 
6 18.9428 6.4032 (PRD ≒ 25%) 10.2769 (PRD ≒ 32%) 
7 14.6350 5.1588 8.2892 
8 11.5079 4.8156 6.9530 
9 9.4788 3.0588 5.9702 

10 7.1918 2.3661 (PRD ≒ 15%) 4.9530 (PRD ≒ 22%) 
11 5.5625 1.9624 4.0578 
12 4.8982 1.5295 3.7200 

In fact, at a particular SNR, a de-noising method is said to be better if both the PEE and PRD are 

smaller. Note that in order to compare the performances obtained before and after applying the 

proposed DWT based de-noising scheme, we also evaluated the PEE between each original  
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noise-contaminated ECG signal and the noiseless ECG simply by letting x in Equation (7) be the 

original raw ECG. Figure 16 presents the performance comparison in terms of PEE-versus-SNR curve 

among all the cases corresponding to the original raw ECG, the software-based de-noised ECG, and 

the hardware-based de-noised ECG, respectively. Observing the results as shown in Figure 16, one 

may see that the as expected, the PEE values evaluated on the original noise-contaminated ECG 

signals were all greater than those evaluated on the de-noised signals, regardless of being derived in 

hardware or in software manner. Also, one may notice that the software realization substantially 

outperformed the hardware one. This is because the former leads to the floating-point representations 

while the latter is in fixed-point implementation. In our case, the fixed-point word length was set to  

12 bits. In fact, in hardware realization the desire for fine quantization (i.e., small quantization error) 

can be done simply by increasing the fixed-point word length [30]. In addition, all the numerical 

results of PEE obtained at different SNR values are also tabulated in Table 1. We further compared the 

performance of our de-noising algorithm and circuit, as shown in Table 1, with respect to an existing 

method, as proposed in a previous work [28], based on PRD. According to [28], they obtained about 

48% of PRD at an input SNR level of 6 dB and about 40% of PRD at SNR of 10 dB, while our 

algorithm achieved only about 25% and 32% of PRDs in software and hardware realizations, 

respectively, at SNR of 6 dB and about 15% and 22% at SNR of 10 dB. Obviously, the proposed  

de-noising algorithm and its circuit both achieved much better de-noising performance than did the one 

as proposed by [28]. 

 

Figure 16. The Percent Error Energy (PEE)-versus-signal-to-noise ratio (SNR) curves 

derived from the original noise-corrupted ECGs (blue), the software-based de-noised ECGs 

(green), and the hardware-based de-noised ECGs (red), respectively. 
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Table 2. SNR versus the PEE values obtained before applying wavelet de-noising, after 

applying software- and hardware-based wavelet de-noising, respectively, i.e., the 

numerical results as shown in Figure 17. Similarly, we here also included the PRDs  

when SNR levels were at 6 dB and 10 dB, respectively, for performance comparison with 

respect to [28]. 

SNR (dB) 
PEE (%) 

Before De-Noising After De-Noising (SW) After De-Noising (HW) 

0 78.8927 22.9218 48.1399 
1 62.8969 18.7075 38.8732 
2 45.1561 11.3090 29.0159 
3 34.6861 5.9853 22.6072 
4 30.2524 6.6459 19.8421 
5 22.4941 5.7056 14.7440 
6 17.8927 3.9962 (PRD ≒ 20%) 11.6299 (PRD ≒ 34%) 
7 15.4273 3.5649 10.4252 
8 11.5474 3.4916 8.0020 
9 8.8930 2.1120 6.6262 

10 7.2446 2.1843 (PRD ≒ 15%) 5.5503 (PRD ≒ 24%) 
11 6.0442 1.7293 4.7493 
12 5.0159 1.0922 4.2236 

 

Figure 17. The PEE-versus-SNR curves derived from the original 60 Hz power 

interference and Gaussian noise-corrupted ECGs (blue), the software-based de-noised 

ECGs (green), and the hardware-based de-noised ECGs (red), respectively. 

Furthermore, we also experimentally studied the de-noising performance on a set of simulated 60 Hz 

power interference and Gaussian noise-contaminated ECG signals at different SNR levels (ranging 

from 0 to 12 dB) and all the numerical results of PEE obtained at different SNR levels were depicted in 

Figure 17 and tabulated in Table 2. Similarly, we further compared the performances of our de-noising 

algorithm and circuit respectively, with respect to the existing method [28] based on PRD. Again, 
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inspecting Table 2 we may see that our algorithm achieved only about 20% and 34% of PRDs in 

software and hardware realizations, respectively, at SNR of 6 dB and about 15% and 24% of PRDs at 

SNR of 10 dB, which were both much smaller than those obtained from the method as proposed by [28] 

at the same levels of SNR (Recall in [28], they achieved about 48% of PRD at SNR level of 6 dB and 

about 40% of PRD at SNR of 10 dB). As a result, the proposed de-noising algorithm and its circuit still 

showed much better de-noising performance than did the one as proposed by [28]. 

Finally, in order to further demonstrate the proposed design, the Synopsys Design Compiler was 

also applied with an Artisan TSMC 40 nm standard cell library to implement the entire de-nosing 

system. The performance characteristics of the integrated circuit (IC) synthesis simulation are as listed 

in Table 3. The results showed that the proposed design can achieve a clock frequency of 200 MHz 

with 25,082 μm2 in chip area, and the power consumption was only 17.4 mW, when operated at 200 MHz. 

Table 3. Performance characteristics of the IC synthesis simulation for the proposed  

de-noising system design. 

Performance Characteristics 

Technology 40 nm 
Supply Voltage 1.2 V 

Circuit Area 25,082 μm2 
Frequency 200 MHz 

Power Consumption 17.4 mW 

4. Conclusions 

In this paper, the implementation of a real-time DWT based signal de-noising algorithm is 

introduced. The aim of this study is to devise and realize a digital signal processing (DSP) architecture 

associated with the wavelet de-noising scheme, thus ensuring and enhancing the microelectronic 

reliability for signal integrity in the system-level medical devices or products of interest. The proposed 

wavelet based de-noising architecture is constructed by a cascade combination of three modules: a 

DWT, a thresholding, and an IDWT. Simulation experiment results obtained after performing both the 

software and hardware simulations on the task of ECG de-noising demonstrated the feasibility of the 

proposed DSP architecture. In addition, one may see that the circuit could not only meet the 

requirement of real-time processing, but also effectively reduce the noise level associated with the 

ECG signal while the sharp features or components of the medical signal can be faithfully preserved. 

Finally, we successfully implemented it on a commercial FPGA chip for prototyping and real-time 

applications. In fact, the proposed de-noising FPGA circuit may serve as a coprocessor on an 

embedded medical signal analysis system, or be integrated into a multi-functional medical system-on-chip 

(SoC) in near future. 
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