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Abstract: Sparse Bayesian learning (SBL) has given renewed interest to the problem of
direction-of-arrival (DOA) estimation. It is generally assumed that the measurement matrix
in SBL is precisely known. Unfortunately, this assumption may be invalid in practice
due to the imperfect manifold caused by unknown or misspecified mutual coupling. This
paper describes a modified SBL method for joint estimation of DOAs and mutual coupling
coefficients with uniform linear arrays (ULAs). Unlike the existing method that only uses
stationary priors, our new approach utilizes a hierarchical form of the Student t prior
to enforce the sparsity of the unknown signal more heavily. We also provide a distinct
Bayesian inference for the expectation-maximization (EM) algorithm, which can update the
mutual coupling coefficients more efficiently. Another difference is that our method uses an
additional singular value decomposition (SVD) to reduce the computational complexity of
the signal reconstruction process and the sensitivity to the measurement noise.
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1. Introduction

The problem of estimating the direction-of-arrival (DOA) of multiple narrow-band sources has
received considerable attention in many fields, e.g., radar, sonar, radio astronomy and mobile
communications [1]. Many high-resolution DOA estimation algorithms have been proposed in the last
few decades. Their excellent performance relies crucially on perfect knowledge of the array manifold.
In practice, however, the array manifold usually suffers from imperfections, such as unknown mutual
coupling between antenna elements, imperfectly-known sensor positions and orientations and gain-phase
imbalances. Without array manifold calibration, the performance of DOA estimation may degrade
substantially. Hence, it is necessary to calibrate imperfections prior to carrying out DOA estimation.

A large number of calibration methods has been proposed to deal with the imperfect manifold caused
by unknown or misspecified mutual coupling [2–11]. For example, some iterative mutual coupling
auto-calibration methods for uniform linear arrays (ULAs) and uniform circular arrays (UCAs) were
proposed in [2,3]. However, the high computational complexity required by iterations may be time
consuming, and the convergence is not theoretical guaranteed, thus resulting in algorithmic instability.
Recently, by taking advantage of the special structure of the mutual coupling matrix for ULAs, Ye and
coauthors [4,5] demonstrated that DOAs can be accurately estimated without compensating for mutual
coupling if a group of auxiliary sensors are added into ULAs. Dai and coauthors further extended the
result to the spatial smoothing method [6], real-valued method [7] and l1-norm regularized method [12].
These methods are referred to as the auxiliary methods. Neither a calibration source nor iteration is
required in the auxiliary methods. However, because of only applying a middle subarray, they reduce the
working array aperture, which limits the applicability of these methods to cases with either few DOAs or
many array elements. Some alternatives that can calibrate the imperfect manifold with the whole array
in the presence of mutual coupling are proposed in [8–11].

Recently, the emerging technique of compressive sensing (CS) has given renewed interest to the
problem of DOA estimation [12–18]. These methods exhibit many advantages, e.g., improved robustness
to noise, limited number of snapshots and correlation of signals. Sparse Bayesian learning (SBL) is a
popular and important technique for the sparse signal recovery in CS [19–21], which formulates the
signal recovery problem from a Bayesian perspective, while the sparsity information is exploited by
assuming a sparse prior for the signal of interest. It is worth noting that l1-norm regularized optimization
is deemed to be a special example of SBL, if a maximum a posteriori (MAP) optimal estimate is
adopted with a Laplace signal prior. Theoretical and empirical results show that SBL methods can
achieve enhanced performance over l1-norm regularized optimization [20,21]. It is generally assumed
that the measurement matrix in SBL is precisely known. Unfortunately, this assumption is invalid if
perturbations on the measurement matrix (e.g., when the array manifold suffers from the aforementioned
imperfections) are considered. Additive perturbations [22,23] and multiplicative perturbations [16] have
been addressed in the recent literature.

In this paper, we will propose a modified Bayesian method for joint estimation of DOAs and the
mutual coupling coefficients with ULAs, where the optimization problem is formulated in a SBL
framework with a two-stage hierarchical prior, and then, we adopt an expectation-maximization (EM)
algorithm that treats the signals of interest and the mutual coupling coefficients as hidden variables and
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parameters, respectively. To the best of our knowledge, there are very limited SBL methods that can
resolve the DOAs with mutual coupling. This problem was first addressed in [24], where a unified SBL
framework was proposed to address the DOA estimation problem with typical perturbations of mutual
coupling, gain-phase uncertainty and sensor location error. The main differences between our method
and the method in [24] are:

• Our SBL model constitutes a two-stage hierarchical form, which results in the Student t prior in
a hierarchical manner; while the model in [24] has only stationary priors. The advantage of the
Student t prior is that it enforces the sparsity constraint more heavily [21,25].
• Our method provides a distinct Bayesian inference for the EM algorithm, which can update the

mutual coupling coefficients more efficiently.
• Our method uses an additional singular value decomposition (SVD) to reduce the computational

complexity of the signal reconstruction process and the sensitivity to the measurement noise.

These differences guarantee that our method can give a better joint estimation performance of DOAs
and the mutual coupling coefficients.

2. Data Model from the Bayesian Viewpoint

2.1. DOA Estimation Model

Consider K narrow-band far-field sources impinging on an M -element ULA, where the distance
between adjacent sensors is d. The K signals, s1(t), s2(t), . . . , sK(t), arrive at the array from distinct
directions, θ1, θ2, . . . , θK , with respect to the normal line of the array. The M × 1 array output vector
y(t) is then given by:

y(t) = CAs(t) + n(t), t ∈ {t1, t2, . . . , tT} (1)

where y(t) = [y1(t), y2(t), . . . , yM(t)]T , s(t) = [s1(t), s2(t), . . . , sK(t)]T , A =

[α(θ1),α(θ2), . . . ,α(θK)], α(θk) = [1, ejφ(θk), . . . , ej(M−1)φ(θk)]T , φ(θk) = (−2πd/λ) sin(θk) and
n(t) = [n1(t), n2(t), . . . , nM(t)]T is an unknown noise vector. The matrix C ∈ CM×M is the
mutual coupling matrix (MCM) for ULAs. Many theoretical or experimental studies [26,27] have
demonstrated that a banded symmetric Toeplitz MCM with m (≤ M−1

2
) coefficients can provide a

good approximation of real-world situations, i.e., C = toeplitz(c), where c = [c0, c1, c2, . . . , cm] with
0 < |c1|, |c2|, . . . , |cm| < c0 = 1 and toeplitz(c) denotes a symmetric Toeplitz matrix constructed by the
vector c.

Denoting Y = [y(t1),y(t2), . . . ,y(tT )], N = [n(t1),n(t2), . . . ,n(tT )] and S =

[s(t1), s(t2), . . . , s(tT )], we have:

Y = CAS + N. (2)

Following the convention in [14], we use the singular value decomposition (SVD) to reduce the
computational complex of the signal reconstruction process and the sensitivity to the measurement noise.
Let the SVD of Y be written in the form of:

Y = UsΛsV
H
s + UnΛnV

H
n (3)
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where Us ∈ CM×K̂ and Vs ∈ CT×K̂ are unitary matrices whose columns are the singular
vectors corresponding to the K̂ largest singular values, while the columns of Un ∈ CM×(M−K̂) and
Vn ∈ CT×(M−K̂) are the singular vectors corresponding to the rest M − K̂ singular values. Note that
the value of K̂ is generally determined by the singular values; especially if the number of sources K is
exactly known, K̂ is set to K.

Using Equation (2) and defining Ŷ = YVs, we obtain:

Ŷ = CAŜ + N̂ (4)

where Ŝ = SVs and N̂ = NVs. In order to cast the problem of DOA estimation with unknown mutual
coupling as a sparse representation problem, we let Ω denote the set of possible locations and let θ̂ be
a generic location parameter. Furthermore, let {θ̂i}

Kθ̂
i=1 denote a grid that covers Ω. If the grid is fine

enough, such that the true DOAs lie on (or, practically, close to) the grid, we can use the following
model for Ŷ:

Ŷ = CAθ̂Ŝθ̂ + N̂ (5)

where Aθ̂ , [α(θ̂1),α(θ̂2), . . . ,α(θ̂Kθ̂)] and Ŝθ̂ is aKθ̂×K̂ complex matrix whose i-th row corresponds
to the signal impinging on the array from a possible source at θ̂i. It is easy to verify that the i-th row
is nonzero and equals the k-th row of Ŝ if signal k comes from θ̂i for some k and zero otherwise. As a
result, the aim of this paper is to find a row-sparse Ŝθ̂ (in other words, with a few nonzero rows) and a
Toeplitz matrix C that minimize the following objective function:

‖Ŷ −CAθ̂Ŝθ̂‖2 (6)

where ‖ · ‖2 stands for the Frobenius norm. Finding the sparse solution to the above problem through the
l1-norm regularized optimization is intractable, as it is a non-convex optimization problem with unknown
C, which cannot be solved in polynomial time. In the next section, we will propose an SBL method for
the DOA estimation in the presence of unknown coupling. To this end, we have to preliminarily model
the noisy and sparse signals as in [19].

2.2. Noise Model

Firstly, we address the noise model that is commonly used in SBL. Assume elements in the noise
vector n defined in Equation (1) are independent and each has a complex Gaussian distribution with
zero mean and a common variance σ2. Since the orthogonal invariance property of the Gaussian random
matrix makes the distribution impervious to multiplication by orthogonal matrices, each element in N̂

is approximately i.i.d. complex Gaussian with the same mean and variance [15,28], i.e., p(N̂i,j) =

CN (N̂i,j|0, β−1), where β = σ−2 denotes the noise precision and N̂i,j is the (i, j)-th element in N̂.
Then, we have:

p(Ŷ|Ŝθ̂, β; C) =
K̂∏
k=1

CN (ŷk|CAθ̂ŝk, β
−1I) (7)
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where ŷk and ŝk denote the k-th columns of Ŷ and Ŝθ̂, respectively. Usually, the noise variance σ2 is
unknown, so is the noise precision β. Hence, we model β as a Gamma hyperprior:

p(β) = Γ(β; a, b) (8)

where we set a, b → 0 as in [19,21] so as to obtain a broad hyperprior. The reason why we choose the
Gamma hyperprior is that it is a conjugate prior (in Bayesian probability theory, a prior p(θ) is said to be
conjugate to p(x|θ) if the posterior distribution p(θ|x) has the same functional form as the prior) of the
Gaussian distribution.

2.3. Sparse Signal Model

A widely-used sparseness prior for Ŝθ̂ is the Laplace distribution; however, it is not readily
accomplished with such a prior in SBL, because the Laplace prior is not conjugate to the Gaussian
likelihood, and hence, it is unlikely to perform the associated Bayesian inference in closed form [21].
A typical SBL treatment of Ŝθ̂, proposed in RVM [19], begins by assigning a non-stationary Gaussian
prior distribution with a distinct inverse variance δi for each row of Ŝθ̂. Letting δ = [δ1, δ2, . . . , δKθ̂ ]

T

and ∆ = diag(δ), we have:

p(Ŝθ̂|δ) =
K̂∏
k=1

CN (ŝk|0,∆−1) (9)

In order to make the Bayesian inference convenient and to obtain a two-stage hierarchical prior that
favors most rows of Ŝθ̂ being zeros, the hyper-parameter δi’s are further modeled as independent Gamma
distributions [19,21], i.e.,

p(δ) =

Kθ̂∏
i=1

Γ(δi; c, d) (10)

where c → 1 and d → 0. In this case, the integral
∫∞
0
CN (ŝk|0,∆−1) · p(δ; c, d)dδ corresponds to the

Student t distribution [19], which can be evaluated analytically. Alternatively, a two-stage hierarchical
method that results in Laplace priors was addressed in [21].

3. The Proposed Sparse Bayesian Learning Method

The associated learning problem becomes the search for the hyperparameters β and δ, as well
as the parameter C. As p(Ŝθ̂, β, δ|Ŷ; C) cannot be explicitly calculated, a Type-II ML [19]
(or evidence maximization) procedure is exploited to perform the Bayesian inference. In other words,
the hyperparameters (β and δ) and parameter (C) are estimated by maximizing p(Ŷ|β, δ; C) or its
logarithm L(β, δ; C) , ln p(Ŷ|β, δ; C). However, explicitly finding the values of β, δ and C that
maximize L(β, δ; C) is intractable, and here, we adopt an EM algorithm that treats Ŝθ̂ as a hidden
variable. The principle behind the EM algorithm is to instead repeatedly construct a lower bound on
L(β, δ; C) (E-step) and then to optimize that lower-bound (M-step). Specifically,
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• E-step: Compute:

p(Ŝθ̂|Ŷ, β, δ; C) (11)

and evaluate:〈
ln p(Ŷ, Ŝθ̂, β, δ; C)

〉
E(t)

, Ep(Ŝθ̂|Ŷ,β(t),δ(t); C(t))

[
ln p(Ŷ, Ŝθ̂, β, δ; C)

]
(12)

where (·)(t) denotes the estimated value in the t-th iteration.
• M-step: Find the hyperparameter updates and the parameter updates:

{β(t+1), δ(t+1),C(t+1)} = arg max
β,δ,C

〈
ln p(Ŷ, Ŝθ̂, β, δ; C)

〉
E(t)

. (13)

In the rest of this section, we will discuss the two steps in detail.

3.1. E-Step

Using the Bayes rule, we can verify that the posterior distribution of Ŝθ̂ in Equation (11) is also a
complex Gaussian [19]:

p(Ŝθ̂|Ŷ, β, δ; C) =
p(Ŷ|Ŝθ̂, β; C) · p(Ŝθ̂|δ)

p(Ŷ|β, δ; C)
=

K̂∏
k=1

CN (ŝk|µk,Σ) (14)

where:

µk = βΣAH
θ̂

CH ŷk, k = 1, 2, . . . , K̂ (15)

Σ = (βAH
θ̂

CHCAθ̂ + ∆)−1 = ∆−1 −∆−1(CAθ̂)
H(β−1I + CAθ̂∆

−1(CAθ̂)
H)−1CAθ̂∆

−1. (16)

On the other hand, by combining the stages of the hierarchical Bayesian model, p(Ŷ, Ŝθ̂, β, δ; C)

can be rewritten as:

p(Ŷ, Ŝθ̂, β, δ; C) = p(Ŷ|Ŝθ̂, β; C)p(Ŝθ̂|δ)p(β)p(δ). (17)

Therefore, Equation (12) leads to:〈
ln p(Ŷ, Ŝθ̂, β, δ; C)

〉
E(t)

=
〈

ln p(Ŷ|Ŝθ̂, β; C)p(Ŝθ̂|δ)p(β)p(δ)
〉
E(t)

. (18)

3.2. M-Step

In this subsection, we will address the derivation of hyperparameter updates (β(t+1) and δ(t+1)), as
well as the parameter update (C(t+1)).
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1. For β, ignoring terms in the logarithm independent thereof, we just have to maximize:〈
ln p(Ŷ|Ŝθ̂, β; C)p(β)

〉
E(t)

=
〈

ln p(Ŷ|Ŝθ̂, β; C)
〉
E(t)

+ ln p(β)

=K̂M ln β − β
K̂∑
k=1

〈
‖ŷk −CAθ̂ŝk‖

2
2

〉
E(t) + (a− 1) ln β − bβ + const

=K̂M ln β − β
K̂∑
k=1

‖ŷk −C(t)Aθ̂µ
(t)
k ‖

2
2

− βK̂tr
(
C(t)Aθ̂Σ

(t)(C(t)Aθ̂)
H
)

+ (a− 1) ln β − bβ + const (19)

which, through differentiation, gives the update for β(t+1):

β(t+1) =
K̂M + (a− 1)(

b+
∑K̂

k=1 ‖ŷk −C(t)Aθ̂µ
(t)
k ‖22

+ K̂tr
(
C(t)Aθ̂Σ

(t)(C(t)Aθ̂)
H
) ) . (20)

2. For δ, also ignoring terms in the logarithm independent thereof, we have:〈
ln p(Ŝθ̂|δ)p(δ)

〉
E(t)

=
〈

ln p(Ŝθ̂|δ)
〉
E(t)

+ ln p(δ)

=K̂ ln |∆| −
K̂∑
k=1

〈
ŝHk ∆ŝk

〉
E(t) − d

Kθ̂∑
i=1

δi + (c− 1)

Kθ̂∑
i=1

ln δi + const

=(K̂ + c− 1)

Kθ̂∑
i=1

ln δi − d
Kθ̂∑
i

δi −
K̂∑
k=1

tr
((
µ

(t)
k (µ

(t)
k )H + Σ(t)

)
∆
)

+ const. (21)

Setting the derivative of Equation (21), with respect to δ, to zero and solving for each δi gives
the updates:

δ
(t+1)
i =

K̂ + c− 1

d+
∑K̂

k=1[Ξ
(t)
k ]ii

, i = 1, 2, . . . , Kθ̂ (22)

where Ξ
(t)
k , µ(t)

k (µ
(t)
k )H + Σ(t).

3. For C, its estimate should maximize the following expected value:

〈
ln p(Ŷ|Ŝθ̂, β; C)

〉
E(t)

= −β
K̂∑
k=1

‖ŷk −CAθ̂µ
(t)
k ‖

2
2 − βK̂tr

(
CAθ̂Σ

(t)(CAθ̂)
H
)

+ const.

(23)

In order to calculate the derivative of Equation (23), we need the following lemma.

Lemma 1 (see [2]). Let C and c be defined as earlier, then for any vector x, we have:

Cx = T(x)c (24)
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where the matrix T(x) ∈ CM×(m+1) is the sum of the two M × (m+ 1) matrices:

[T1(x)]p,q =

{
[x]p+q−1 p+ q ≤M + 1

0 otherwise
(25)

[T2(x)]p,q =

{
[x]p−q+1 p ≥ q ≥ 2

0 otherwise
(26)

With the assistance of Lemma 1, we are capable of rewriting the terms ‖ŷk − CAθ̂µ
(t)
k ‖22 and

tr
(
CAθ̂Σ

(t)(CAθ̂)
H
)

in Equation (23) as:

‖ŷk −CAθ̂µ
(t)
k ‖

2
2 = ‖ŷk −T

(
Aθ̂µ

(t)
k

)
c‖22 (27)

and:

tr
(
CAθ̂Σ

(t)(CAθ̂)
H
)

= ‖CD(t)‖22 =
M∑
i=1

‖Cd
(t)
i ‖22 =

M∑
i=1

‖T
(
d
(t)
i

)
c‖22 (28)

respectively, where D(t)(D(t))H stands for a decomposition of Aθ̂Σ
(t)AH

θ̂
and d

(t)
i denotes

the i-th column of D(t). Using Equations (27) and (28), we can calculate the derivative of〈
ln p(Ŷ|Ŝθ̂, β; C)

〉
p(t)

, with respect to c, as:

∂

∂c

〈
ln p(Ŷ|Ŝθ̂, β; C)

〉
p(t)

=β
K̂∑
k=1

T
(
Aθ̂µ

(t)
k

)H (
ŷk −T

(
Aθ̂µ

(t)
k

)
c
)
− βK̂

M∑
i=1

T
(
d
(t)
i

)H
T
(
d
(t)
i

)
c. (29)

Setting the derivative to zero gives:

c =

 K̂∑
k=1

T
(
Aθ̂µ

(t)
k

)H
T
(
Aθ̂µ

(t)
k

)
+K̂

M∑
i=1

T
(
d
(t)
i

)H
T
(
d
(t)
i

))−1
·
K̂∑
k=1

T
(
Aθ̂µ

(t)
k

)H
ŷk.

(30)

Remark 1. Note that [9–11] provided an alternative parameterization for the steering vector:

Cα(θk) = g(θk, c)T̄(θk)τ (θk, c) (31)

where g(θk, c) ,
∑m

m′=−m c|m′|e
jm′φ(θk), T̄(θk) , blkdiag{T̄1(θk), T̄2(θk), T̄3(θk)} is

a block diagonal matrix with T̄1(θk) = diag{1, ejφ(θk), . . . , ej(m−1)φ(θk)}, T̄2(θk) =

[ejmφ(θk), . . . , ej(M−m−1)φ(θk)]T and T̄3(θk) = diag{ej(M−m)φ(θk), . . . , ej(M−1)φ(θk)} and
τ (θk, c) , [ν1, . . . , νm, 1, η1, . . . , ηm] with νk = 1

g(θk,c)
(
∑m

m′=1−k c|m′|e
jm′φ(θk)) and ηk =

1
g(θk,c)

(
∑m−k

m′=−m c|m′|e
jm′φ(θk)). However, it is unlikely that Equation (31) can be applied to

the M-step for C. The most difficult aspect for applying the alternative parameterization in
Equation (31) is that it is dependent on the geometric progression inα(θk); while the terms Aθ̂µ

(t)
k

and d
(t)
i in Equations (27) and (28) do not have the property of geometric progression.
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The EM algorithm proceeds by repeated application of Equations (20), (22) and (30), until a
prescribed accuracy is achieved. Once the algorithm is convergent, we are able to obtain the calibrated
C. As far as the estimated δi’s are concerned, we observed that many of δi tend to infinity in the EM
process. Clearly, the rows corresponding to these infinity δi’s are zero; while the rows corresponding to
small δi’s imply the true DOAs.

4. Simulation Results

In this section, we will present several simulation results to illustrate the performance of our proposed
method. We will compare the proposed method to the original SBL method in [24], the iterative method
in [3] and the auxiliary methods in [5,12].

Simulation 1 addresses the performance comparisons of the joint estimation of DOAs and mutual
coupling coefficients. Consider a scenario where a ULA composed of M = 10 sensors is used to receive
K = 2 uncorrelated signals coming from θ1 = –19.7 ◦C and θ2 = 10.1 ◦C. Note that the effect of mutual
coupling is negligible between two sensors that are far enough away from each other, because the mutual
coupling coefficient is inversely proportional to their distance. Hence, it is reasonable to approximate the
mutual coupling effect with just a few nonzero coefficients. In the simulation, we assume that the number
of mutual coupling coefficients is m = 2 with c1 = 0.5 − 0.4i and c2 = 0.3 + 0.1i. Figure 1 shows the
root mean square error (RMSE) of DOA estimation versus input SNR computed via 200 Monte Carlo
runs, where the number of snapshots is 100. For the ease of comparison, we also include the curve
for CRB. As can be seen from the figure, our method outperforms the state-of-the-art methods. This is
because: (1) compared to the method in [24], our method utilizes a hierarchical form of the Student t
prior to enforce the sparsity of unknown signal more heavily; moreover, our method uses the SVD to
reduce the sensitivity to the noise; (2) compared to the methods in [5,12], our method uses the whole
array, rather than a subarray, to estimate DOAs and to compensate for the mutual coupling effect.

Figure 2 shows the estimation bias and variance for each DOA. Compared to the l1-norm regularized
method [12], our method can significantly reduce the DOA estimation bias, as well as the variance.
To assess the performance of mutual coupling calibration, Figure 3 shows the relative RMSE of the
estimation of the mutual coupling coefficients. This relative RMSE is defined as:√√√√ 1

200

200∑
n=1

m∑
i=1

|cni − ci|2
|ci|2

× 100% (32)

where cni is the estimate of ci at the n-th Monte Carlo run. As shown from the Figure 3, the
mutual coupling coefficients can be estimated more accurately in our method, especially for low SNR
signals. Hence, if all of the methods embed the mutual coupling coefficients within the same classical
eigendecomposition algorithm, such as MUSIC and ESPRIT, to estimate the DOA, our method can
achieve the best performance.
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Figure 1. RMSE of the DOA estimate against SNR.
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Figure 3. RMSE of mutual coupling coefficients against SNR.

Simulation 2 is used to investigate the capability of resolving closely-spaced sources with limited
snapshots (T = 50) for several methods. The simulation considers a scenario where a ULA composed
of M = 13 sensors is used to receive K = 2 uncorrelated signals coming from θ1 = –2.5 ◦C and
θ2 = 3.5 ◦C, and the number of mutual coupling coefficients is m = 2 with c1 = 0.5 − 0.4i and
c2 = 0.3 + 0.1i. We say that the two signals are exactly resolved in a given run, if maxk=1,2{|θ̃k − θk|}
is smaller than |θ1 − θ2|/2, where θ̃k stands for the estimated DOA for the k-th signal. As can be seen
from Figure 4, the resolution performance of our method outperforms others. The superior resolution
performance of sparse representation is natural, which is consistent with the simulation results in [12].
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Figure 4. Resolution probability against SNR for closely-spaced sources.

Simulation 3 addresses the “blind angle” phenomenon, which may result in the substantially degraded
performance of DOA estimation [4,5]. We consider a scenario where a ULA composed of M = 12

sensors is used to receive K = 4 uncorrelated signals coming from θ1 = 10 ◦C, θ2 = 20 ◦C, θ3 = 30 ◦C
and θ4 = 40 ◦C, and the number of mutual coupling coefficients is m = 2 with c1 = 0.6 + 0.5i and
c2 = 0.3844 − 0.3476i. It is easy to verify that the blind angle occurs at θ4 = 40 ◦C. The number of
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snapshots is 30, and the SNR is 10 dB. Figure 5 illustrates that: (1) our method can estimate all of the
true DOAs accurately, including the blind DOA θ4 = 40 ◦C; (2) the l1-norm regularized method [12] fails
in estimating the blind DOA from θ4 = 40 ◦C, but succeeds in obtaining the DOAs from other directions;
(3) the iterative method [3] misses two DOAs θ3 = 30 ◦C and θ4 = 40 ◦C. Obviously, our method has the
best performance of “blind angle” suppression.
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Figure 5. DOA estimation in the case of a “blind angle”.

5. Conclusions

We have proposed a modified SBL method that approaches the problem of DOA estimation with
unknown mutual coupling. Unlike the original SBL method in [24] that only uses stationary priors,
our new method utilized a hierarchical form of the Student t prior to enforce the sparsity of unknown
signal more heavily. To efficiently perform the Bayesian inference, we adopted a refined EM algorithm
that treats Ŝθ̂ and C as a hidden variable and a parameter, respectively. It can update the mutual
coupling coefficients more efficiently. Another difference is that our method used an additional SVD
to reduce the computational complexity of the signal reconstruction process and the sensitivity to the
measurement noise. Hence, the proposed method is expected to give a better estimation performance.
Simulation results have verified its efficiency.

Acknowledgments

Jisheng Dai’s work is supported in part by National Natural Science Foundation of China under
Project 61571211, and in part by the Open Research Fund of National Mobile Communications Research
Laboratory, Southeast University under Project 2013D08.

Weichao Xu’s work is supported in part by National Natural Science Foundation of China
under Project 61271380, and in part by the Guangdong Natural Science Foundation under Project
S2012010009870 and 2014A030313515.



Sensors 2015, 15 26279

Author Contributions

J.D. and N.H. provided the idea of this work. C.C. conceived of and designed the experiments. J.D.
and W.X. performed the experiments and provided all of the figures and data for the paper. C.C. prepared
the literature and analyzed the data. J.D. and W.X. wrote the paper. Correspondence and requests for the
paper should be addressed to J.D..

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Krim, H.; Viberg, M. Two decades of array signal processing research. IEEE Signal Proc. Mag.
1996, 13, 67–94.

2. Friedlander, B.; Weiss, A. Direction finding in the presence of mutual coupling. IEEE Trans.
Antennas Propag. 1991, 39, 277–284.

3. Sellone, F.; Serra, A. A novel online mutual coupling compensation algorithm for uniform and
linear arrays. IEEE Trans. Signal Proc. 2007, 55, 560–573.

4. Ye, Z.; Liu, C. On the resiliency of MUSIC direction finding against antenna sensor coupling.
IEEE Trans. Antennas Propag. 2008, 56, 371–380.

5. Ye, Z.; Dai, J.; Xu, X.; Wu, X. DOA estimation for uniform linear array with mutual coupling.
IEEE Trans. Aerosp. Electron. Syst. 2009, 45, 280–288.

6. Dai, J.; Ye, Z. Spatial smoothing for DOA estimation of coherent signals in the presence of
unknown mutual coupling. IET Signal Proc. 2011, 5, 418–425.

7. Dai, J.; Xu, W.; Zhao, D. Real-valued DOA estimation for uniform linear array with unknown
mutual coupling. Signal Proc. 2012, 92, 2056–2065.

8. Wang, W.; Ren, S.; Ding, Y.; Wang, H. An efficient algorithm for direction finding against unknown
mutual coupling. Sensors 2014, 14, 20064–20077.

9. Liao, B.; Zhang, Z.; Chan, S. DOA estimation and tracking of ULAs with mutual coupling.
IEEE Trans. Aerosp. Electron. Syst. 2012, 48, 891–905.

10. Liao, B.; Chan, S. Adaptive beamforming for uniform linear arrays with unknown mutual coupling.
IEEE Antennas Wirel. Propag. Lett. 2012, 11, 464–467.

11. Liao, B.; Chan, S. A cumulant-based approach for direction finding in the presence of mutual
coupling. Signal Proc. 2014, 104, 197–202.

12. Dai, J.; Zhao, D.; Ji, X. A sparse representation method for DOA estimation with unknown mutual
coupling. IEEE Antennas Wirel. Propag. Lett. 2012, 11, 1210–1213.

13. Hu, N.; Ye, Z.; Xu, X.; Bao, M. DOA estimation for sparse array via sparse signal reconstruction.
IEEE Trans. Aerosp. Electron. Syst. 2013, 49, 760–773.

14. Malioutov, D.; Cetin, M.; Willsky, A. A sparse signal reconstruction perspective for source
localization with sensor arrays. IEEE Trans. Signal Proc. 2005, 53, 3010–3022.

15. Dai, J.; Xu, X.; Zhao, D. Direction-of-arrival estimation via real-valued sparse representation.
IEEE Antennas Wirel. Propag. Lett. 2013, 12, 376–379.



Sensors 2015, 15 26280

16. Zhao, L.; Bi, G.; Wang, L.; Zhang, H. An improved auto-calibration algorithm based on sparse
Bayesian learning framework. IEEE Signal Proc. Lett. 2013, 20, 889–892.

17. Yang, Z.; Xie, L.; Zhang, C. Off-grid direction of arrival estimation using sparse bayesian inference.
IEEE Trans. Signal Proc. 2013, 61, 38–43.

18. Carlin, M.; Rocca, P.; Oliveri, G.; Viani, F.; Massa, A. Directions-of-arrival estimation through
Bayesian compressive sensing strategies. IEEE Trans. Antennas Propag. 2013, 61, 3828–3838.

19. Tipping, M. Sparse bayesian learning and the relevance vector machine. J. Mach. Learn. Res.
2001, 1, 211–244.

20. Wipf, D.; Rao, B. Sparse bayesian learning for basis selection. IEEE Trans. Signal Proc. 2004, 52,
2153–2164.

21. Ji, S.; Xue, Y.; Carin, L. Bayesian compressive sensing. IEEE Trans. Signal Proc. 2008, 56,
2346–2356.

22. Herman, M.; Strohmer, T. General deviants: An analysis of perturbations in compressed sensing.
IEEE J. Sel. Top. Signal Proc. 2010, 4, 342–349.

23. Yang, Z.; Zhang, C.; Xie, L. Robustly stable signal recovery in compressed sensing with structured
matrix perturbation. IEEE Trans. Signal Proc. 2012, 60, 4658–4671.

24. Liu, Z.; Zhou,Y. A unified framework and sparse bayesian perspective for direction-of-arrival
estimation in the presence of array imperfections. IEEE Trans. Signal Proc. 2013, 61, 3786–3798.

25. Wipf, D.; Palmer, J.; Rao, B. Perspectives on sparse bayesian learning. Adv. Neural Inf. Proc. Syst.
2004, 16, 1–8.

26. Gupta, L.; Ksienski, A. Effect of mutual coupling in the performance of adaptive arrays.
IEEE Trans. Antennas Propag. 1983, 31, 785–791.

27. Hui, H. A new definition of mutual impedance for application in dipole receiving antenna arrays.
IEEE Antennas Wirel. Propag. Lett. 2004, 3, 364–367.

28. Edelman, A. Random matrix theory. Acta Numer. 2005, 14, 1–65.

c© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/4.0/).


	Introduction
	Data Model from the Bayesian Viewpoint
	DOA Estimation Model
	Noise Model
	Sparse Signal Model

	The Proposed Sparse Bayesian Learning Method
	E-Step
	M-Step

	Simulation Results
	Conclusions

