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Abstract: The Shannon sampling principle requires substantial amounts of data to ensure 

the accuracy of on-line monitoring of roller bearing fault signals. Challenges are often 

encountered as a result of the cumbersome data monitoring, thus a novel method focused on 

compressed vibration signals for detecting roller bearing faults is developed in this study. 

Considering that harmonics often represent the fault characteristic frequencies in vibration 

signals, a compressive sensing frame of characteristic harmonics is proposed to detect 

bearing faults. A compressed vibration signal is first acquired from a sensing matrix with 

information preserved through a well-designed sampling strategy. A reconstruction process 

of the under-sampled vibration signal is then pursued as attempts are conducted to detect the 

characteristic harmonics from sparse measurements through a compressive matching pursuit 

strategy. In the proposed method bearing fault features depend on the existence of 

characteristic harmonics, as typically detected directly from compressed data far before 

reconstruction completion. The process of sampling and detection may then be performed 

simultaneously without complete recovery of the under-sampled signals. The effectiveness 

of the proposed method is validated by simulations and experiments. 
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1. Introduction 

Roller bearings are integral for ensuring the security and stable operation of mechanical systems with 

rotating machinery components. Critical consequences may result once bearing failure occurs, which 

may be far worse in the absence of adequate monitoring. Proper monitoring for running conditions of 

roller bearings is then essential to guarantee the safe operation of rotating machinery. 

Bearing fault diagnosis has been studied over the past decades. Abundant status information can be 

consistently obtained from vibrations, making vibration signal analysis a common and effective bearing 

diagnosis method. Vibration signal analysis may be performed typically in the time domain, frequency 

domain or time-frequency domain [1,2]. Statistical parameters are adopted to detect and predict bearing 

faults in the time domain. This method type is easily implemented, though it cannot distinguish fault 

types with high precision [3]. Frequency analysis is also applied to extract fault features, e.g., fault 

frequencies. Envelope analysis is a frequency analysis method [4,5], that identifies fault types by 

highlighting characteristic fault frequencies in a spectral domain. Signals acquired by sensors, however, 

are often mixed with noise, adding difficulty for effective fault features extraction. Time-frequency methods 

are developed to solve these issues including empirical mode decomposition [6–8] and wavelet  

analysis [9,10], and are generally based on the Shannon sampling theory that sample frequency must be 

twice the maximum frequency. The theory indicates that a large amount of data must then be collected, 

creating an exceptional challenge for signal acquisition, transmission and processing. Compression of 

large-scale monitoring data to detect fault features directly from sparse samples is one way to address 

the challenges. According to the theory of compressive sensing, a signal may be reconstructed from  

under-sampled linear measurements. The theory represents a significant breakthrough in the signal 

processing field and has attracted a great deal of attention since its proposal. Compressive sensing has 

been widely applied over time in various fields, e.g., magnetic resonance imaging [11], seismic wave 

processing [12], yet many of these studies have been associated with signal or image reconstruction. 

For the roller bearing fault detection, running information can be extracted with well-designed 

sampling, where fault feature detection from sparse samples is possible by implementing the correct 

strategy. Bearing fault features may also often be identified far before completion of the reconstruction 

of under-sampled signals, thus it is not necessary to recover a signal perfectly for fault diagnosis. The 

effectiveness of statistical inference based on compressive sensing has been verified in references [13–15], 

suggesting the possibility that some characteristic parameters may be estimated from only a few 

compressed measurements without ever recovering the actual signals. Sparse event detection strategies 

based on compressive sensing have since been extensively explored in related fields, such as wireless 

sensor networks [16] and has also been deemed attractive in the field of machinery fault diagnosis.  

Li attempted to compress and reconstruct monitoring data of a train rolling bearing [17]. Chen built a 

learning dictionary frame to extract a fault-impact signal [18]. Zhang performed a preliminary study on 

compressive detection issues of bearing faults [19]. Tang developed a sparse classification method for 
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rotating machinery faults based on compressive sensing strategy [20]. The results of these studies 

validate the effectiveness of compressive sensing in machinery fault diagnosis; however, their focus was 

primarily on sparse representation or reconstruction of fault signals. 

Accurate extraction of bearing fault features from the compressed vibration signals remains an 

obstacle. The focus of this paper then is on development of an applicable detection strategy for roller 

bearing faults from under-sampled signals and performance of the sampling and detection 

simultaneously without complete signal reconstruction. Statistical inference based on compressive 

sensing has been studied in other fields [13–15] as mentioned above, yet there are still many obstacles 

to surmount when applied to bearing fault detection. The bearing fault signal consists of impulses and in the 

commonly utilized Fourier or wavelet domain, its sparsity does not completely meet the requirements for 

compressive sensing, increasing the difficulty of the compressive sensing process. Remaining to be 

resolved also is the identification of bearing fault features to be extracted from under-sampled signals 

and the process for integrating compressive sensing into the bearing fault diagnosis technique. The 

research in this study involves the development of an applicable monitoring strategy for bearing faults 

from under-sampled vibration signals, and the simultaneous performance of sampling and detection 

without a complete recovery of the incomplete signal. 

Harmonic resonance typically occurs for rotating machinery when a roller element with defects 

strikes another bearing surface. Some characteristic harmonic resonance then is selected as a bearing 

fault indicator and a compressive sensing strategy of roller bearing faults via characteristic harmonic 

detection is then developed. During the process of incomplete reconstruction, an orthogonal matching 

pursuit strategy is employed to search for characteristic harmonic waves among sparse samples. The 

sparsity of potential fault signals may be deduced from a priori knowledge, and then harmonic 

components related to fault features may be detected through matching pursuit. Fault features may 

typically be detected far in advance of perfect reconstruction completion, thus allowing fault detection 

to be achieved from only a miniscule amount of compressed data. To our knowledge, research related to 

compressive sensing of bearing fault via characteristic harmonic detection has not been addressed in the 

past, rendering this study unique. 

A brief overview of this paper is as follows: Section 2 provides a description of bearing fault detection 

issues; Section 3 briefly introduces the proposed strategy, including a bearing fault indicator of harmonic 

resonance, compressive sensing of the indicator and the compressive fault detection scheme. Section 4 

explains and verifies flexibility of the proposed strategy through several simulations. Section 5 illustrates 

the experimental results with applications to typical roller bearing faults. Section 6 concludes the analysis. 

2. Problem Statement 

Similar to common signal detection in most fields, without loss of generality, a simple detection issue 

of bearing faults may be formulated as: 

H0: x = w + n  

H1: x = s + w + n (1) 
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where s is a known signal of interest, n is i.i.d. Gaussian noise, x denotes the observation signal. 

Generally, besides the noise n and a potential fault signal s, the acquired data x is often mixed with 

interference signals w from devices around. 

Provided s denotes a vibration signal related to a bearing fault, the fault detection problem then is to 

distinguish the hypotheses between H0 and H1. If the hypothesis H1 is true, then a fault may exist in  

the bearing. 

Various methods have been developed to distinguish the fault component s from the mixture signal x. 

One commonly utilized method is to proceed in a transform domain: 

H1: ( ) ( )H Hy x x s+w+n A s+w+n        (2) 

where x is a N × 1 vector signal, Φ is a M × N measurement matrix, M ≤ N, and each row of Φ represents 

a sensor to measure x. φ is a N × N column orthonormal basis matrix, the superscript H denotes a 

conjugate transposition. 
HA   is often designated the sensing matrix to measure the transformed 

data u = φx. y is a M × 1 measurement vector denoting the observation of y = Au. 

Most observations are under the limitation of Shannon principle, requiring full samples, or at least 

adequate data. When all N measurements are available, i.e., M = N, then,     H H

N NI      , 

indicating y is an observation of x with full sampling. Especially, if Φ = I, then, y = φHu = φHφx = x, 

where u = φx indicates a decomposition of x in transform bases φ. 

The case of M << N is often encountered or expected to relieve pressure of data acquisition and 

limitations due to incomplete and imprecise knowledge. y is then indicated as a compressive sensing of 

signal x. It would be promising if some required information of original signal x can be deduced  

from the compressed observation y without reconstruction, i.e., compressed detection problem. 

Compressive sensing is introduced to solve the compressed detection problem in other research areas 

mainly related to simple detection problems as stated in Equation (1) [13,14] and assuming the 

component w as a narrowband interference. Considering the complex characteristic of bearing fault 

signals, many obstacles must be overcome. 

3. The Proposed Strategy 

3.1. Characteristic Harmonics Acting as an Indicator to a Bearing Fault 

Local defects existing in a bearing will cause the fault of a bearing surface striking another and an 

impulse force to be produced at a certain period, setting off a series of high-frequency damping 

vibrations. The frequencies generated from periodicity impulsions are referred to as bearing fault 

frequencies or fault characteristic frequencies and may be theoretically calculated if the working 

conditions are given. Application of the envelope demodulation to the high-frequency damping vibration 

signals allows one to separate periodic damping vibrations and the fault features to then be extracted. 

Bearing outer race faults, for instance, retain a series of discrete spectral lines in the envelope spectra at 

intervals of every ball pass frequency, with magnitudes decreasing gradually in sequence [21]. 

The signal s, in Equation (2) may then be described as a combination harmonics series: 

( )
L

0 0 0 n n n

n=1

s t = A cos(2 t + )+ A cos(2 t + )     (3) 
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where 0A , 0  and 0  denote the amplitude, frequency and phase of the fundamental wave, respectively. 

Assuming there are L + 1 harmonic waves, nA , n  and n  denote the amplitude, frequency and phase 

of the n-th harmonic wave, respectively. 

Equation (2) then becomes: 

( ) [ ]
L

0 0 0 n n n

n=1

H1: H y = Au A A cos(2 t + )+ A cos(2 t + )+w+n       (4) 

If we assume φ denotes the Fourier operator F , then the spectra of the mixed signal x may be 

observed as: 

[ ]

= + + +

L

0 0 0 n n n

n=1

L

0 0 n n

n=1

u F A cos(2 t + )+ A cos(2 t + )+w+n

A A F w+n C

    

 



 （ ）

 (5) 

where 0A  and nA  denote the corresponding amplitudes of frequency 0  and n , C  is a constant.  

The interference components w and n are typically not harmonic. 

If a fault exists in the bearing as observed in Equation (5), several characteristic harmonics will be 

aroused and a characteristic frequency may be detected. If the resonant harmonics can be detected from 

only a few samples of x for a compressed observation data y, then the compressive sensing of bearing 

faults will be solved. 

3.2. Detection of Harmonic Resonance from Compressed Samples 

Provided a perceptual measurement matrix, as stated above, 
HA   satisfies the constraint 

conditions of isometric, u x  , then define a representation of a sparse signal x as: 

y Au  (6) 

Provided x is composed of only resonant harmonics s, which are related to a bear fault, the projection 

of s onto the measurement vector may be formulated as: 

0
min . . ( )Hs s t y Au s    (7) 

Let K denote the sparsity of the harmonic signal s in a pre-defined transform domain φ; ensure the 

energy of the K elements in vector y is approximately equal to that of the corresponding K elements in 

vector u and the vector s. Particularly, the maximum K sparse components of y are approximately equal 

to the corresponding maximum K elements of u, respectively, where y is a sparse representation of the 

sparse signal y. Detection of resonant harmonics from spectral energies is now the challenge. The first 

several harmonics are typically adequate to determine the presence of a bearing fault and the harmonic 

property of the interference components w and n, allow the method to also work for a mixed signal  

x = s + w + n. 

Initially, the case of compressed sampling, i.e., M << N for sensing matrix A is mainly considered, as 

mentioned in Section 2. The detection issue then is to pursue the first several resonant harmonics with 

high energies from the undetermined problem (Equation (7)). A strategy of Compressive Sampling 
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Orthogonal Matching Pursuit (CoSaMP) [22] is employed to solve the undetermined equation and to 

pursue the resonant harmonics related to bearing faults. 

Inspired by a tolerance constraints isometric condition, the CoSaMP algorithm is developed to search 

for the signal location’s largest element and to derive a perfect reconstruction of the signals u and x by 

iterative optimization. Several best matched atoms to the signal are selected from a measurement matrix 

A to construct a sparse approximation for a signal in each iteration. Redundancy errors exist in each 

iteration between the previous and the current approximate values containing potential components that 

have not been extracted from the signal. The redundancy errors will then be updated and a new 

redundancy signal representation generated with the maximum component of the current signal 

identifiable through matching pursuit. The next iteration follows until the redundancy errors become 

adequately reduced and the signal u may be linearly represented by the selected atoms. Accurate 

reconstruction of a sparse signal is possible with the measurement matrix criteria satisfaction of select criteria. 

The sparsity K of a signal should be known a priori for most existing compressive sensing 

reconstruction algorithms; however, in practice, the sparsity K cannot be obtained directly in most cases, 

so K must then be estimated, increasing the possibilities for reconstruction errors in the compression 

sensing frame process. If the sparsity cannot be estimated or is inaccurate, an obstacle to the application 

of compressive sensing will exist. 

Complete reconstruction of a signal is not necessary in all cases. The vibration signal of a roller 

bearing, for example, consists of many sub-components. If the sparsity K of a sub-component is known, 

then it can be identified with the aid of matching pursuit, so if a sub-component is related to fault features 

and its sparsity K is known, the sub-component is detectable without complete reconstruction. The 

proposed detection strategy in this paper is based on this principle. 

3.3. Compressive Sensing Scheme of a Bearing Fault via Characteristic Harmonic Detection 

A bearing vibration signal typically contains periodic impulses and is not adequately sparse in the 

Fourier domain, exerting a negative effect on a perfect signal reconstruction. Components are not all 

closely related to fault features; however, and if the fault features are detected in advance, the process 

for complete and perfect reconstruction may be terminated prematurely. 

The sparsity K of a bearing vibration signal is often difficult to estimate, yet a harmonic wave sparsity 

K = 2 in Fourier domain is well-known and a bearing vibration envelop signal often contains harmonic 

waves related to the fault features. According to the matching pursuit strategy then, if the sparsity K = 2, 

then the harmonic component in the signal with maximum energy may be detected. The possibility exists 

then to detect harmonic components related to fault characteristic frequencies, multiplier harmonic 

frequencies or their sidebands of a faulty bearing, indicating whether a fault exits in a bearing and 

determining the fault types. Characteristic harmonic detection is a reliable method for compressive 

sensing of roller bearing faults. The proposed strategy scheme is presented in Figure 1. 
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Figure 1. Scheme of the proposed strategy. 

4. Simulation of Vibration Signals Induced by Bearing Faults 

Vibration signal of a rolling bearing induced by a single outer-race fault may be simulated as follows: 

2 ( T )

0( ) ( )e *sin(2 ( T ) ),   0,1,2,..., 1n n kf t

n n n n kx t A t f t n N
   

        

1 ,       1,2,3,...k k kT T T k     

where {A(tn), n = 0, 1, 2, …, N − 1} denotes the amplitudes of transient responses, often determined by 

the rotation speed, load distribution, fault size, fault location and other unknown factors in complicated 

manners. fn = 3000 Hz is the resonance frequency of the system,   = 0.1 is the relative damping ratio,

0  = 5 rad is the initial phase angle, kT  denotes the trigger time of the k-th impulse, kT  = 0.01 denotes 

the interval time between (k−1)-th and k-th impulses. The sampling frequency is 10 kHz. 

A simulated vibration signal with outer race faults is shown in Figure 2. The envelope of the signal 

is obtained by envelope demodulation with the proposed strategy (Figure 3). Most processing approaches 

require a signal with full samples as an input, e.g., the signal as shown in Figure 2. The proposed 

technique in this paper is trying to reduce the amount of data acquisition and make it possible to detect 

fault features from under-sampled signals. 

 

(a) 

Figure 2. Cont. 
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(b) 

Figure 2. A simulated vibration signal induced by (a) outer race faults and (b) a typical 

section with four cycles within the red box in (a) is shown from zoom-in view. 

 

Figure 3. Envelope of the signal as shown in Figure 2. 

Here we select a compressively sampled signal section from that of Figure 3, which is presented in 

Figure 4, with 300 samples compared to 3000 in Figure 3, i.e., a sampling rate of 10%. Here the sampling 

is not in a traditional manner. Instead, to meet the requirements of compressive sensing as expressed in 

Equation (7), the original envelop signal as shown in Figure 3 is multiplied by a Gaussian random matrix 

with reduced dimension, which totally changes the sample size and the amplitude range of the original 

signal. Fortunately, it does not affect the detection effect, because here we mainly use the frequency features. 

The under-sampled signal then is taken as the input data for our method, instead of using full samples. 

Next, we try to detect the fault features during a reconstruction process. Most traditional methods often 

begin the detection process after the reconstruction is completed, i.e., taking full samples of the recovered 

signal as the input. However, in our proposed technique, the fault features can usually be detected far 

before the reconstruction is completed, e.g., when only 30% of the recovery process is completed. Then 

the detected harmonic waves and their frequencies are recorded. That is to say, harmonic components 

corresponding to characteristic frequencies may also be detected from only a few sparse samples.  

The first and the second harmonic components detected are displayed in Figure 5 with the first harmonic 

corresponding to the fault frequency, and the frequency of the second harmonic equal to twice the fault 

frequency, confirming a bearing fault exists in the outer race. 
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Figure 4. 10% samples of the signal as shown in Figure 3. 

 

(a) 

 

(b) 

Figure 5. The first two detected harmonic components and their frequencies: (a) the first 

harmonic and its frequency; and (b) the second harmonic and its frequency. 

5. Experiments 

Several experiments are performed with fault rigs of roller element bearings to verify the effectiveness 

of the proposed method. The rig is composed of a motor, a coupling, a rotor and a shaft with two roller 

bearings (Figure 6). Four common cases are studied, including a perfect bearing, a bearing with an outer 

race defect, a bearing with an inner race defect and a bearing with a ball element defect. Utilizing an 



Sensors 2015, 15 25657 

 

 

electron-discharge machining with a fault width of 7 mm and depth of 25 mm, a single point defect is 

individually introduced in the inner raceway, outer raceway and ball element of different bearings. 

 

Figure 6. Experiment platform with fault rigs of a roller element bearing. 

Vibration sensors are located at positions near the bearings to mitigate the effects of signal 

attenuation. The bearing housing is considered a superior location for bearing arrangement and is also 

utilized for the placement of vibration sensors in this work. Vibration signals are measured by an 

accelerometer located at the top of the bearing house (CH1, Figure 6). Sample frequency is 100 kHz and 

the shaft speed is a finite 1300 rpm for all study experiments. The sampling frequency is decreased to  

5 kHz by a down-sampling post processing strategy for simplification purposes to illustrate the proposed 

strategy. A section of the post-processed signal with a few samples, e.g., 2000, is then selected as the 

object signal. 

5.1. Outer Race Fault Detection of a Roller Bearing 

A roller bearing with an outer-race fault is first created and a section of the post-processed signal with 

2000 samples then selected as the object signal. Its calculated theoretical frequency is 86.33 Hz. A bearing 

vibration waveform with an outer race fault is displayed in Figure 7. Envelope demodulation is applied 

to the object signal for the purpose of detecting the fault features from only 200 compressed data samples. 

 

Figure 7. The vibration waveform of a bearing with an outer race fault. 

Assuming sparsity of the first potential harmonic is K = 2, the first harmonic and the second 

component may be detected from the compressed samples (Figure 8). The frequency of the first detected 
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harmonic component is 86 Hz, similar to theoretical frequency of the outer race fault. The frequency of 

the second detected harmonic component is 172 Hz, twice the outer race fault frequency, indicating the 

presence of an outer race fault.  

 

(a) 

 

(b) 

Figure 8. Harmonics detected and their frequencies from envelope samples of the signal 

shown in Figure 7: (a) the first harmonic and its frequency, and (b) the second harmonic and 

its frequency. 

5.2. Inner Race Fault Detection of a Roller Bearing 

Experiments with a bearing inner race fault are also performed to verify the effectiveness of the 

proposed method, and its calculated theoretical frequency is 145.83 Hz. A section of the post-processed 

signal is first selected with 3000 samples as the object signal. A bearing vibration waveform with an 

inner race fault is displayed in Figure 9. Envelope demodulation is then applied to the object signal and 

the compressed data set, with only 300 samples, tested to determine detectability of fault frequencies. 

Assuming the sparsity K = 2, (Figure 10), the first, third and fifth harmonic waves are detected. 

Frequency of the first detected harmonic component is 21.97 Hz, equal to the theoretical rotational 

frequency. Frequency of the third detected harmonic component is 145.3 Hz, equal to the inner race fault 

frequency. Frequency of the fifth detected harmonic component is approximately 290.6 Hz, or, twice the 

inner race fault frequency, indicating the presence of a fault on the inner race of the bearing. 
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Figure 9. Vibration waveform of a bearing with an inner race fault. 

 

(a) 

 

(b) 

 

(c) 

Figure 10. Harmonics detected and their frequencies from envelope samples of the signal 

shown in Figure 9: (a) the first harmonic and its frequency; (b) the third harmonic and its 

frequency; (c) the fifth harmonic and its frequency. 
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5.3. Comparisons between Different Sampling Rates 

A series of experiments with different sampling rates are performed to compare the results with 

compressed detection probability with different sampling rates. A statistical chart illustrating detection 

probability versus sampling rate is presented in Figure 11. A signal section with samples N = 2000 is 

selected and detection probabilities recorded when the compressed samples vary from 100 to 1600, i.e., 

the sampling rate varies from 5% to 80%. Detection probability ranging from 72% to 96% may be 

achieved with the proposed strategy as demonstrated in Figure 11. Variations of detection rates increase 

as the sampling rate increases until the sampling rate attains up to 50%. The detection rate then stabilizes 

and nearly approximates the common methods with full samples. The proposed method is not dependent 

on sampling rate and an acceptable detection probability may be achieved while substantially reducing 

data acquisition. 

 

Figure 11. Probability of the compressive fault detection. 

6. Conclusions 

A compressive sensing strategy for detecting roller bearing faults through harmonic waves is 

proposed in this paper. Fault features may be directly detected from only a few samples without complete 

reconstruction. During the sampling and iteration process, adequate vital information may be retrieved 

with limited samples. The corresponding resonance frequency may be detected then by a given sparsity 

of the potential harmonic wave, thus relaxing requirements for sampling rates required for measurements. 

Reconstruction and detection may proceed simultaneously without complete recovery, significantly 

improving detection efficiency as validated by simulations and experiments. 
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