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Abstract: In this paper, an improved inertial frame alignment algorithm for a marine SINS 

under mooring conditions is proposed, which significantly improves accuracy. Since the 

horizontal alignment is easy to complete, and a characteristic of gravity is that its component 

in the horizontal plane is zero, we use a clever method to improve the conventional inertial 

alignment algorithm. Firstly, a large misalignment angle model and a dimensionality reduction 

Gauss-Hermite filter are employed to establish the fine horizontal reference frame. Based on 

this, the projection of the gravity in the body inertial coordinate frame can be calculated easily. 

Then, the initial alignment algorithm is accomplished through an inertial frame alignment 

algorithm. The simulation and experiment results show that the improved initial alignment 

algorithm performs better than the conventional inertial alignment algorithm, and meets the 

accuracy requirements of a medium-accuracy marine SINS. 
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1. Introduction 

A strapdown inertial navigation system (SINS) is a dead-reckoning navigation system, and the initial 

alignment is an essential procedure for a SINS, since it directly affects the precision of navigation 

parameters (position, velocity, and attitude) [1,2]. The main purpose of the initial alignment is to determine 

the initial strapdown attitude matrix between the body frame and navigation frame, and its accuracy is 

especially important for a marine SINS, which usually has to work for a long time [1–4]. 

Generally, the alignment process can be divided into two phases, the coarse-alignment phase and the 

fine-alignment phase [4–8]. The coarse-alignment phase is required to estimate the ship’s heading within 

a few degrees and pitch/roll within a few tenths of a degree in order to allow the fine-alignment filter to 

operate within its linear region [5,6]. The typical coarse-alignment method is analytic coarse-alignment. 

However, it is unable to handle the in-motion alignment problem [3–5,7]. In order to overcome the 

difficulties when a marine SINS is under mooring conditions, many methods have been developed and 

analyzed. Reference [3] proposed an improved alignment based on gravity in an inertial frame, and velocity 

is used in the calculation to reduce the influence of disturbance acceleration. In mooring conditions, due 

to the presence of the disturbed acceleration and angular velocities, accurate gravity and Earth rate are 

difficult to obtain directly, which finally leads to the low precision of the coarse alignment. Since the 

signal-to-noise ratios of gyros’ and accelerometers’ output are poor and the frequency bands of disturbed 

signals are wide, it is unable to separate the pure, useful signals from the interference signals measured 

by gyros and accelerometers [6,7,9]. In order to remove the high frequency noise, reference [7] used an 

IIR digital low-pass filter to process the gyro and accelerometer measurements. Although there have 

been various methods presented so as to obtain the purer Earth rate and gravity signals, the precision is 

still not high enough. 

While in the fine-alignment phase, usually the standard Kalman filter or the compass loop method 

can be implemented based on the coarse-alignment result, and under the assumption of a small 

misalignment angle linear error model [1,2]. However, with the increase of SINS application technology 

and the development of nonlinear filtering estimation technology, its error models are no longer confined 

to linear models, and new error models are constantly emerging. Therefore, nonlinear filters are used for 

alignment [10–16]. However, no matter what method is employed, the heading misalignment angle will 

usually converge over 10 min under mooring conditions, which is slower than the horizontal 

misalignment angle (within 2 min only) and does not meet the demand for a quick start.  

It is well known that the horizontal components of gravity projection in the horizontal coordinate 

frame are zero and the horizontal alignment is rapid. If an accurate horizontal coordinate frame is 

established, the interference caused by sway can be easily isolated. Based on this idea, we proposed an 

improved alignment scheme in [9]. Then, according to the characteristics of system structure, we used a 

dimensionality reduction Gauss-Hermite filter (GHF) algorithm to establish the accurate horizontal 

coordinate frame [17]. We specify the details of the algorithm and supplement error analysis in this paper. 

Because of the low precision of the traditional inertial frame alignment algorithm in the mooring 

environment, it is usually employed as a coarse alignment for a marine SINS. We use a clever method 

to improve the traditional inertial alignment algorithm in this paper, and improve the performance of the 

traditional inertial frame alignment algorithm. 
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Compared with the commonly used nonlinear filtering algorithms such as EKF [18,19], UKF [20] 

and CKF [21,22], GHQF [23] has the advantages of incomparable precision and stability. However, this 

approach is infeasible for high-dimensional systems since the computation burden increases 

exponentially with the index of dimension. This results in the “curse of dimensionality”. Fortunately, 

only misalignment angles suffer from nonlinearity in initial alignment, so that we can apply a dimension 

reduction nonlinear filter to carry out the alignment. 

The remainder of this paper is organized as follows. Firstly, reference frames and parameter 

definitions are addressed in Section 2. The algorithmic principle for traditional alignment in the inertial 

frame is presented in Section 3. Section 4 details how to establish an accurate horizontal reference frame 

and Section 5 details how to accomplish the alignment. Then, the simulation results that validate the 

proposed approach are presented in Section 6. Section 7 presents the experimental results. Finally, the 

conclusions are presented in Section 8. 

2. Reference Frames and Parameter Definitions 

The reference frames are defined in Table 1 and the parameters are defined in Table 2. 

Table 1. The reference frames definitions used in this paper. 

Reference Frame Definition 

n-frame 
Navigation reference frame which is the local horizontal reference frame. Its axes are aligned with 

east–north–up (ENU) geodetic axes. 

h-frame 
Horizontal reference frame. Its hz  axis is aligned with nz  axis, but the horizontal axes are 

arbitrary in the horizontal plane. 

e-frame Earth-centered Earth-fixed orthogonal reference frame. Its xe axis points to the local longitude. 

b-frame Body reference frame aligned with inertial measurement unit (IMU) axes. 

i-frame 
Earth-centered inertial fixed (ECIF) orthogonal reference frame. The axes are fixed with e-frame 

at the beginning of the alignment process. 

0bi -frame 
Body inertial reference frame. It is formed by fixing the axes of b-frame in the inertial space at the 

beginning of the alignment process. 

The relationship of the frames mentioned in Table 1 is shown in Figure 1. 

 

Figure 1. The relationship of the frames. 
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Table 2. The parameters. 

Parameter Definition 
2

1
p
pC  Transform matrix from 1p  frame to 2p  frame 

ωie  Angular rate of Earth rotation 
g  Gravity 

L  Latitude 
V  Velocity 
ε  Gyro drift 
∇  Acceleration bias 
φ  Misalignment angle 
f  Specific Force 

3. The Algorithmic Scheme for an Alignment Algorithm in an Inertial Frame 

The alignment algorithm in an inertial frame is based on the consideration that the Earth rate is constant 

in a body inertial reference frame, and we can get north from the projection of the gravity in the inertial 

reference frame which defines a cone whose main axis is the rotational axis of the Earth [3,7]. 

The traditional alignment algorithm in an inertial frame is presented in [3–5,7]. It is usually 
decomposing the strapdown matrix ( )n

bC t  (which represents the orientation of the b frame relative to the 

n  frame) as per Equation (1): 

0

0
( ) ( ) ( )b

b

in n e i
b e i i bC t C C t C C t=  (1)

Under mooring conditions, n
eC  is a function of latitude L , and ( )e

iC t  is a function of time t . 

0 1 0

sin 0 cos

cos 0 sin

n
eC L L

L L

 
 = − 
  

 (2)

cos(ω ) sin(ω ) 0

( ) sin(ω ) cos(ω ) 0

0 0 1

ie ie
e
i ie ie

t t

C t t t

 
 = − 
  

 (3)

where 0 ( )bi
bC t  can be updated by the gyro output (its initial value is a unit matrix): 

( ) ( ) ( )0 0

0

b b

b

i i b
b b iC t C t ω = × 
  (4)

where ( )
0b

b
iω ×   is the skew symmetric matrix of the vector 

0b

b
iω  measured by the gyroscopes 

representing the angular rate of b -frame with respect to 0bi -frame, and 
0b

i
iC  is calculated as: 

0

0

0

0 0

1

11

2 2

1 2 1 2

( )( )

( ) ( )

( ) ( ) ( ) ( )

b

b

b

b b

TT ii

TT ii i
i

T Ti i i i

g tg t

C g t g t

g t g t g t g t

−
           
     =      
  

   × ×        

 (5)
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where, ig  and 0big  represent the projections of the gravity in the i  frame and the 0bi  frame, 

respectively. Since ng  is known, the projection in the inertial frame can be calculated as: 

( )i i e n
e ng C t C g=  (6)

In order to restrain the interference of disturbing acceleration, we usually use the following equation 

instead of Equation (5): 

0

0

0

0 0

1

11

2 2

1 2 1 2

( )( )

( ) ( )

( ) ( ) ( ) ( )

b

b

b

b b

TT ii

TT ii i
i

T Ti i i i

V tV t

C V t V t

V t V t V t V t

−
           
     =      
  

   × ×        

 (7)

where ( ) ( )i i
j jV t g t dt=  , 0 0 0ˆ( ) ( ) = ( )b b bi i i b

j j b jV t g t dt C f t dt=   , ( 1, 2j = ). 

Taking into account that n
eC , ( )e

iC t , 0 ( )bi
bC t , and ig  can all be calculated by the parameters known or 

measured, how to extract the pure gravity projection in the 0bi  frame from the output of accelerometers 

is the essential operation we have to carry out. 

Figure 2 illustrates the algorithmic scheme. 

 

Figure 2. Flow chart of alignment algorithm in an inertial frame. 

4. The Establishment of a Horizontal Reference Frame 

In Appendix A, we analyze the propagation of errors, and find it has the same precision as other 

methods. Therefore, if we can isolate the interference errors, the inertial frame alignment algorithm can 

be used for fine alignment. 

In Section 3, we have pointed out that the essential and difficult process is to extract the pure gravity 

from measuring signals which are often interfered with by environmental disturbance. In order to obtain 

( ) ( ) ( )0 0

0

b b

b

i i b
b b iC t C t ω = × 


( )0bi
bC t

bf

0 0ˆb bi i b
bV C f dt= 

n
iC

( )0bi
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n
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⊗

0b
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0

0
( ) ( )b

b

in n i
b i i bC t C C C t=

i i n
nV C g dt= 

0b

b
iω
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the accurate gravity projection in the 0bi  frame, we proposed a clever solution by using a feature of gravity. 

It is easy to obtain the pure gravity once an accurate horizontal reference frame is established, since the 

projection of gravity in the h-frame has nothing to do with the heading, and it is also relatively easy to 

establish the h-frame. In this section, we will show how to establish an accurate horizontal reference frame. 

4.1. Nonlinear Error Model of a SINS 

Traditional linear differential equations are based on the assumption that the misalignment angles are 

small. However, for a small misalignment angle model, a coarse alignment is necessary. To improve the 

accuracy and reduce the time, the nonlinear error model of large misalignment angle for a SINS 

described in [24] is adopted in this paper (see Section 2.1 in [24]).  

Attitude error equation: 

( )1 ˆn n n n n b
n in n in b ibC I C C Cωφ ω δω δω′ ′ ′−  = − + − 

  (8)

Velocity error equation: 

( ) ( ) ( ) ( )ˆ ˆ ˆˆ2 2
Tn n n b n b n n n n n n n n b

n b b ie en ie en b av I C C f C v v v C wδ δω δω δ ω ω δ′ ′ = − + ∇ − + × − − + × +  
  (9)

Position error equations: 

sec tansec

n
N

M

n
n E
E

N N

v
L

R

v L LL
v L

R R

δδ

δλ δ δ


=



 = +




 (10)

where superscript n′  donates the calculation navigation reference frame, and 
T

x y zφ φ φ φ =    is the 

Euler error angle vector. ( )ic φ  and ( )is φ  denote cos iφ  and sin iφ  , respectively.  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

y z y x z y z y x z y x
n
n x z x z x

y z x x z y z y x z x y

c c s s s c s s s c s c

C c s c c s

s c c s s s s c s c c c

φ φ φ φ φ φ φ φ φ φ φ φ
φ φ φ φ φ

φ φ φ φ φ φ φ φ φ φ φ φ

′

 − + −
 = − 
 + − 

 (11)

( ) 0 ( ) ( )

0 1 ( )

( ) 0 ( ) ( )

y y x

x

y y x

c s c

C s

s c c
ω

φ φ φ
φ

φ φ φ

 −
 =  
  

 (12)

ˆ ˆ ˆω ω ωn n n
in ie en= +  (13)

δω δω δωn n n
in ie en= +  (14)

δω εb b b
ib gw= +  (15)

where ω̂n
ie

 is the calculated Earth’s rotating angular rate, ω̂n
en

 is the calculated angular rate vector, and δωn
in

 

is the calculated error vector of ωn
in

. δωn
ie

 and δωn
en

 are respectively the error vectors of ω̂n
ie

 and ω̂n
en

 εb  

and b
gw  are the gyro constant drift vector and the zero-mean Gaussian white noise vector, respectively. ˆ bf  

and δ bf  denote the specific force vector and its corresponding error vector, respectively. ˆnv  and δ nv  are 
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calculated velocity vector and its corresponding error vector, respectively. 
MR  and 

NR  are the Earth’s 

radii of the meridian circle and the prime vertical circle, respectively. 

4.2. The Dimension Reduction Gauss-Hermite Filter 

The Gauss-Hermite filter (GHF) is one of the sigma point filters. It has proved to be efficient and 

successful in solving estimation problems when the state and noise distributions are Gaussian. It is 

usually used as a benchmark algorithm, since its accuracy and stability are the highest among numerous 

Gaussian approximation filters [23,25,26] (the algorithm framework see Appendix B). However,  

the “curse of dimensionality” would seriously affect the real-time performance for high dimensional 

systems [23,27]. From Section 4.1, it is known that only misalignment angle suffers from nonlinearity 

in the nonlinear error model. This means it is possible to employ a dimension reduction GHF to deal 

with the alignment task. 

In order to establish an accurate horizontal reference frame and reduce the amount of calculation, we 

employ the dimension reduction GHF algorithm.  

The large misalignment angle error model of SINS alignment is a typical nonlinear model that can be 

described as a general form: 

1 (ξ ) (ξ )k k k k k k kx F x g w+ = + +  (16)

(ς ) (ς )k k k k k k ky H x h v= + +  (17)

where ξk  is the first l  components of kx , ςk  is arbitrary s  components of kx . 

The dimension reduction GHF algorithm is shown in Figure 3. 

 

Figure 3. The flow chart of the dimension reduction GHF. 

where, 

ξ 1
1 1 1

1 1 1 1 1 1 1 1

ˆ( ) (ξ ξ )
ˆΦ (ξ ) (ξ ) (ξ )

0
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F x S g

−
− − −
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  −= + +     
 (18)
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1 1 1 1 1 1 1 1 1 1 1 1

0 0
(ξ ) (ξ ) (ξ ) (ξ ) (ξ )

0
T T T

k k k k k k k k k k k k
n l

F S S F
I− − − − − − − − − − − −

−

 
Ψ = Φ Φ +  

 
 (19)

ς 1
/ 1 / 1

/ 1 / 1

ˆ( ) (ς ς )
ˆ(ς )

0
k k k k k

k k k k k k

S
x S

−
− −

− −

 −′Θ = +  
 

 (20)

/ 1 / 1

0 0
(ς ) (ς ) (ς )

0
T T

k k k k k k k k k k
t

S S
I− −

 
Ω = Θ Θ +  

 
 (21)

( ) (ς ) (ς ) (ς )k k k k k k k kH hς ′Μ = Θ +  (22)

/ 1 / 1

0 0
(ς ) (ς ) (ς ) (ς ) ( ) (ς )

0
T T T T

k k k k k k k k k k k k k
t

H S S F
I− −

 ′ ′ ′Π = Μ Μ +  
 

 (23)

where, ξP  denotes the first l-th rows and the first l-th columns of the matrix P ; ξS  and S are obtained 

from ξP  and P , respectively, through a Cholesky decomposition; that is TP SS= , ξ ξ ξ( )TP S S= .  

ξ̂  denotes the first l-th components of x̂ , and m n l= − . The quadrature points { }ξi  and the associated 

weights { }ωi  are determined by the Gauss–Hermite quadrature rule (see Appendix C). 

4.3. The Horizontal Alignment for the Large Misalignment Angle Model Based on the Dimension 

Reduction Gauss-Hermite Filter 

As mentioned above, the nonlinear model for horizontal alignment is established under the large 
misalignment angle in this paper. Considering 13 state variables—the east velocity error δ Ev  and the 

north velocity errorδ Nv ; the Euler misalignment angle errors xφ  , yφ  and zφ ; the latitude error δL  and 

the longitude errorδλ ; the accelerometer zero-biases b
x∇  , b

y∇  and b
z∇ ; the constant gyro drifts εb

x  , εb
y  

and εb
z —the state vector is built up as 

δ δ δ δ ε ε ε
Tb b b b b b

E N x y z x y z x y zX v v Lφ φ φ λ = ∇ ∇ ∇   

The corresponding state equation is written as: 

1 ( )k k kX f X W+ = +  

The state function ( )f   is obtained from Equations (8)–(10). 

We choose the quadrature point 3m = , then the total number of points 133pN = , and that is a great 

amount of computation. However, according to Section 4.1, we know that only the Euler misalignment 
angle errors xφ , yφ , and zφ  are suffering from nonlinearity; therefore, the dimension reduction  

Gauss-Hermite filter proposed in Section 4.2. can be adopted, and the number of points will be reduced 
to 33pN = . That greatly reduces the computational burden. 
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5. Calculation of the Gravity Direction 

In Section 5, we present a method to set-up an accuracy horizontal reference frame in detail. After 
the fine alignment, we obtain the transfer matrix h

bC , that is to say, the accuracy horizontal reference 

frame is established. Then, the projection of the gravity in the 0bi  frame can be calculated as:  

0 0 1( ) ( )[ ]b bi i h h
b bg t C t C g−=  (24)

where, [ ]0 0
Th ng g g= = , 0 ( )bi

bC t  is updated by the gyros’ output in real time, and h
bC  is obtained 

from the fine horizontal alignment.  

In order to improve the accuracy further, a weighted smoothing algorithm is adopted to inhibit the 

interference noise caused by the winds and waves. The algorithm is described as follows: 
Assume that (i (1, N))it ∈  is the sampling period, ig  is the corresponding sampling data, and the 

weight coefficient is 1. Then, the smoothed data is calculated as: 
/2

/2

1

1

N

i
i N

g g
N =−

=
+   (25)

Since it is a coning motion of gravity in an inertial frame ( 0bi  frame or i  frame), as Figure 4, the 

projection of 0big  in the 0bi  frame is a sine curve, and the period is 24 h. Compared with the alignment 

time, the period is so long that we can consider 0 ( )big t  as linear g .  

Then,  

0b N

M

i t
N tg C g=  (26)

where the transfer matrix from Mn  frame (at Mt ) to n  frame (at Nt ) could be calculated as follows: 

10 0( ) ( )N

M

t ib ib
t b N b MC C t C t

−
 = ⋅    (27)

We can smooth 0big at 1 and 5 min respectively with Equation (25) after the fine horizontal alignment, 

and then 0bi
iC can be calculated with Equation (4).  

Finally, by substituting 0bi
iC into Equation (1), the alignment can be completed. 

 

Figure 4. The coning motion of gravity. 

The flow chart of the improved alignment algorithm is shown in Figure 5. 

 
N

eo

o

ieω

1t
g

Nt
g
Mt

g



Sensors 2015, 15 25529 

 

 

 

Figure 5. Flow chart of the improved alignment algorithm. 

As shown in the dashed box, we use a clever method to construct matrix 0biV . This improvement 

makes the traditional inertial alignment algorithm able to resist interference.  

6. Simulation 

In order to test the technique proposed in this paper, a simulation is carried out to compare with the 

conventional inertial frame alignment algorithm. The main parameters are set as follows in Table 3: 

Table 3. Specifications of IMU. 

Parameters Gyro Accelerometer 

Constant bias 0.01°/h 410 g−  
Random noise 0.05 ° h 40.5 10 / Hzg−×

(1) The latitude and longitude: 45.7796L = °, 126.6705λ = °;  
(2) The misalignment angle: 10xφ = °, 10yφ = °, 10zφ = °; 

(3) The sampling period is 0.1 s; 

(4) The initial attitude is a random value. 
(5) The first sampling time is 1 70kt =  s, and the second is 2 300kt = s.  

(6) We set up two situations to test the proposed algorithm, and the model is as follows: 

Situation 1: Assume the ship is in the state of rest, without any interference. 

Situation 2: Assume that the ship is on the berth and is rocked by the surf and wind. The pitch, roll, 

and yaw models of a marine vehicle are given by:  

0 ψψ ψ ψ sin(2π / )m t T= +  (28)

0 θθ θ θ sin(2π / )m t T= +  (29)

 

bf
0b

b
iω

0b

b
iω

( ) ( ) ( )0 0

0

b b

b

i i b
b b iC t C t ω = × 


h
bC

0 0 1( )[ ]b bi i h h
b bV C t C g dt−=  i i n

nV C g dt= ⊗

0

0
( ) ( )b

b

in n i
b i i bC t C C C t=

( )0bi
bC t

( )0bi
bC t

0b

i
iC n

iC

n
iC
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0 γγ γ γ sin(2π / )m t T= +  (30)

where, ψ  , θ , and γ  are yaw, pitch, and roll angles, respectively; the initial attitudes are 0ψ  = 30°, 

0 0θ γ 0= = ; the sway periods are ψ 6T =  s , θ 10T =  s, and γ 8T =  s; ψm  = 1°, θm  = 5°, and γm  = 5°. 

In the mooring condition, the horizontal velocities are small values because the mooring line secures 

the ship to the wharf, but vertical velocity may be not as small as horizontal velocities since a ship will 

heave along with the sea level fluctuation. So, velocity interference models are given by: 

0.5 sin(ω φ )dz dz dzV t= ⋅ +  (31)

0.02 sin(ω φ )dx dx dxV t= ⋅ +  (32)

0.02 sin(ω φ )dy dy dyV t= ⋅ +  (33)

where 
2π

ωd
dT

= ; 8dzT =  s; 2dx dyT T= =  s; φ ,φ ,φdx dy dz  are random values in [0, 2π] . 

The parameters of the dimension reduction GHF are chosen as follows: 

o o o
0

4 4 4 o o o
0 0 0

ˆ 10 10 10 0.1m/s 0.1m/s 0.1m 0.1m

1 10 1 10 1 10 0.01 /h 0.01 /h 0.01 /h

x

g g g− − −

= 
× × ×   

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2 2 2 2 2 2 2o o o
0

2 2 2 2 2 24 4 4 o o o
0 0 0

5 5 5 0.2m/s 0.2m/s 0.2m 0.2m

1 10 1 10 1 10 0.01 /h 0.01 /h 0.01 /h

P diag

g g g− − −

= 
× × × 

( ) ( ) ( ) ( ) ( )2 2 2 2 24 4 o o o
0 01 10 1 10 0.01 /h 0.01 /h 0.01 /hQ diag g g− − = × ×  

 

( ) ( )2 2
0.01m/s 0.01m/sR diag  =    

For a fair comparison, 100 independent Monte Carlo runs are carried out. The results are as follows; 

the RMS error results are used to test the horizontal alignment accuracy and time consumed by 

dimensionality reduction GHF. RMS error is defined in Appendix D. 

From Figures 6 and 7, it can be noted that the pitch error and roll error converge to the order of 

minutes within a few seconds. Figures 8–10 show the pitch error, roll error, and yaw error calculated by 

the traditional algorithm and the proposed algorithm, respectively. Their statistical results are shown in 

Table 4. From Table 4, we can tell that the accuracy of heading alignment is roughly the same (mean 

value, standard deviation and maximum value). However, the horizontal alignment results from the 

proposed algorithm are obvious better, since the standard deviation and the maximum value are smaller; 

the standard deviation in particular is an order of magnitude smaller than the traditional algorithm.  

Table 4. Statistics of situation 1. 

 
Traditional Algorithm (min) Improved Algorithm (min) 

Pitch Error Roll Error Yaw Error Pitch Error Roll Error Yaw Error

Mean −0.1677 0.0156 0.3089 −0.0001 −0.2679 0.6363 
Std 0.3475 0.3467 3.0679 0.0231 0.0163 4.2559 
Max 0.6472 0.5212 7.1117 0.0723 0.3059 11.9556 
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Figure 6. The RMS error of pitch misalignment angle in situation 1. 

 

Figure 7. The RMS error of roll misalignment angle in situation 1. 

 

Figure 8. Pitch error result in situation 1. 
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Figure 9. Roll error result in situation 1. 

 

Figure 10. Yaw error result in situation 1. 

Figures 11 and 12 show the horizontal alignment results of the nonlinear filter in situation 2. The 

pitch error and roll error also converge rapidly (within tens of seconds) even though they converge 

slower than situation 1. Figures 13–15 show the pitch error, roll error, and yaw error calculated by 

traditional algorithm and the proposed algorithm in situation 2, respectively. Their statistical results are 

shown in Table 5. From Table 5, we can draw the conclusion that the proposed algorithm performs much 

better than the traditional one, because not only is the horizontal alignment accuracy an order of 

magnitude higher than the traditional one’s (standard deviation and maximum value), but also the 

heading alignment accuracy of the proposed algorithm is better than the traditional one’s. Compared 

with Tables 4 and 5, we can see that angular velocities and velocities have little effect on the proposed 

algorithm, but will greatly affect the precision of the traditional algorithm. 
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Figure 11. The RMS error of pitch misalignment angle in situation 2. 

 

Figure 12. The RMS error of roll misalignment angle in situation 2 

 

Figure 13. Pitch error result in situation 2. 
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Figure 14. Roll error result in situation 2. 

 

Figure 15. Yaw error result in situation 2. 

Table 5. Statistics of situation 2. 

 
Traditional Algorithm (angular minute) Improved Algorithm (angular minute) 

Pitch Error Roll Error Yaw Error Pitch Error Roll Error Yaw Error 

Mean −1.6843 −0.0872 2.5054 −0.0172 −0.2397 4.1585 
Std 0.5111 0.5033 29.3313 0.02248 0.0174 4.2575 
Max 2.4103 0.7588 44.1109 0.0680 0.2863 14.1987 

7. Experiments 

In order to evaluate the performance of the proposed self-alignment method for SINS, in this section, 

the mooring experiment was conducted in the East Sea of China. In this experiment, the ship was moored 

to the pier. A self-made SINS was used for the experiment, and the attitude reference was given by a 

PHINS (made by iXBlue Company) as shown in Figure 16. The self-made SINS and the PHINS were 

fixed on a rigid aluminum alloy board, and then the installation error was measured and compensated 
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for in the stationary state. The data acquisition computer collected the data of the self-made SINS and 

the PHINS synchronously. We carried out the alignment experiments three times. 

The PHINS worked in GPS aided mode, its performance is as follows: pitch and roll errors are less 

than 0.01°, and heading error is less than 0.02°. In this experiment, we used the dimension reduction 

GHF mentioned in Section 4.2 to implement horizontal alignment. During the mooring experiments, the 

parameters of the dimension reduction GHF were optimally chosen as follows: 

o o o
0

4 4 4 o o o
0 0 0

ˆ 0 0 0 0m/s 0m/s 0m 0m

1 10 1 10 1 10 0.01 /h 0.01 /h 0.01 /h

x

g g g− − −

= 
× × × 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2 2 2 2 2 2 2o o o
0

2 2 2 2 2 24 4 4 o o o
0 0 0

1 1 3 0.2m/s 0.2m/s 1m 1m

1 10 1 10 1 10 0.01 /h 0.01 /h 0.01 /h

P diag

g g g− − −

= 
× × × 

 

( ) ( ) ( ) ( ) ( )2 2 2 2 24 4 o o o
0 01 10 1 10 0.01 /h 0.01 /h 0.01 /hQ diag g g− − = × ×  

 

( ) ( )2 2
0.1m/s 0.1m/sR diag  =    

 

Figure 16. Self-made SINS, PHINS, and data acquisition computer. 

The results are shown as follows. Figure 17 shows the estimations of misalignment angle. 

From Figure 17, the estimations of misalignment angle converge within a few seconds. In order to 

ensure the estimations of misalignment angle are available, the pitch error and roll error are compensated 

for after 60 s. Figure 18 shows the attitude of the PHINS and the self-made SINS. For convenience, the 

initial 60 s part was omitted. We note that the difference between the two curves is very small (less than 

0.05′). This indicates that the accurate horizontal reference frame is already established successfully. It 

is also proved that the estimations of the pitch error and roll error are accurate. From the attitude curves 

in Figure 18 and the velocity curves in Figure 19, we can also find that there are periodic disturbances 

during the alignment process.  
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Figure 17. Estimations of misalignment angle. 

 

Figure 18. Attitude of PHINS and self-made SINS. 

 

Figure 19. Velocity of PHINS. 
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Figure 20 presents the alignment results for the 3-time experiment. It is clear from Figure 20 that the 

alignment results of the improved algorithm are better than the traditional algorithm. The pitch errors 

and the roll errors of the improved algorithm are less than 0.06°, and yaw errors are less than 0.2°. That 

meets the accuracy requirements of a medium-accuracy marine SINS. 

 

Figure 20. Comparison of the misalignment angles. (a) Pitch error; (b) roll error; (c) yaw error. 

8. Conclusions 

An improved inertial frame alignment algorithm based on horizontal alignment for marine SINS is 

proposed in this paper. The major improvement of this work is establishing a horizontal reference frame 

using a dimension reduction Gauss-Hermite filter. Based on that, the projection of gravity in the body 

inertial reference frame can be calculated and take the place of the accelerometer output to calculate the 

attitude matrix.  

The dimension reduction Gauss-Hermite filter algorithm is detailed in this paper. The simulation and 

experimental results indicate that it can quickly and accurately complete the horizontal alignment. 

However, the parameters P0, Q, and R which affect the filtering performance are usually chosen 

according to prior knowledge, as we have not yet found a mathematical method to get the optimal 

parameters. This means the selection of P0, Q, and R is rather a matter of tuning. We also derive the error 

propagation equation and point out that the inertial frame alignment algorithm has the same theoretical 

accuracy as other algorithms. 

The results of the simulation and the experiment also show that, compared with the traditional inertial 

frame alignment algorithm, the proposed algorithm can resist velocity and angular velocity interference 

to obtain higher accuracy, and meets the requirement of a medium-accuracy inertial navigation system. 
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Appendix 

A. Error Analysis 

From Equation (1), the errors of the strapdown matrix ( )n
bC t  can be expressed as:  

0 0 0 0

0 0 0 0
( ) ( ) ( ) ( ) ( ) ( ) ( ) )C (b b b b

b b b b

i i i in e i n e i n e i n e i
e i i b e i i b

n
b e i i b e i i bC C t C C t C C t C C t C C t C C t C C t C C tδδ δδ δ+ + += (A1)

Because Equations (2) and (3) are respectively the functions of latitude and time, and they are exactly 
known during the alignment process, so that δ n

eC  and δ ( )e
iC t  can be ignored, the alignment error is 

caused by 
0

δ
b

i
iC  and 0δ ( )bi

bC t . 

Firstly, let us analyze the error of 0 ( )bi
bC t . Its initial value is a constant matrix and contains no errors, 

so we only need to consider its updating error. In practice, 0 ( )bi
bC t  is calculated through a  

differential equation: 

( )0 0ˆ ˆ ˆC C ωb bi i b
b b ib= ×

 (A2)

where ( )ω̂b
ib ×  is the skew symmetric matrix of the vector; ˆ ˆ ˆ ˆω = ω ω ω

Tb b b b
ib ibx iby ibz    which is measured 

by the gyros, represents the turn rate of the b  frame with respect to the i  frame; and ω̂ =ω +εb b b
ib ib , εb  is 

the gyro bias. Obviously, εb  directly produces the error in the calculation of 0 ( )bi
bC t . We note that to solve 

Equation (7) we must carry out two integrations of εb , which will certainly increase the calculation error.  
In order to facilitate analysis, we define φ  as the attitude error angle, 

( )( )ˆ n n n
b bC I Cφ = − ×   (A3)

( )( )0 0

ˆ
b b

i i i
i iC I Cφ = − ×   (A4)

( )( )0 0 0ˆ b b bi i i
b bC I Cφ = − ×   (A5)

Substitute Equations (A3)–(A5) into Equation (1), and ignore the second-order small items. We get: 

( )( ) ( )( )
( ) ( )( )

( ) ( )( )

0

0

0 0

0

0 0

0

2 3

ˆ ˆ ˆ

=

b

b

b b

b

b b

b

in n i
b i i b

i in i i
i i b

i in i i i i i
i b i i b b

n n n
b

C C C C

C I C I C

C C C C C C

I C

φ φ

φ φ

φ φ

=

  = − × − ×   

   ≈ − × − ×  

   − × − ×   

 (A6)

where the similarity transformation theorem for matrix is used, and  

0

02
b

b

in n
iCφ φ=  (A7)

3
n n i

iCφ φ=  (A8)

Comparing Equation (A3) and Equation (A6), we know that: 

2 3
n n nφ φ φ= +  (A9)
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Considering that 
0 0

ω̂ ω ε
b b

b b b
i i= + , εb  is gyros’ bias, substitute Equation (A5) into Equation (4) and 

ignore the second-order small items, and we can obtain: 

0 0εb bi i b
bCφ = −  (A10)

By solving Equation (17), we get: 

( ) ( )0 0

0
εb b

ti i b
bt C t dtφ = −  (A11)

Then, by substituting Equation (18) into Equation (14), 2
nφ  can be expressed as follows: 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

0

0

0

0

0

0

2 0

0

0

0

ε

ε

ε

ε

b

b

b

b

k
b

b

k

t in n b
i b

t in i b
i i b

t in i n b
i i n b

tn i n
i n

C t C t dt

C t C C t dt

C t C C t C dt

C t C t dt

φ = −

= −

= −

= −







 (A12)

where 

( )
( ) ( )

( ) ( )
( ) ( )

cos ω sin ω 0

= ( )= sin sin ω sin cos ω cos

cos sin ω -cos cos ω sin

ie ie
n n e
i e i ie ie

ie ie

t t

C t C C t L t L t L

L t L t L

 
 − 
  

 (A13)

( ) ( )( )
( ) ( ) ( )
( ) ( ) ( )

cos ω sin sin ω cos sin ω

sin ω sin cos ω cos cos ω

0 cos sin

ie ie ie
Ti n

n i ie ie ie

t L t L t

C t C t t L t L t

L L

− 
 = = − 
  

 (A14)

[ ]ε ε ε ε
Tn

e n u=  (A15)

Then, substituting Equations (A13)–(A15) into Equation (A12), we obtain: 

2
2

2

sin ε cos ε

ω ω

sin ε
= cos ε cos sin ε

ω

cos ε
cos sin ε sin ε

ω

n u

ie ie

n e
n u

ie

e
n u

ie

L L

L
L t L L t

L
L L t L t

φ

 ⋅ ⋅− + 
 
 ⋅ − ⋅ ⋅ − ⋅ ⋅ ⋅ 
 
 ⋅− − ⋅ ⋅ ⋅ − ⋅ ⋅ 
 

 (A16)

Next, let us analyze the error of 
0b

i
iC . In practice, accelerometer measurements contain interference 

error. Therefore, the 0big  used in Equation (5) is relatively difficult to get. For purposes of analysis, 

consider the static base condition; let ˆ b b bf f= + ∇  , where b∇  is the accelerometer bias. If neglecting 

the second-order small items, we have 

( )0 0 0 0 0 0 0 0ˆ ˆˆ ( ) ( )b b b b b b b bi i i i i i i ib b b
b bf C f I C f f fφ φ = = − × + ∇ ≈ − × + ∇   (A17)

Then, substitute Equation (A17) into Equation (5) and define 
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( )

1

1

1

2

1 2

( )

G ( )

( ) ( )

Ti

Ti i

Ti i

g t

g t

g t g t

−

−

    
  =   
 
 ×   

 (A18)

0

0 0

0 0

1

2

1 2

( )

( )

( ) ( )

b

b b

b b

Ti

Ti i

Ti i

f t

F f t

f t f t

    
  =   
 
 ×   

 (A19)

0

0 0

0 0

1

2

1 2

ˆ ( )

ˆˆ ( )

ˆ ˆ( ) ( )

b

b b

b b

T
i

T
i i

T
i i

f t

F f t

f t f t

  
  

 
 =    

  ×   

 (A20)

0 0 0ˆ b b bi i iF F Fδ= +  (A21)

Substitute Equation (A17) into Equation (A20) and ignore second-order small item, and we get 

{ }

0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 1

2 2

1 1 2 1 2 2

( ) ( )

ˆδ = - ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

b b b

b b b b b b

b b b b b b b b

Ti i i

Ti i i i i i

T
i i i i i i i i

t f t

F F F t f t

t f t f t f t t f t

φ

φ

φ φ

  ∇ − ×  
  ≈ ∇ − ×  
 
   ∇ − × × + × ∇ − ×     

 (A22)

According to Equation (6), we know that ( ) 1iG
−

 will not introduce any error during the calculation 

process. Therefore, 

( ) ( ) ( ) ( )0 0 0 0 0

0 0

1 1 1 1ˆ ˆ δ ( δ )b b b b b

b b

i i i i ii i i i i i
i i iC G F G F G F I G F C C

− − − −
= = + = +  (A23)

According to reference [1], we have 

( ) ( )( ) ( )0 0 0 0

0 0 0 0 0

1
1 12 1ˆ ˆ ˆ ˆ δ δ

2
b b b b

b b b b b

TT
i i i ii i i i i i i

i i i i i i iC C C C I G F C G F C C
−

− −   = ≈ − −       
 (A24)

Compare Equations (A4) and (A24), we know that  

( ) ( )( ) ( )0 0 0 0
1 11

= δ δ
2

b b b b

T
i i i ii i i

i iG F C G F Cφ
− − × − 

 
 (A25)

Since 0bi
iC  is an orthonormal matrix, when Equation (A17) is substituted into Equation (5) we get 

{ }
0 0

1 1

2 2

1 1 2 1 2 2

( ) ( )

( ) ( ) =δ δ

( ) ( ) ( ) ( ) ( ) ( )

b b

Ti i i

Ti i i i i i i
i A G

T
i i i i i i i i

t f t

F C t f t F F

t f t f t f t t f t

φ

δ φ

φ φ

  ∇ − ×  
  = ∇ − × +  
 
   ∇ − × × + × ∇ − ×     

 (A26)
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Through an analysis of Equation (A26), we find that 0 0δ b bi i
iF C  consists of two parts; the first part is 

caused by accelerometer error, and the second part is caused by gyro error, where 

( )
( )

2 1

δ

( ) ( )

Ti

Ti i
A

Ti i i i

F

f t f t

 ∇
 
 = ∇ 
 
 ∇ × + ×∇   

 (A27)

{ }

1 1

2 2

1 1 2 1 2 2

( ) ( )

δ ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

Ti i

Ti i i
G

T
i i i i i i

t f t

F t f t

t f t f t f t t f t

φ

φ

φ φ

  ×  
  = − ×  
 
   × × + × ×     

 (A28)

According to the principle of coordinate transformation we have 

=i i n
nC∇ ∇  (A29)

( )0
ε

ti i i i n
nf dt C gφ   × = − ×     (A30)

ε εi i n
nC=  (A31)

Under the static conditions, i if g= , if we introduce Equations (34)–(38) into Equation (32), and 

assume sin(ω ) 0t ≈  , cos(ω ) 1t ≈ ,we finally obtain the errors i
gφ  and i

aφ  caused by gyros and 

accelerometers, respectively. Then, project them into the navigation frame, and we have 

3

sin ω cos ω
tan

T

n n ie n e ie n e
a

L t L t
L

g g g g g
φ  ∇ ⋅ ∇ ∇ ⋅ ∇ ∇= − + − + 

 
 (A32)

2

3

sin ε cos ε ε sin ε sin ε
ε

ω ω ω 2 cos ω

T

n n u e n e
g u

ie ie ie ie

L L L t L
t

L
φ

 ⋅ ⋅= − − + − + 
 

 (A33)

According to Equations (A16), (A32) and (A33), we can get the following result: the misalignment 

angle caused by gyro error is 

2 2
2 3

ε1
+ = 0 ( cos )ε sin cos ε cos ε sin cos ε

2 cos ω

T

n n n e
g g n u u n

ie

L t L L t L t L L t
L

φ φ φ
 

= − + ⋅ − − ⋅ 
 

(A34)

The misalignment angle caused by accelerometers’ error is expressed as Equation (A32).  
For further analysis, assume that 360t s= , 41 10e n u g−∇ = ∇ = ∇ = × , ε =ε =ε 0.01 /e n u h=  . It is also 

known that 57.3 1ω 0 /ie rad s−×≈  and 
π

[0, ]
2

L ∈ . Therefore, it can be calculated approximately and we 

find that the error terms consisting of t  are very small and can be ignored. Therefore, 
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3

ε
+ tan

cos ω

n

n n n e
a g

e e

ie

g

g

L
L g

φ φ φ

 ∇− 
 
 ∇= + ≈  
 
 ∇− ⋅ 

 (A35)

Through analysis, we know that the pitch angle error and the roll angle error depend on the 

accelerometer bias. The yaw angle error is determined by equivalent east gyro drift, equivalent east 

accelerometer bias and latitude. 

B. Gaussian Approximation Filters 

Consider the following discrete-time nonlinear state-space model: 

1 ( )k k kx f x w+ = +  (B1)

( )k k ky h x v= +  (B2)

where, {1, 2, }k ∈   is discrete time, 
kx  and 

ky  are the state vector and the measurement vector at time 

k , respectively; 
kw  and 

kv  are the noise vectors from two independent zero-mean Gaussian processes 

with their covariance matrices 
kQ  and 

kR , respectively . 

Under the assumption of Gaussian distributions, the general form of Gaussian approximation filtering 

algorithm can be summarized as follows: 

1 1/ 1 1 1ˆ ˆ ˆ( )k k k k k kx x K y y+ + + + += + −  (B3)

1
1 1/ 1( )xy y

k k k kK P P −
+ + +=  (B4)

1 1/ 1 1 1
y T

k k k k k kP P K P K+ + + + += −  (B5)

where, 1ˆkx +  is the estimation of the state; 1ˆky +  is the estimation of the measurement with the covariance 

matrix 1
y

kP + ; 1/ˆk kx +  is the state prediction; 1kK +  is the gain matrix; 1/
xy

k kP +  is the cross covariance matrix; 
ˆ(x ;x ,P )k k kN  denotes the multivariate normal distribution with mean ˆkx  and covariance kP   

1 1/ 1 1 1
y T

k k k k k kP P K P K+ + + + += −  (B6)

1/ 1/ 1/ˆ ˆ ˆ( ) ( ) ( ; , )
n

T T
k k k k k k k k k k k k kR

P f x f x N x x P dx x x Q+ + += − +  (B7)

1/ 1 1 1/ 1/ 1ˆ ˆ( ) ( ; , )
nk k k k k k k k kR

y h x N x x P dx+ + + + + +=   (B8)

1 1 1 1 1/ 1/ 1 1/ 1/ 1ˆ ˆ ˆ( ) ( ) ( ; , )
n

y T T
k k k k k k k k k k k k k kR

P h x h x N x x P dx y y R+ + + + + + + + + += − +  (B9)

1/ 1 1 1 1/ 1/ 1 1/ 1/ˆ ˆ ˆ( ) ( ; , )  
n

xy T T
k k k k k k k k k k k k k kR

P x h x N x x P dx x y+ + + + + + + + += −  (B10)

The integrals in can be approximated by the GHQ, UT, or cubature rule [20,22,23]. The generic 

quadrature-based Gaussian approximation filter is given as [22,23]. 

Prediction: 
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( )1/
1

ˆ ε
pN

k k i i
i

x w f+
=

=  (B11)

( ) ( )1/ 1/ 1/
1

ˆ ˆε ε
pN

T

k k i i k k i k k k
i

P w f x f x Q+ + +
=

= − − +        (B12)

where, p
N  is the total number of points; εi  is the transformed point obtained from the covariance 

decomposition such as Cholesky decomposition; that is 

T
kP SS=  (B13)

ˆεi i kS xγ= + (B14)

iγ  is the point corresponding to (x;0, )N I ; and 
iw  is the associated weight. 

Update: 

1 1/ 1 1 1ˆ ˆ ˆ( )k k k k k kx x K y y+ + + + += + −  (B15)

1 1| 1/
xy

k k k k k kP P K P+ + += −  (B16)

where  

( )1/
1

ˆ ε
pN

k k i i
i

y w h+
=

=   (B17)

( )[ ]1/ 1/ 1/
1

ˆ ˆε (ε )
pN

Txy
k k i i k k i k k

i

P w x h y+ + +
=

= − −    (B18)

[ ][ ]1 1/ 1/ 1
1

ˆ ˆ(ε ) (ε )
pN

Ty
k i i k k i k k k

i

P w h y h y R+ + + +
=

= − − +    (B19)

where 
iε  is the transformed point obtained from the predicted covariance decomposition; that is 

1|
T

k kP SS+ =  
 (B20)

1/ˆi i k kS xε γ += + (B21)

C. Gauss-Hermite Quadrature Point Selection 

For the univariate standard Gaussian distribution with m  quadrature points ( , )i iwγ  can be calculated 

as follows [23,25].  
If 1m = , then ( , ) (0,1)i iwγ = . 

If 1m > , firstly, a symmetric tridiagonal matrix J  needs to be constructed, whose diagonal elements 

are zero and , 1i iJ + =
2

i
 (1 1i m≤ ≤ −  ). Then the quadrature point 2

1( , ) ( 2 ,( ) )i i i iw vγ ξ= , where iξ  is 

the i-th eigenvalue of J , 1( )iv  is the first element of the i-th normalized eigenvector of J . 

For example, 3m = , we have 
1 2 1

( , ) ( 3, ), (0, ), ( 3, )
6 3 6i iwγ  = − 

 
 . 
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The multivariate GHQ rule extends the univariate m-point set to the n-dimensional point set by the 

tensor product rule. However, the total number of points is n
pN m=  , which increases exponentially 

with dimension n  . That will result in the so-called” curse of dimensionality”. 

D. RMS Error 

RMS error means the square root of the mean/average of the square of all of the error. It is commonly 

used and makes an excellent general purpose error metric. The calculation formula is as follows: 

( )2

1

1 N

i
i

RMSE E E
N =

= −  (D1)

where N  is the number of experiments, in this paper 100N = , iE  is the i-th experimental result, and 

E  denotes arithmetic mean value of all the experimental results . 
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