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Abstract: Gait is a unique perceptible biometric feature at larger distances, and the gait 

representation approach plays a key role in a video sensor-based gait recognition system. 

Class Energy Image is one of the most important gait representation methods based on 

appearance, which has received lots of attentions. In this paper, we reviewed the 

expressions and meanings of various Class Energy Image approaches, and analyzed the 

information in the Class Energy Images. Furthermore, the effectiveness and robustness of 

these approaches were compared on the benchmark gait databases. We outlined the 

research challenges and provided promising future directions for the field. To the best of 

our knowledge, this is the first review that focuses on Class Energy Image. It can provide a 

useful reference in the literature of video sensor-based gait representation approach. 
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1. Introduction 

Over the past ten years, gait recognition, which utilizes the manner of walking to identify 

individuals, has obtained extensive interest in the communities of biometric recognition and video 

surveillance [1–9]. Compared to other biometrics, such as face [10], fingerprint [11], palmprint [12], 

iris [13], DNA [14], or a combination of these traits [15,16], gait offers the potential for recognition at 
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a distance or at low resolution and can be applied inconspicuously. Depending on the sensors used, a 

gait recognition system can be classified into three groups, which are tactile sensor-based, wearable 

sensor-based and video sensor-based. Tactile sensors generally refer to the multi-degree-of-freedom 

pressure sensor [17,18]. These tactile sensors are usually placed along a particular floor to collect the 

pressure signal generated when people walk across it. Figure 1a shows an example of a tactile  

sensor-based approach. Wearable sensors [19] are attached or worn on the key points of different body 

parts, such as the waist, pockets, shoes and so forth (see Figure 1b), in order to collect the speed, 

acceleration, position and other information about human gait. Although the sensors can directly 

access the motion information of specified parts and obtain accuracy data, they require complex 

equipment in collection and most applications of these methods are limited in medical research. In 

contrast to tactile sensor-based and wearable sensor-based gait recognition, this survey focuses on the 

most widely used video sensor-based gait recognition [6,20–22]. The video sensor-based system 

typically consists of several digital or analog cameras with suitable optics for acquiring the gait data 

from a distance (see Figure 1c).  

 

Figure 1. Some examples of sensor-based gait information acquisition systems. (a) Tactile 

sensor-based approach [23]; (b) Wearable sensor-based approach [24]: schematic (left) and 

photograph (right); (c) Video sensor-based approach [25].  

The general framework of the video sensor-based gait recognition system includes four modules [21], 

which are preprocessing module [26–30] (i.e., subject detection and silhouette extraction from the 

original video), feature representation module [4,31–39], feature selection module [35,40,41] and 

classification module [42–44]. The framework of the video sensor-based gait recognition system is 

shown in Figure 2a. The camera-based sensor captures gait information and sends the data to 
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computers. Figures 3–10 show templates generated from the periodic sequence in Figure 2b. This 

survey mainly focuses on the feature representation module. 

 

Figure 2. (a) The general framework of a video sensor-based gait recognition system. The 

camera-based sensor captures gait information and sends the data to computers. The 

system includes four modules, which are the preprocessing module (i.e., subject detection 

and silhouette extraction from the original video), feature representation module, feature 

selection module and classification module. Note that the model-based gait recognition 

may not need the preprocessing module; (b) The silhouette images are the results of period 

detection corresponding to the preprocessing module in Figure 2a. 

There are various approaches available for video sensor-based human gait representation, which can 

be roughly divided into two broad categories: the model-based and model-free approaches [5,45]. The 

model-based approach aims to explicitly model human body or motion according to prior knowledge. 

Generally, each frame of a walking sequence is fitted to the model of the human body and the 

parameters, such as motion trajectories [46], joint angles [5], hip position [47], limb lengths [48], body 

part ellipses [49] and physical distances [50], gathered from moving bodies are measured on the model 

as gait features for recognition. One such approach represents a gait silhouette as seven regions of 

ellipses. Then, the ellipses’ parameters are computed as gait features for recognition [49]. Another 

method utilizes the pendulum model to guide the motion extraction process [51]. Recently, Zeng et al. [5] 

proposed employing the lower limb joint angles to characterize gait features. Some researchers studied 

the motion trajectories or joints under multi-cameras conditions [20,52,53].  

Model-based approaches are insensitive to background cluttering and noise. These methods are easy 

to be understood, and generally view and scale invariant. However, model-based approaches suffer 

from several drawbacks. First, it is difficult to accurately locate the joints’ position due to the highly 
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flexible structure of non-rigid human body and to self-occlusion [54,55]. Second, model-based 

approaches are sensitive to the quality of gait sequences. Third, and the greatest disadvantage of the 

model-based approaches is their large computation cost and relatively high time costs due to 

parameters calculations, complex feature extraction and matching in these methods. Thus, it is 

somewhat difficult for the model-based approach to be applied in real environment. Therefore, current 

literature focuses more on model-free approaches.  

Model-free approaches [4,31–39,56] aim to utilize the motion information directly to identify 

individuals and does not need the prior knowledge of the gait model. They usually extract statistical 

features from the whole silhouette without assuming the underlying structure [57]. Model-free 

approaches can be divided into two groups, namely temporal comparison and summary of spatio-temporal 

information. The temporal comparison approaches directly compare and match spatial features 

temporally, on a frame by frame basis. In this case, typical methods include correlation between 

frames and Hidden Markov Models [58]. Sarkar et al. [59] propose a baseline gait recognition 

algorithm for computing the correlation between frames by using the ratio of the intersection to the 

union between the probe and gallery frames. Kale et al. [58] employ Hidden Markov Models to 

distinguish between temporal data. The approach computes the likelihood generated from the Hidden 

Markov Model corresponding to a particular person to perform identification. 

In order to reduce the challenges of comparing images on a frame by frame basis, it is more 

efficient to use summarized motion features spatiotemporally. A number of spatio-temporal motion 

summary approaches usually superpose sequences of binary silhouettes depending on certain rules. 

Then, the original video sensor-based silhouette sequences are transformed into a single image 

template for recognition. In this paper, the template is called Class Energy Image. The method 

generating the template is called the Class Energy Image approach. The Class Energy Image 

approaches characterize the gait under multiple conditions without considering the body structure and 

computing accurate parameters of body parts in gait recognition. The advantages of the video  

sensor-based Class Energy Image approach can be summarized as follows: (a) It is well suitable for 

real time systems because it is easy to extract the feature and computational complexity is low [21,60]; 

(b) It is insensitive to the quality of silhouettes comparing to model-based approaches; (c) It holds 

several key features of human gait including motion frequency, temporal and spatial changes of human 

body, and global body shape statistic [3]; (d) It is robust to silhouette errors and image noise [61]. Due 

to the above merits, the Class Energy Image approaches have been widely used in the state-of-art gait 

recognition systems [3,61–67]. Consequently, we focus on providing a comprehensive review of the 

past and present Class Energy Image approaches for video sensor-based gait recognition in this paper. 

The organization of this paper is as follows: Section 2 provides a panoramic summary and analysis 

of related work in the general area of Class Energy Images. In Section 3, we evaluated and discussed 

the performances of various Class Energy Image approaches by experiments. The results demonstrated 

that some Class Energy Image approaches could attain higher recognition accuracy with good 

robustness and efficiency. Section 4 outlines important observations and provides promising future 

directions for the field. 
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2. The Class Energy Image Approach 

Based on the different ways of feature extraction and Class Energy Image generation, we divided 

the present Class Energy Image approach for video sensor-based gait recognition into three categories: 

the gait information accumulation approach, gait information introduction approach and gait 

information fusion approach.  

2.1. Gait Information Accumulation Approach 

The gait information accumulation approach makes an original video sensor-based gait silhouette 

sequence represent as one or several matrix-like second-order images by using mathematical methods 

of average, difference, maximum and minimum operation, etc. The gait information accumulation 

approach is insensitive to incidental silhouette errors, and performs better and provides richer 

information than the original binary gait image. The common gait information accumulation 

approaches include Motion Energy Image (MEI) [33], Motion History Image (MHI) [33,39], Motion 

Silhouettes Image (MSI) [68], Gait Energy Image (GEI) [64,69], Averaged Silhouette (AS) [4], Gait 

History Image (GHI) [70], forward Single-step History Image (fSHI) [71], backward Single-step 

History Image (bSHI) [71], Active Energy Image (AEI) [72–74], Gait Moment Image (GMI) [75], 

Moment Gait Energy Image (MGEI) and Gait Deviation Image (GDI) [76], etc. 

In 2001, Bobick et al. [33] transformed silhouette image sequences to Motion Energy Image (MEI) 
and Motion History Image (MHI). Given a preprocessed binary gait silhouette sequence ( , , )B x y n , 

MEI and MHI are defined as follows: 

1
0( , , ) ( , , )

( , , ) ( , , 1) ( , , )

( , , ) 1
( , , )

max(0, ( , , 1) 1)

MEI i

MHI

MHI

E x y n D x y n i

D x y n B x y n B x y n

if D x y n
E x y n
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−
== −

= + −

 == 
− −

τ

τ

 
(1)

where n  is the frame number (moment of time) of a silhouette sequence, x  and y  are values in the 

2D image coordinate. τ  is the duration of a current silhouette in the sequence. The pixel value of 
( , , )B x y n  ranges within [0,1] . ( , , )D x y n  is the binary difference silhouette image, which indicates 

regions of motion. For example, ( , , ) 1D x y n =  represents a motion occurrence in the thn  frame (time) 

on the coordinate point ( , )x y . MEI accumulates all regions of motion in a gait sequence. MHI is a 

gray image with temporal information. The value of MHI is associated with the current moment. MEI 

and MHI have less computational complexity, but the static information is not sufficient. Examples of 

MEI and MHI are shown in Figure 3a,b. The two templates are the basis of the later research on the 

behaviors and gait recognition. 

Lam et al. [68] employed Motion Silhouettes Image (MSI) to characterize a motion image 

sequence. MSI is generated in nearly the same way as MHI. Pixel intensity of MSI is a function of the 

temporal history of motion at this point, and MHI is generated by using the following algorithm:  

255 ( , , ) 1
( , , )

max(0, ( , , 1) 1)
MSI
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if B x y n
E x y n

E x y n otherwise

 == 
− −
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Figure 3. (a) A sample of Motion Energy Image (MEI); (b) A sample of Motion History 

Image (MHI); (c) An example of Motion Silhouettes Image (MSI); (d) An example of Gait 

Energy Image (GEI); (e) An example of Gait History Image (GHI); (f) The forward  

Single-step History Image (fSHI) sample; (g) The backward Single-step History Image 

(bSHI) sample; (h) The Active Energy Image (AEI) sample in normal state; (i) The AEI 

sample walking with bag; (j) The AEI sample walking on coat. 

MSI, which is simpler than MHI, is a gray image with temporal information. The pixel value shows 

the motion history at this pixel. Figure 3c shows an example of MSI. 

Gait identification is a special case of behavior recognition. In 2004, Han et al. [69] proposed Gait 

Energy Image (GEI). The grey-level GEI can be created from averaging the silhouettes with Equation (3). 

1

1
( , , )

N

GEI
n

E B x y n
N =

=   (3)

where N  denotes the number of the binary silhouette images in a gait cycle. GEI reflects temporal 

length of each posture in a complete gait period. A pixel with higher intensity value in GEI means that 

human walking occurs more frequently at this position. GEI preserves the dynamic and static (shape) 

information of a gait sequence. The common static information is the proportion of the human body, 

clothing and bags, etc. Furthermore, there is no consideration of the time that normalizes each 

silhouette. Figure 3d presents an example of MSI. 

Liu et al. [4] used average silhouette to characterize gait features. Suppose a sequence of 
silhouettes, { (1), , ( )}S S S M=  , the thi  average silhouette (AS) in a gait cycle was expressed as 

( 1) 11
( ) ( )

Gait
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i N
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k iNGait

E i S k
N

+ −

=

=   (4)

GaitN  denotes the numbers of silhouettes in a gait cycle. It is noteworthy that the theory of AS and 

GEI is similar.  

Inspired by MHI, Liu et al. [70] adopted Gait History Image (GHI) to characterize the motion 

image sequence. GHI is obtained as follows:  

1
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P

nGHI
p

n

P if B x y n
E x y

D x y n n otherwise

=

=

 =
= 
 ⋅ −


 (5)



Sensors 2015, 15 938 

 

 

where P  is the number of the frames in a quarter cycle of a silhouette image sequence, and GHI is 

generated from 1/4 gait period. The pixel values in GHI represent the temporal changes. GHI not only 

contains the dynamic and static information, but also inherits the characteristics of MHI which can 

reflect temporal variation. However, GHI computed from a quarter gait period, it will lose amount of 

useful information. Figure 3e shows a GHI sample of one person. 

Based on the idea of MHI in behavior recognition, Chen et al. [71] proposed a Single-step History 

Image (SHI). The forward and backward difference image between two adjacent silhouettes can  

obtain forward Single-step History Image (fSHI) and backward Single-step History Image (bSHI), 

respectively. fSHI and bSHI are defined as follows: 
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where Nλ  is the number of the frames in the thλ  ( 1,2λ = ) single-step period. 1τ  is the gray scale 

difference, and the initial value of 1τ  is 255 ( 1)N −λ  in a 8-bit gray image. fSHI and bSHI reveal 

emerging and disappear silhouette areas over time, respectively. The two templates can describe the 

silhouette changes between frames, and reflect the time-spatial information of gait. Examples of fSHI 

and bSHI are shown in Figure 3f,g. 

GEI is easily influenced by clothing and carrying conditions, meanwhile it neglects some dynamic 

information. In order to address these problems, Zhang et al. [74] presented Active Energy Image 

(AEI), AEI is obtained as follows: 
1

1
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−
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 (7)

AEI aims at extracting the active regions by calculating the difference between two adjacent 

silhouettes in the gait sequence. AEI contains more temporal characteristics for discriminant than GEI. 

Moreover, AEI can reduce the influence of carrying conditions. When clothing and loading change little 

between adjacent silhouettes, the influence could be ignored. However, AEI only makes use of the 

dynamic parts in the silhouette images without consideration of the static information. Figure 3h–j shows 

some AEI samples of a subject under normal walking, walking with bag and walking on coat conditions. 

Each cycle only includes one GEI or GHI template, which easily leads to the problem of insufficient 

training samples. To address this problem, Ma et al. [75] utilized Gait Moment Image (GMI) to 

express a silhouette sequence. GMI is the gait probability image at each key moment in all gait cycles. 

The corresponding gait images at a key moment are averaged as GEI of this key moment. GMI at the 

thk  key moment is calculated as: 

1

1
( , , ) ( , , )

C

GMI i
i

E x y k B x y k
C =

=   (8)

where C  is the number of the gait cycles in a gait sequence. Figure 4a shows five GMIs of the same 

person. Ma et al. [76] further improved the image quality of each key frame, and uniformly choose S  
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interested moments as the key frames in a gait cycle. Moment Gait Energy Image (MGEI) at the thk  

key moment can be given as follows: 

2

2
11 1,1 12 1

1 1
( , , ) ( , , ( )% )S

S Ci
MGEI i i i Cri

E x y k r B x y k S i i S
C= =− =× =

= × + + ×    (9)

where 1r  is the decline coefficient. Smaller values of 1r  would make MGEI quite similar to ( , , )B x y k . 

While bigger values of 1r  would make each frame lose uniqueness. Some key frames are sufficiently 

employed to create the MGEI, and the way of its calculation is greatly different from GEI. 

Furthermore, MGEI has temporal information between frames. Some examples of MGEI are shown in 

Figure 4c. Furthermore, Gait Deviation Image (GDI), which represented a kind of accumulation of the 

deviations between original silhouette images and the moment probability images, is obtained as follows:  

1
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− − == 
−
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where N  is the gait period in a gait sequence. ( , , )GE x y k  is the thk  key moment of GMI or MGEI. The 

result of the Equation (10) at the final key moment is GDI. Figure 4b shows the examples of GDI generated 

from GMI. Compared to GEI, GDI reflects more dynamic information, but less static information. 

The disadvantages of the Class Energy Image based on the key frames are: it is not easy for GMI or 

MGEI to select key moments from cycles with different periods. 

 

Figure 4. (a) Some samples of GMI; (b) The sample of GDI; (c) Some MGEI samples. 

The gait information accumulation approach is an effective representation of a video sensor-based 

gait sequence, which not only saves storage space and computational time, but also attains better 

recognition performance. The disadvantage is that some useful information may be lost, and the 

problem of inadequate training samples is raised. Table 1 characterizes the expressions, motion 

information (i.e., dynamic, static and temporal information) and computational complexity of the gait 

information accumulation approach. The temporal information refers to the fore-and-after relations in 

the gait feature description. For example, the GEI contains no temporal information. The reason for 

this phenomenon is that GEI representation is the same as that of the original sequence when the 

frames in a gait sequence are disordered. Real-time gait recognition systems requires low 

computational complexity [1,77]. The Class Energy Images of gait information accumulation approach 

have the consistent computational complexity, which reveals good performances of real-time. 
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Table 1. The information of the gait information accumulation approach. 

Name Expression O  Dynamic Static Time Image
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Note: We make √ and × represent whether the Class Energy Image with or without the type of the motion 

information, respectively. O  denotes computational complexity. Suppose the size of the silhouette is m n× , 

η  is the numbers of silhouettes in a gait cycle. 

2.2. Gait Information Introduction Approach 

Gait information accumulation approach only reformulates a video sensor-based gait sequence by 

using templates as holistic feature and arguably loses some intrinsic dynamic characteristics of the gait 

pattern. In order to weaken this effect, gait information introduction approach introduces dynamic 

information to the static silhouette images based on GEI by adopting the mathematical transformation 

methods of average, difference and motion regions extraction, etc. The general gait information 

introduction approaches include: Motion Information Energy Image (MIEI) [78], Frame Difference 
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Energy Image (FDEI) [79–81], Enhance Gait Energy Image (EGEI) [55,72,82], Chrono Gait Image 

(CGI) [83–85], Gait Flow Image (GFI) [86,87], and Gait Entropy Image (GenI) [56,88], etc. 

Masoud et al. [78] applied the weighted average idea to GEI, and Motion Information Energy 

Image (MIEI) was devised. MIEI was started with a weighted average at time (frame) n . MIEI is 

computed as follows: 

( , , ) ( , , 1) (1 ) ( , , 1)E x y n B x y n E x y n= × − + − × −α α  (11)

where α  is a parameter within [0,1] . ( , , )E x y n  can be updated consecutively. The recent image makes 

a greater contribution to ( , , )E x y n . More dynamic discriminative information is introduced to GEI by 

selecting appropriate ( , , 1)E x y n −  and α . However, the values of ( , , 1)E x y n −  and α  vary from 

different subjects. Some examples of MIEI are shown in Figure 5a–c. 

 

Figure 5. (a) An MIEI samples for n = 6 in Equation (11); (b) An MIEI samples for n = 6 

in Equation (11); (c) An MIEI samples for n = 6 in Equation (11); (d) An incomplete 

silhouette at 1t − ; (e) The silhouette at t ; (f) The positive portion of the frame difference; 

(g) The GEI; (h) The DEI; (i) The FDEI of (d). 

To suppress the influence of silhouette incompleteness for identification, Chen et al. [79] proposed 

Frame Difference Energy Image (FDEI). A gait cycle is divided into clusters and the dominant energy 

image (DEI) is obtained by denoising the averaged image of each cluster. The frame difference is 

calculated by subtracting two consecutive frames. FDEI representation is constructed as the summation 

of its corresponding cluster’s DEI and the positive portion of its frame difference. FDEI is defined  

as follows: 

( , ) ( , , ) ( , )

1 1
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0

0 ( , , ) ( , , 1)
( , , )

( , , 1) ( , , )

C C
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c
n N n Nc cDEI

E x y F x y n E x y

B x y n if B x y n T
N NE x y

otherwise

if B x y n B x y n
F x y n

B x y n B x y n otherwise

∈ ∈

= +

 ≥= 



 ≥ −= 
− −

 
 

(12)

where CN  is the number of frames in the thC  cluster, and it represents the time (frame) set of 

silhouettes. Average distortion is used to choose the cluster number [79], which decreases with the 

increased cluster number. If the average distortion does not change appreciably beyond certain 
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number, it can be chosen as the cluster number. When the value of cluster number is very small, some 

useful information for identification may miss. The larger cluster number leads to great computation 

complexity, but has little improvement on the recognition performance. The threshold T  varies with 
different periods or subjects, depending on the quality of the silhouettes. ( , ,0)B x y  is viewed as the 

last frame in a period. When ( , , )B x y n  is incomplete and ( , , 1)B x y n −  is complete, the missing 

portions of the frame are contained in ( , , )F x y n . When the ( , , )B x y n  and ( , , 1)B x y n −  are both 

incomplete, the missing portions can be compensated by ( , )c
DEIE x y . FDEI representation helps to 

suppress the influence of the missing portions and preserve the characteristics of ( , , )B x y n . FDEI is 

robust to incomplete silhouette images. Moreover, FDEI embodies both static and kinetic information 

between frames. Figure 5d–i demonstrate some images during the construction of FDEI, where  
Figure 5d,e show silhouettes ( , , 1)B x y n −  and ( , , )B x y n  , respectively. Figure 5f shows the movement 

portion of ( , , )B x y n . A GEI of the cluster is shown in Figure 5g. Figure 5h embodies the dominant 

energy of GEI, which is obtained by denoising Figure 5g. Figure 5i is FDEI of ( , , )B x y n . Comparing 

(i) with Figure 5d, it can be seen that FDEI contains the movement portion and partially compensates 
the incompleteness of ( , , )B x y n . 

Yang et al. [55] also devised an Enhance Gait Energy Image (EGEI) representation method. The 

method applied dynamic region analysis to improve dynamic information of GEI. Then a better 

performance can be attained than the conventional GEI method. The intensity in GEI indirectly reflects 

the time spent at each stance: the regions with high intensity and low intensity marked with “I” and 

“II” in Figure 6b are essentially the same among different individuals. While the dynamic region 

marked with “III” in Figure 6b, which is the area between the red and the blue circle, embodies the 

swing of limbs and the inclination of head and torso. In this region, different people have different 

distributions of pixel intensity values. Identity can be differentiated by these individual characteristics. The 

dynamic region in GEI is enhanced by a pixel-wise multiplication with DWM by the following equation: 

2

1 1 1 1

( , ) ( , ) ( ( , ))

1 1 1 1
( , ) ( , ) ( , )

EGEI GEI DWN

A N A N
i i

GEI m m
i m i m

E x y E x y T x y

x y G x y G x y
A N A N= = = =

= ×

 = −  
   

γ

σ
 (13)

where A  is the total number of classes in the training set. N  is the number of samples in each class. 
The total number of the samples in the training set is M NA= . ( , )i

mG x y  denotes the thm  GEI from 

the thi  class. ( , )GEI x yσ  is the standard deviation which reflects the variance between different 

classes. ( )DWNT ⋅  is the dynamic weight mask (DWM), which is the ( , )GEI x yσ  normalized to [0,1]  and 

indicates the degree of dynamics in ( , )x y . γ  is a gamma correction tuning parameter, and Figure 6a 

demonstrates a group of gamma corrected DWMs with different γ  values. However, EGEI is still 

heavily affected by other factors such as clothing and carrying object. Some GEI and EGEI samples of 

an individual extracted from the gait sequences collected under normal walking, walking with bag 

conditions are shown in Figure 6b–e.  
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Figure 6. (a) Some samples of gamma corrected DWMs [70] (from left to right is 
0.1,0.3,0.5,0.7,1,1.5,2=γ ); (b) The GEI in normal state; (c) The EGEI in normal state; 

(d) The GEI walking with bag; (e) The EGEI walking with bag.  

Temporal information of GEI may be lost, whereas it reduces the effect of the noises. In order to 

well preserve the temporal information of gait patterns, Wang et al. [83] put forward a multi-channel 

temporal encoding technique, named as Chrono Gait Image (CGI), to encode a gait sequence to a 

multi-channel image. CGI is defined as follows: 
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 (14)

where p  is the number of silhouettes in the 1/4 gait period. ( , )H x y  is the gait contour information 

which can be got by local information entropy method. ( )i tC r  is the tht frame different weights in 

different channels depending on their position in the 1/4 gait periodic sequence. ( , )tC x y  indicates the 

multi-channel contour image. in  is the number of the ( , )tC x y  in the thi  1/4 gait period. tW  expresses 

the average width of the leg region in the tht frame, minW  and maxW are the extreme widths of the 1/4 

period which the tht  frame belongs to. Figure 7 represents the process of generating CGI. However, 

CGI may lose some dynamic information, such as the frequency information. The accuracy of CGI 

depends on the number of 1/4 gait period in a silhouette sequence.  

 

Figure 7. An example of generating a CGI template. (a) The contour images; (b) The 

multi-channel contour images; (c) A CGI template of a gait period. 
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Optical flow is a mode of target motion in scenes. Optical flow has been well used in the field of 

moving target detection, segmentation and tracking. Toby et al. [86] introduced optical flow to gait 

representation, and presented Gait Flow Image (GFI), which is obtained as in Equation (15). 
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==
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μ ν
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where ( , )iuF x y  and ( , )ivF x y are the horizontal and vertical optical flow field. ( , )iMagF x y  is the 

resultant magnitude of ( , )iuF x y  and ( , )ivF x y . ( , )iF x y  is a binary flow image. Figure 8 demonstrates 

an example of generating GFI. GFI represents the motion of silhouette images. The dark region in  

Figure 8c,d means the region with movement, and the white region means the region without any 

movement. More dynamic information can be embodied when introducing optical flow to gait 

representation. However, GFI will introduce the information unrelated with identification when image 

sequences have low quality. 

 

Figure 8. Optical flow silhouette images. (a) Horizontal optical flow field images;  

(b) Vertical optical flow field images; (c) The magnitude of optical flow fields’ images;  

(d) The binary flow images. 

GEI is sensitive to static condition variation, such as clothing, carrying condition (backpack, 

briefcase, handbag, etc.), and shoe-wear. Bashir et al. [56] proposed the Gait Entropy Image (GEnI) to 

distinguish the dynamic and static areas of GEI by measuring Shannon entropy at each pixel location 

in GEI. The intensity value of the silhouettes at a fixed pixel location is considered as a discrete 

random variable. Shannon entropy measures the uncertainty associated with the random variable over 

a complete gait cycle. GEnI is computed as: 

2 2( , ) ( , ) log ( , ) (1 ( , )) log (1 ( , ))GEnI GEI GEI GEI GEIE x y E x y E x y E x y E x y= − − − −  (16)

GEnI measured the relevance of gait features extracted from GEI, and automatically selected static 

condition invariant features for gait recognition. Since the dynamic region has more uncertainty, the 

intensity values of GEnI are larger in the dynamic region and smaller in the static region. Figure 9 

shows some GEI and GEnI samples of one person walking normally, walking with bag and walking 
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while wearing a coat, where (a, c, e) are the GEI samples, and (b, d, f) are the corresponding GEnI 

ones, respectively. Dynamic and static information could be easily distinguished by constructing the 

Shannon entropy in GEI.  

 

Figure 9. Some GEI and GEnI samples. (a) The GEI in normal state; (b) The GEnI in 

normal state; (c) The GEI walking with bag; (d) The GEnI walking with bag; (e) The GEI 

walking in a coat; (f) The GEnI walking in a coat. 

Table 2. The information of the gait information introduction approach. 

Name Expression O  Dynamic Static Time Image 
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GEnI 
2
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(1 ( , )) log (1 ( , ))
GEnI GEI GEI

GEI GEI

E x y E x y E x y

E x y E x y

= − −
− −

 ( )O m n⋅ ⋅η  √ √ × 

Note: We make √ and × represent whether the Class Energy Image with or without the type of the motion 

information, respectively. O  denotes computational complexity. Suppose the size of the silhouette is m n× , 

η  is the numbers of silhouettes in a gait cycle. 

Gait information introduction approach can highlight the dynamic information, meanwhile 

preserving the static information. Table 2 characterizes the expressions, motion information and 

computational complexity of the gait information introduction approach. This kind of approach is 

insensitive to noises, and not critical to the identification method. In addition, the computational 

complexity of Class Energy Images in this section has significant differences. Especially, it is obvious 

that CGI and GFI have extremely higher computational complexity than others. 
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2.3. Gait Information Fusion Approach 

Gait information fusion approach employs feature layer fusion and decision layer fusion method [89] 

to achieve the fusion of static, dynamic and temporal information. Gait information fusion method 

usually includes X-T Plane Energy Image (X-T PEI) [90], Color Gait History Image (CGHI) [91], 

Motion Silhouette Contour Template (MSCT), Static Silhouette Template (SST) [92,93], Mean Motion 

Shape (MMS) and Average Motion Energy (AME) [94], etc. 

Guo et al. [90] reformulated a silhouette sequence as a third-order tensor with column, row and time 

modes, which was XYT form. The human body can be divided into three parts when the hip and knee 

are viewed as the demarcation point, and the body is mapped to the X-T plane. X-T Plane Energy 

Image (X-T PEI) can be generated by Equation (17). 

1

1
( , ) ( , , )

H

X T PEI
y

E x n B x y n
H−

=

=   (17)

where H  is the body height of the silhouette images. The three X-T PEIs, which has static and 

dynamic information, are fused based on series in the feature layer. The X-T PEIs of the three body 

parts are represented in Figure 10a–c. Moreover, X-T PEI can detect the gait period.  

 

Figure 10. (a) The upper X-T PEI of a gait sequence; (b) The middle X-T PEI of a gait 

sequence; (c) The lower X-T PEI of a gait sequence; (d) The fSHI of channel R; (e) The 

fSHI of channel G; (f) The GEI of channel B; (g) The CGHI; (h) and (i) are MSCTs of a 

gait period; (j) The MSCT of a silhouette sequence; (k) and (l) are SSTs of a gait period. 

(m) The SST of a silhouette sequence; (n) An example of AME; (o) An example of MMS. 

Further improved SHI [71], Chen [91] devised the Color Gait History Image (CGHI) to describe the 

temporal-spatial gait information. CGHI consists of three channels. The channels of R and G are fSHIs 

which views the standing on one leg and two legs as the start of a period, respectively. Moreover, the 
channel of B is GEI. Equation (17) gives the MATLAB expression of CGHI, where RI , GI  and BI  are 

the three channels of CGHI. Figure 10d–g show the example of generating CGHI. 
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Unlike the aforementioned Class Energy Image approaches, Lam et al. [93] constructed two 

templates, the Motion Silhouette Contour Template (MSCT) and Static Silhouette Template (SST), 

from a sequence of silhouette images for recognition. MSCT and SST embed critical spatial and 

temporal information, and they are defined as follows: 
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  (19)

where P  is the number of frames in a gait period. ( ( , , ))i s
s S

B x y n −
∈
  is the eroded silhouettes. S  is the 

structuring element. MSCT contains information about the movement characteristics of a human gait 

and SST embeds information about the static characteristics of a human gait. These templates are used 

together for gait recognition. Figure 10h–m demonstrate some MSCT and SST samples of a silhouette 

sequence with two gait periods, where Figure 10h,i are MSCT samples of a gait period, and  

Figure 10k,l are the corresponding SST ones, respectively. Figure 10j,m are MSCT and SST of the 

silhouette sequence, respectively. However, the method is affected by the quality of the silhouettes. 

The sample category was determined by decision layer fusion strategy: 

.

( , ) ( , ) ( , )

min ( , ) ( , ) 1, 2,...,
MSCT u v SST u v

train

SimScore u v SimScore MSCT MSCT SimScore SST SST

SimScore u i SimScore u v i N

= +
= =

 (20)

where the similarity score ( , )SimScore u v  represents the level of similarity between the testing sample u  

and the training sample v . The MSCTSimScore  and SSTSimScore  can be computed by Equation (21).  

u v

train test

i j

Temp Temp

Temp u v

Temp

N N

Temp Tempi=1 j=1

Temp
train test

E - E
SimScore (Temp ,Temp )=

SimScore

E - E
SimScore =

N * N

 
 (21)

where Temp represents MSCT  or SST . trainN  and testN  are the numbers of training and testing samples. 

Wang et al. [94] adopted two templates, which were Mean Motion Shape (MMS) and Average 

Motion Energy (AME), to describe the overall shape and the moving parts’ features. The two 

templates can be calculated as follows: 
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 (22)

AME is the same as GEI, which is shown in Figure 10n. MMS describes the changes of the shape 

contour, which is attained by utilizing the edge tracking algorithm. The normalized contour can be 
represented as 1 2[ , , , ]ks u u u Τ⋅⋅⋅= . MMS is the eigenvector that the largest eigenvalue of MMSE  

corresponds to. The example of MMS is demonstrated in Figure 10o. AME and MMS are used for 

recognizing respectively. The recognition results are fused together on decision layer. 

Table 3 characterizes the expressions, motion information and computational complexity of the gait 

information fusion approach. Class Energy Images of gait information fusion approach have 

inconsistent computational complexity. In addition, gait information fusion approach mainly takes 

different feature images into consideration, and there is little correlation between different feature 

images. It is a promising direction to study the extraction of different features, and to fuse them using 

different fusion strategy.  

Table 3. The information of the Gait information fusion approach. 

Name Expression O  Dynamic Static Time Image 

X-T PEI 
1

1
( , ) ( , , )

H

X T P E I
y

E x n B x y n
H−

=

=   ( )O m n⋅ ⋅η  √ √ × 

CGHI 
1

2

( , ,1) ( , )

( , , 2 ) ( , )

( , , 3) ( , )

R fSH I

G fSH I

B G E I

I x y E x y

I x y E x y

I x y E x y

=

=

=

 ( )O m n⋅ ⋅η  √ √ √ 
 

MSCT 
and SST 

255
( , , ) 1

( , , ) 255
max(0, ( , , ) )

1 ( , , ) ( , , 1)
( , , )

0

( , , ) ( , , ) ( ( , , ))

i
MSCT

i

SST SST
SST

i i i s
s S

if A x y n
E x y n

otherwiseA x y n
P

if E x y n E x y n
E x y n

otherwise

A x y n B x y n B x y n −∈

 == −
= −

=


= − ∩

( )O m n⋅ ⋅η  √ √ × 
  

AME 
and 

MMS 

1

1

1
( , , )

( ) ( )

n

A M E n
n

n

M M S j j j j
j

E B x y n
N

E s s s s

=

Τ Τ

=

=

=





 2( ( ) )O m n⋅ ⋅η  √ √ × 
  

Note: We make √ and × represent whether the Class Energy Image with or without the type of the motion 

information, respectively. O  denotes computational complexity. Suppose the size of the silhouette is m n× , 

η  is the numbers of silhouettes in a gait cycle. 

3. Experiments and Analysis 

We evaluated the various video sensor-based Class Energy Image approaches by performing 

experiments on two benchmark public datasets: CASIA B dataset [61] and University of South Florida 

(USF) HumanID dataset [59], some video examples in the gait datasets are demonstrated in Figure 11.  
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Figure 11. Examples of the internationally public datasets (a) University of South Florida 

(USF) HumanID dataset; (b) CASIA dataset B. 

All experiments are implemented by Matlab and tested on a Core 2 Duo 3.17 GHz computer with  

2 GB memory. 

3.1. Experimental Settings 

The USF dataset is the outdoor gait videos which are obtained under remotely complex 

backgrounds. The cameras were a consumer-grade Canon Optura (for the concrete surface) and an 

Optura PI (for the grass surface) camera. These are progressive-scan, single-CCD cameras capturing 

30 frames per second with a shutter speed of 1/250 s and with autofocus left on, as all subjects were 

essentially at infinity [59]. The quality of the silhouettes extracted is poor. This database consists of 

122 individuals walking in elliptical paths in front of the camera. For each person, there are up to  

5 covariates: viewpoints (left/right, i.e., R/L), surface types (concrete/grass, i.e., C/G), carrying 

conditions (with/without a briefcase, i.e., BF/NB), shoe types (A/B) and time (T). The USF data  

set [59] contains 1 gallery (training) set and 12 probe (testing) sets as shown in Table 4. The gallery set 

contains 122 sequences. Individuals are unique in the gallery and each probe set, and there are no 

common sequence among the gallery set and all probe sets. Furthermore, we evaluated the various 

Class Energy Image approaches under the above mentioned experimental settings, which was 

conducive to a horizontal comparison between different Class Energy Image approaches. The noises of 

the silhouettes in the USF dataset were larger than that in the CASIA dataset. The experiments resulted 

on the USF dataset better suggested the robustness of the various Class Energy Image approaches for 

such noises. There are at least 5 periods for each silhouettes sequence in the USF dataset, and we 

determined that the start of the periods were double support positions. In order to reduce the 

computational complexity, we selected a gait period sequence to perform and analyze the experiments. 

Table 4. The USF Database. 

Dateset Number of Samples Variations Dateset Number of Samples Variations 

Gallery 122 G,A,R,NB — — — — — — — — — 

Probe A 122 G,A,L,NB Probe G 60 C,B,L,NB 

Probe B 54 G,B,R,NB Probe H 120 G,A,R,BF 

Probe C 54 G,B,L,NB Probe I 60 G,B,R,BF 

Probe D 121 C,A,R,NB Probe J 120 G,A,L,BF 

Probe E 60 C,B,R,NB Probe K 33 G,A/B,R,NB,T 

Probe F 121 C,A,L,NB Probe L 33 C,A/B,R,NB,T 
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The CASIA B database includes 124 individuals. This video dataset was attained from USB 

cameras (Model: Fametech 318SC) in the indoor environment [61]. The quality of the silhouettes in 

the CASIA B database is high. Each individual has 3 kinds of walking state: 6 videos of normal gait,  

2 videos of walking with bag and 2 videos of walking on coat, which are named nm-01 to nm-06,  

bg-01, bg-02, cl-01 and cl-02. Moreover, each individual has been captured from 11 different views. 

We only employed the 90° view to analyze the performance of the Class Energy Image approaches 

under different walking states in our experiments. 

The aforementioned two databases provide the silhouette benchmark images after background 

subtraction. Only the silhouette images of USF gait Database have been preprocessed already, and the 

size of the silhouettes is 128 × 88 pixels. Furthermore, the silhouette preprocessing includes horizontal 

alignment and size normalization. The horizontal alignment is centering the upper half silhouette part 

with respect to its horizontal centroid. In addition, the size normalization is proportionally resizing 

each silhouette image so that all silhouettes have the same height. The size of the silhouette image is 

resized to 64 × 64 pixels in the CASIA B database. All the experiments and analysis in the paper were 

begun with the preprocessed silhouette image sequences. 

In all the experiments, each original Class Energy Image is directly sent to nearest neighbor 

classifier based on Euclidean distance without using Principal Component Analysis/Linear 

Discriminant Analysis (PCA/LDA) to reduce the dimensions. We employ rank order statistic to 

evaluate the Class Energy Images. This is defined as the cumulative probability that the actual class of 

a test measurement is among its k  top matches, where k  is called the rank. 

3.2. Recognition Performance Analysis on the USF Dataset 

The USF dataset contains a number of variations which offers experimental challenges. The quality 

of the extracted images from videos is poor. The Class Energy Image approaches have good 

adaptability for low quality gait silhouette images, and their statistical properties are used to suppress 

the influence of the incidental silhouette errors. According to the differences between the conditions of 

captured videos, the probe A-L samples were divided into three groups: (I) there are small differences 

between gallery samples and probe samples. The static information is mainly relied on to identify;  

(II) The differences are between the groups (I) and (III), and the static and dynamic information have 

the equally important position; (III) The differences between gallery and probe samples are much 

greater. The shape changes for a person among the gallery and probe sets are remarkable, and the 

dynamic information is mainly relied on to identify. To ease our explanation, we also reported the 

average performance for each group by computing the ratio of correctly recognized subjects to the total 

number of subjects. 

Tables 5–7 are, respectively, the performances of the gait information accumulation approach, gait 

information introduction approach, and gait information fusion approach on the USF database. 

 



Sensors 2015, 15 951 

 

 

Table 5. The recognition performances of the gait information accumulation approach (%). 

Group Probe Variation 

MEI GHI MHI fSHI bSHI MSI GEI AEI 

Rank

1 

Rank

5 

Rank

1 

Rank

5 

Rank

1 

Rank

5 

Rank

1 

Rank

5 

Rank

1 

Rank

5 

Rank

1 

Rank

5 

Rank

1 

Rank

5 

Rank

1 

Rank

5 

Ⅰ 

A view 14 48 6 18 30 61 31 56 33 63 25 47 56 81 53 75 

B show 6 9 9 50 33 50 48 65 48 66 30 63 67 80 54 78 

C view, shoe 2 13 4 9 15 30 13 37 20 43 11 28 32 57 32 56 

Avg. -- 7 23 6 26 26 47 20 53 34 57 22 46 52 73 * 46 70 

Ⅱ 

D surface 7 28 1 8 4 19 7 21 9 23 9 18 15 40 10 26 

E surface, shoe 2 7 0 5 5 8 12 18 10 22 10 5 15 38 15 23 

F surface, view 3 20 1 7 3 12 4 17 5 16 7 18 8 27 8 22 

G 
surface, shoe, 

view 
0 13 0 5 5 8 7 18 7 18 2 13 13 27 7 20 

Avg. -- 4 17 1 6 4 12 8 19 8 20 7 14 13 33 * 10 23 

Ⅲ 

H briefcase 7 45 5 21 3 12 31 54 36 58 26 55 33 64 48 66 

I briefcase, shoe 3 8 3 17 18 35 23 47 33 47 25 50 33 67 45 73 

J briefcase, view 9 43 3 13 13 32 16 39 20 38 18 36 24 53 30 52 

K 
time, shoe, 

clothing 
0 3 0 3 0 3 0 9 0 12 3 18 3 6 9 27 

L 
surface, time, 

shoe, clothing 
0 6 0 6 3 12 6 9 6 21 15 24 3 3 3 15 

Avg. -- 4 33 2 12 9 19 15 32 19 35 17 37 19 39 27 47 * 

Note: A and A* (A is number) denote the best Rank 1 and Rank 5 performances, respectively. 
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Table 6. The recognition performances of the gait information introduction approach (%). 

Group Probe variation 
MEI FDEI EGEI CGI GFI GEnI 

Rank 1 Rank 5 Rank 1 Rank 5 Rank 1 Rank 5 Rank 1 Rank 5 Rank 1 Rank 5 Rank 1 Rank 5 

Ⅰ 

A view 56 83 53 75 56 82 43 73 49 75 35 59 

B show 70 82 44 70 67 81 51 83 41 57 39 76 

C view, shoe 33 61 30 50 30 60 30 54 24 52 17 46 

Avg. -- 53 75 * 42 65 51 74 41 70 38 61 30 60 

Ⅱ 

D surface 17 41 12 23 13 41 18 36 10 22 12 27 

E surface, shoe 17 35 7 25 13 40 12 32 13 25 12 32 

F surface, view 7 28 4 18 8 28 7 26 9 21 7 24 

G 
surface, shoe, 

view 
12 30 5 17 12 30 8 25 12 17 3 17 

Avg. -- 13 34 * 7 21 12 35 * 11 30 11 21 9 25 

Ⅲ 

H briefcase 32 61 46 63 34 70 37 66 39 63 33 62 

I briefcase, shoe 33 63 43 70 33 68 45 62 40 63 28 57 

J briefcase, view 28 53 25 52 27 55 23 44 23 52 25 41 

K time, shoe, clothing 0 6 6 18 3 6 0 6 0 15 0 21 

L 
surface, time, shoe, 

clothing 
6 6 6 15 3 12 6 24 3 15 15 24 

Avg. -- 20 38 25 44 * 20 42 22 40 21 42 20 41 

Note: A and A* (A is number) denote the best Rank1 and Rank5 performances, respectively. 
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The Class Energy Image approaches bout key frames are based on multi-period. The selection of 

the key frames can affect the recognition performances, which are not applicable to the gait 

recognition in a real-time video monitoring system. Thus, the experiments had not been performed by 

this kind of approaches. The recognition performances are illustrated in Table 5 for the gait 

information accumulation approach. It can be seen from Table 5 that (1) GEI has a higher average 

recognition rate for groups (I) and (II). The rank1 average performance of GEI in group (I) is 52%, 

while 13% in group (II), which is improved by 6% and 3%, respectively, compared with the second 

better approach in the average performance rank list; (2) AEI achieves the best average performance 

among all the methods in group (III). There is average 8% improvement in recognition rate by AEI; (3) 

The recognition performances of MSI and MEI are poorer than others. It is the reason that (1) GEI 

contains both static and dynamic information and achieves the best average recognition performance in 

group (I) and (II); (2) AEI has more dynamic information and attains the best average recognition 

performance in group (III). Moreover, there is no temporal information in MSI and MEI, which 

highlights the static information and dynamic information, respectively. The recognition performances 

of these two methods are worse than others. 

The identification rates of the gait information introduction approach are summarized in Table 6. It 

can be seen from Table 6 that 1) MIEI has the best performance in group (I) and slightly improves the 

average recognition rate by 2% compared with EGEI, which is the second better approach in the 

average performance rank list. 2) We also notice that MIEI and EGEI perform better than other 

approaches in group (II). The average identification rate of MIEI in Rank1 is 13%. The Rank1 average 

identification rate of EGEI is 12%, which is 1% less than the performance of MIEI. While the MIEI 

losses 1% on rank5 performance compared with EGEI. 3) FDEI obtains the best average recognition 

performances in group (III). FDEI wins 3% and 4% on rank1 and rank5 performance, respectively, 

compared with CGI, which is the second better approach in the average performance rank list. 4) The 

recognition performances of GEnI and GFI are worse than the others. It is the reason that 1) MIEI, 

which is the weighted GEI, embodies more static information and achieves the highest average 

recognition rate in group (I). 2) The static and dynamic information have the equally important 

position in group (II). MIEI and EGEI have both static and dynamic information, and obtain better 

average identification performance. 3) FDEI has more dynamic information and attains the best 

average recognition performance in group (III). 4) GEnI and GFI are more sensitive to noise. 

Moreover, there is much noise for the silhouette images in the USF dataset, thus the recognition rate of 

GEnI and GFI is low. 

The gait information introduction approach introduces some parameters, which are determined as 
follows. The whole gait sequence for MIEI should be analyzed. The pre-set average image ( , , 1)E x y i −  

and the weight α  both affect the recognition performance. The average of the former 6 frames is 

chosen as the pre-set average image, and the value of α  is 0.04 in the paper. The threshold parameter 

T  of FDEI varies with different periods or subjects, we experimentally choose the value T  as 
max 0.6 * ( )c

DEIE  for each cluster in the gait recognition. However, FDEI is based on the addition of the 

segmented GEI and the difference image in the segment, the single difference image added slightly 

improves the recognition performance. Thus, we add the difference images and GEI of a whole gait 
cycle. The gamma correction tuning parameter γ  plays an important role in EGEI. When γ  is too big, 

the weight of DWM is much smaller and the useful information will be lost. When γ  is too small, the 
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weight of DWM is much bigger and there will be too much useless interfering information for 
recognition. Then, we choose the value of γ  is equal to 0.9 in the paper. 

The experimental results for the gait information fusion approach are illustrated in Table 7. The 

computational time of MMS is 78 s/f (second/frame), which is too long to meet the requirement of real 

time. There is no consideration of MMS in Table 7. The results shown in Table 7 indicate that  

1) CGHI has the best performance in group (I), (II) and (III). 2) The recognition performance of X-T 

PEI is worse than the other. That is because that 1) CGHI has more information including the static, 

dynamic and temporal information. 2) X-T PEIs of different sequences need to be normalized. That is 

to say, the periods of different sequences should be compressed into the same. However, the static and 

dynamic information will be lost during normalization, thus the identification rate is lower than others. 

Table 7. The recognition performances of the gait information fusion approach (%). 

Group Probe Variation 
X-T PEI MSCT&SST CGHI AME&MMS 

Rank 1 Rank 5 Rank 1 Rank 5 Rank 1 Rank 5 Rank 1 Rank 5

Ⅰ 

A view 36 29 53 82 60 84 ／ ／ 

B show 51 60 69 80 68 82 ／ ／ 

C view, shoe 28 45 30 55 35 61 ／ ／ 

Avg. -- 38 45 51 72 54 76 * ／ ／ 

Ⅱ 

D surface 4 12 8 52 18 45 ／ ／ 

E surface, shoe 3 15 3 20 19 44 ／ ／ 

F surface, view 2 16 8 21 11 32 ／ ／ 

G 
surface, shoe, 

view 
10 15 9 15 17 33 ／ ／ 

Avg. -- 5 15 7 27 16 39 * ／ ／ 

Ⅲ 

H briefcase 15 53 20 60 37 67 ／ ／ 

I briefcase, shoe 18 59 23 64 38 71 ／ ／ 

J briefcase, view 20 40 25 45 28 58 ／ ／ 

K time, shoe, clothing 21 6 24 40 6 9 ／ ／ 

L 
surface, time, shoe, 

clothing 
0 6 6 9 9 12 ／ ／ 

Avg. -- 15 33 20 44 22 43 * ／ ／ 

Note: A and A* (A is number) denote the best Rank 1 and Rank 5 performances, respectively. 

The summary of several Class Energy Image approaches, which performs better, is recorded in 

Table 8. It can be seen from Table 8 that: 1) CGHI which belongs to the gait information fusion 

approach has higher identification rate than other representations in group (I) and (II). The rank1 and 

rank5 average identification rate of CGHI is improved by 3% and 5% respectively in group (II) 

compared with GEI. However, CGHI improves the accuracy slightly by 1% compared with MIEI in 

group (I). 2) AEI which belongs to the gait information accumulation approach achieves the best 

recognition performance in group (III). AEI wins 2% and 3% on rank1 and rank5 performance 

respectively compared with FDEI, which is the second better approach in the average performance 

rank list. It can be seen from the above analysis that CGHI and AEI are more robust for the noises of 

the silhouettes. Moreover, CGHI and AEI have better robustness to the external environment. 
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Table 8. Several best average recognition performance approaches (%). 

Group 
GEI AEI MIEI FDEI CGHI 

Rank 1 Rank 5 Rank 1 Rank 5 Rank 1 Rank 5 Rank 1 Rank 5 Rank 1 Rank 5 

Ⅰ 52 73 ／ ／ 53 75 ／ ／ 54 76 

Ⅱ 13 34 ／ ／ 13 33 ／ ／ 16 39 

Ⅲ ／ ／ 27 47 ／ ／ 25 44 22 43 

3.3. The Recognition Performance Analysis on CASIA B Dataset 

The quality of the silhouettes in the CASIA B dataset is higher compared with that in the USF 

dataset. We perform experiments on CASIA B dataset to compare and analyze the performance of the 

Class Energy Image approaches under different walking states. As there are 10 gait sequences for each 

individual, we can adopt any one of them as the training data and generate one Class Energy Image for 

each individual, and use the remaining 9 gait sequences as testing data. Then, we employ 1-NN 

classifier (Rank1) to identify each testing gait sequence. Obviously, there are 10 × 9 = 90 different 

pairs of training data and testing data. To identify the influence of different environments, we 

categorize them into 9 groups according to the sampling environments.  

The experimental results of the gait information accumulation approach, gait information 

introduction approach and gait information fusion approach are summarized in Table 9. The first 

column and row is different training and testing environments, respectively. The recognition rate in 

each cell is the average of all the experiments belonging to this group. For example, there are 12 

experiments belonging to the case where the training environment is normal condition and the testing 

environment is walking on a coat. 

It can be seen from App1 in Table 9 that 1) when we focus on the three groups on the diagonal, we 

can find that the recognition rate of GHI is higher than others in all the three groups. It means that 

when the training and testing environments are the same, the performance of GHI is better than others, 

and MSI is worst. 2) When we focus on all the six remaining groups, we can find that GHI wins in the 

three groups and fSHI wins in two groups. Furthermore, GHI improves the accuracy by almost 5% 

than fSHI on average. That means that GHI performs better and MHI has worse performance  

when the training and testing environments are different. Therefore, the results suggest that GHI is 

more robust for the external environment than the other methods belonging to the gait information 

accumulation approach. 

The performances of the gait information introduction approach are provided in App2 (Table 9). 

Table App2 (Table 9) shows that 1) FDEI wins in all the three diagonal groups. It indicates that when 

the training and testing environments are the same, FDEI has higher recognition rate than others, and 

the performance of MIEI is the worst. 2) FDEI and CGI both win in three of all the six groups left. 

However, there is average 2.33% improvement by CGI compared with FDEI. It means that when the 

training and testing environments are different, CGI performs better than the others, and MIEI has 

worse performance. Therefore, it can be conveyed that CGI is more robust for the external environment. 

Table App3 (Table 9) indicates that performances of CGHI outperform others in all the nine 

experimental groups. At the same time, X-T PEI has the worst performance. That is to say, in the gait 
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information fusion approach, CGHI has more robustness for the external environment compared with 

the other methods. 

The previous experiments in Section 3.3, under different training and testing environment, reveal 

that CGHI has a best performance among GHI, CGI and CGHI. In addition, in the same environment, 

all the Class Energy Image approaches attain comparable recognition accuracy. It is also worth 

comparing these approaches. 

Table 9. The Rank 1 performance of Class Energy Image (%). 

Test Train 

 App1 App2 App3 

  Normal Bag Coat  Normal Bag Coat  Normal Bag Coat

Normal 
MEI 86 62 37 MIEI 78 26 33 

X-T 
PEI 

69 31 34 

GHI 96 65 * 33 FDEI 94 68 * 42 
MSCT 
&SST 

93 49 57 

MHI 72 31 32 EGEI 87 58 38 CGHI 95 58 60 * 
fSHI 94 50 39 CGI 87 63 53 *     

bSHI 91 54 46 * GFI 86 54 45     

MSI 78 40 39 GEnI 92 62 44     

GEI 90 44 26         

AEI 93 54 34         

Bag 
MEI 25 85 59 MIEI 17 75 17 

X-T 
PEI 

24 68 14 

GHI 42 * 98 66 FDEI 39 98 44 * 
MSCT 
&SST 

51 95 44 

MHI 12 68 9 EGEI 39 90 19 CGHI 69 * 98 64 * 
fSHI 42 * 91 69 * CGI 45 * 95 40     

bSHI 40 98 44 GFI 41 93 26     

MSI 24 65 30 GEnI 39 93 27     

GEI 31 90 17         

AEI 38 93 29         

Coat 
MEI 11 50 86 MIEI 19 20 85 

X-T 
PEI 

15 11 88 

GHI 25 79 * 97 FDEI 22 56 * 98 
MSCT 
&SST 

34 35 96 

MHI 27 16 88 EGEI 22 27 95 CGHI 48 * 55 * 98 

fSHI 36 45 93 CGI 43 * 41 95     

bSHI 40 * 52 93 GFI 33 32 96     

MSI 32 38 73 GEnI 32 32 91     

GEI 27 20 96         

AEI 38 31 93         

Note: A and A* (A represents number) represents the best performance data. App1 represents the gait 

information accumulation approach. App2 represents the gait information introduction approach. App3 

represents the gait information fusion approach. 
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As the silhouette qualities in the USF are of higher noise than those in the CASIA B, we further 

explore the recognition rate of the Class Energy Images with respect to the different silhouette 

qualities. From the experimental results shown in Tables 6 and 9, we can see that the average 

identification rates of GFI, GEnI and CGI in the CASIA B are improved obviously, compared with 

those in the USF. Therefore, the above phenomenon illustrates that the silhouette qualities have 

significant influence on GFI, GEnI and CGI. That is to say, GFI, GEnI and CGI have no good 

robustness to the silhouette qualities. 

4. Conclusions and Comments for Further Research  

This paper has presented a comprehensive review of the video sensor-based gait representation 

methods, especially spatio-temporal motion summary approaches, namely Class Energy Image 

approaches. We have reviewed and analyzed various video-based Class Energy Image approaches, 

which have the following properties: (1) They contain rich motion information such as motion 

frequency, temporal and spatial changes of the human body; (2) They compress the information of a 

sequence to a template, which reduces the size of the gait database; (3) They are suitable for real time 

systems because Class Energy Image has a high computational efficiency; (4) They are insensitive to 

the quality of silhouettes and robust to silhouette errors or image noise. Based on the different ways of 

feature extraction and Class Energy Image generation, we divide the Class Energy Image approaches 

into three categories: the gait information accumulation approach, the gait information introduction 

approach and the gait information fusion approach. In summary, the gait information accumulation 

approach performs better and provides richer information than the original binary gait image. The 

disadvantage of this kind of method is that some useful information may be lost, and the problem of 

the inadequate training samples is raised; the gait information introduction approach can highlight 

dynamic information, meanwhile preserving the static information; the gait information fusion 

approach employs feature layer fusion and decision layer fusion method to achieve the fusion of static, 

dynamic and temporal information. Since the gait information fusion approach mainly takes different 

feature images into consideration, there is little correlation between different feature images. It is a 

promising direction to study the extraction of different features, and to fuse them using different fusion 

strategies. The experimental results demonstrated that some Class Energy Image approaches could 

attain higher recognition accuracy with good robustness and efficiency. Especially, the performance of 

CGHI is better than other templates. In addition, it is noteworthy that more studies should be 

implemented on the Class Energy Images with good performances, such as AEI, FDEI and CGI, etc. 

We note that while significant successes have been achieved in his domain of research, some more 

work needs to be done as indicated next. 

(1). As demonstrated in [1], extracting Gabor features from the gait energy images can further 

improve the performance of gait recognition. It is interesting to study whether the other 

invariant descriptors, such as Local Binary Pattern (LBP) [95] and Histogram of Oriented 

Gradients (HOG) [96] which have been demonstrated to benefit visual information 

processing and recognition in general, can further enhance the performance for the Class 

Energy Image-based gait recognition. 
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(2). The current gait information accumulation approach and gait information introduction 

approach highlight some gait information, but miss lots of information with discriminative 

faculties. Experimental results reveal that CGHI, which belongs to the gait information 

fusion approach, outperforms other Class Energy Images. The reason for this phenomenon is 

that CGHI contains richer information (dynamic, static and temporal information). This 

provides a new insight to gait recognition. We could derive more gait features by 

implementing feature-level fusion for different Class Energy Images. The gait features to be 

fused could be selected from the gait information accumulation approach and gait 

information introduction approach. 

(3). Gait is sensitive to various covariate conditions such as view angle, speed, clothing, carrying 

condition (backpack, briefcase, handbag, etc.), shoe-wear type, surface, accessories, injury, 

mood and to name a few. The further researches of Class Energy Image approach should 

take all these conditions into consideration and new approaches with robustness and 

efficiency should be presented. 

(4). The Class Energy Image approaches can also be applied to other biometric identification 

areas such as multi-pose face recognition. Several multi-pose face images from the same 

individual could be integrated to an image by using Class Energy Image approaches. In 

order to achieve the real-time performance, the representations of biometric features should 

be as simple as possible, and the computational complexity will be as low as possible. 

Acknowledgments 

This work was supported by the National Natural Science Foundation of China [Grant NO. 61100007], 

[Grant NO. 61100081] and the Postdoctoral Sustentation Fund of Heilongjiang Province of China [Grant 

No. LBH-Z14051]. 

Author Contributions 

Z.L. and K.W. conceived and designed the experiments; Z.L. performed the experiments; X.X. and 

D.G. analyzed the data; Z.L. and X.X. contributed reagents/materials/analysis tools; Z.L. and X.X. 

wrote the paper. 

Conflicts of Interest 

The authors declare no conflict of interest. 

References 

1. Tao, D.; Li, X.; Wu, X.; Maybank, S.J. General tensor discriminant analysis and gabor features 

for gait recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2007, 29, 1700–1715. 

2. Ngo, T.T.; Makihara, Y.; Nagahara, H.; Mukaigawa, Y.; Yagi, Y. The largest inertial sensor-based 

gait database and performance evaluation of gait-based personal authentication. Pattern Recognit. 

2014, 47, 228–237. 



Sensors 2015, 15 959 

 

 

3. Kusakunniran, W.; Wu, Q.; Li, H.; Zhang, J. Multiple views gait recognition using view 

transformation model based on optimized gait energy image. In Proceedings of 2009 IEEE 12th 

International Conference on Computer Vision Workshops (ICCV Workshops), Kyoto, Japan,  

27 September–4 October 2009; pp. 1058–1064. 

4. Liu, Z.; Sarkar, S. Simplest representation yet for gait recognition: Averaged silhouette. In 

Proceedings of the 17th International Conference on Pattern Recognition (ICPR 2004), 

Cambridge, UK ,23–26 August 2004; pp. 211–214. 

5. Zeng, W.; Wang, C.; Li, Y. Model-based human gait recognition via deterministic learning. 

Cognit. Comput. 2014, 6, 218–229. 

6. Hu, M.; Wang, Y.; Zhang, Z.; Zhang, D.; Little, J.J. Incremental learning for video-based gait 

recognition with lbp flow. IEEE Trans. Cybern. 2013, 43, 77–89. 

7. Xu, D.; Huang, Y.; Zeng, Z.; Xu, X. Human gait recognition using patch distribution feature and 

locality-constrained group sparse representation. IEEE Trans. Image Process. 2012, 21, 316–326. 

8. Ben, X.; Meng, W.; Yan, R.; Wang, K. Kernel coupled distance metric learning for gait 

recognition and face recognition. Neurocomputing 2013, 120, 577–589. 

9. Derawi, M.O.; Nickel, C.; Bours, P.; Busch, C. Unobtrusive user-authentication on mobile phones 

using biometric gait recognition. In Proceedings of 2010 Sixth International Conference on 

Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP 2010), Darmstadt, 

Germany, 15–17 October 2010; pp. 306–311. 

10. Wright, J.; Yang, A.Y.; Ganesh, A.; Sastry, S.S.; Ma, Y. Robust face recognition via sparse 

representation. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 31, 210–227. 

11. Cappelli, R.; Ferrara, M.; Maltoni, D. Minutia cylinder-code: A new representation and matching 

technique for fingerprint recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 32, 2128–2141. 

12. Dai, J.; Zhou, J. Multifeature-based high-resolution palmprint recognition. IEEE Trans. Pattern 

Anal. Mach. Intell. 2011, 33, 945–957. 

13. Tan, T.; He, Z.; Sun, Z. Efficient and robust segmentation of noisy iris images for  

non-cooperative iris recognition. Image Vis. Comput. 2010, 28, 223–230. 

14. Hornung, V.; Latz, E. Intracellular DNA recognition. Nat. Rev. Immunol. 2010, 10, 123–130. 

15. Conti, V.; Militello, C.; Sorbello, F.; Vitabile, S. A frequency-based approach for features fusion 

in fingerprint and iris multimodal biometric identification systems. IEEE Trans. Syst. Man 

Cybern. Part C Appl. Rev. 2010, 40, 384–395. 

16. Gui, J.; Jia, W.; Zhu, L.; Wang, S.-L.; Huang, D.-S. Locality preserving discriminant projections 

for face and palmprint recognition. Neurocomputing 2010, 73, 2696–2707. 

17. van Doornik, J.; Sinkjær, T. Robotic platform for human gait analysis. IEEE Trans. Biomed. Eng. 

2007, 54, 1696–1702. 

18. Zhang, Z.; Hu, M.; Wang, Y. A survey of advances in biometric gait recognition. In Proceedings 

of 6th Chinese Conference (CCBR 2011), Beijing, China, 3–4 December 2011; pp. 150–158. 

19. Derawi, M.O. Accelerometer-based gait analysis, a survey. In Proceedings of Norwegian 

Information Security Conference (NISK 2010), Gjøvik, Norway, 22–24 November 2010;  

pp. 33–44. 



Sensors 2015, 15 960 

 

 

20. Shakhnarovich, G.; Lee, L.; Darrell, T. Integrated face and gait recognition from multiple views. 

In Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern 

Recognition (CVPR 2001), Kauai, HI, USA, 8–14 December 2001; pp. 439–446. 

21. Wang, J.; She, M.; Nahavandi, S.; Kouzani, A. A review of vision-based gait recognition methods 

for human identification. In Proceedings of 2010 International Conference on Digital Image 

Computing: Techniques and Applications (DICTA 2010), Sydney, Australia, 1–3 December 2010; 

pp. 320–327. 

22. Poppe, R. A survey on vision-based human action recognition. Image Vis. Comput. 2010, 28,  

976–990. 

23. Zheng, S.; Huang, K.; Tan, T. Evaluation framework on translation-invariant representation for 

cumulative foot pressure image. In Proceedings of 18th IEEE International Conference on Image 

Processing (ICIP), Brussels, Belgium, 11–14 September 2011; pp. 201–204. 

24. Novak, D.; Goršič, M.; Podobnik, J.; Munih, M. Toward real-time automated detection of turns 

during gait using wearable inertial measurement units. Sensors 2014, 14, 18800–18822. 

25. Wang, L.; Tan, T.; Ning, H.; Hu, W. Silhouette analysis-based gait recognition for human 

identification. IEEE Trans. Pattern Anal. Mach. Intell. 2003, 25, 1505–1518.  

26. Sheikh, Y.; Shah, M. Bayesian modeling of dynamic scenes for object detection. IEEE Trans. 

Pattern Anal. Mach. Intell. 2005, 27, 1778–1792. 

27. Felzenszwalb, P.F.; Girshick, R.B.; McAllester, D.; Ramanan, D. Object detection with 

discriminatively trained part-based models. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 32, 

1627–1645. 

28. Razavi, N.; Gall, J.; Van Gool, L. Scalable multi-class object detection. In Proceedings of 2011 

IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2011), Colorado Springs, 

CO, USA, 20–25 June 2011; pp. 1505–1512. 

29. Kim, K.; Chalidabhongse, T.H.; Harwood, D.; Davis, L. Real-time foreground–background 

segmentation using codebook model. Real-Time Imaging 2005, 11, 172–185. 

30. Ben, X.; Meng, W.; Yan, R. Dual-ellipse fitting approach for robust gait periodicity detection. 

Neurocomputing 2012, 79, 173–178. 

31. Ahmad, M.; Lee, S.-W. Variable silhouette energy image representations for recognizing human 

actions. Image Vis. Comput. 2010, 28, 814–824. 

32. Ben, X.Y., Xu, S.; Wang, K.J. Review on pedestrian gait feature expression and recognition. 

Pattern Recognit. Artif. Intell. 2012, 25, 71–81. 

33. Bobick, A.F.; Davis, J.W. The recognition of human movement using temporal templates. IEEE 

Trans. Pattern Anal. Mach. Intell. 2001, 23, 257–267. 

34. Das Choudhury, S.; Tjahjadi, T. Gait recognition based on shape and motion analysis of silhouette 

contours. Comput. Vis. Image Underst. 2013, 117, 1770–1785. 

35. Dupuis, Y.; Savatier, X.; Vasseur, P. Feature subset selection applied to model-free gait 

recognition. Image Vis. Comput. 2013, 31, 580–591. 

36. Huang, X.; Boulgouris, N.V. Gait recognition with shifted energy image and structural feature 

extraction. IEEE Trans. Image Process. 2012, 21, 2256–2268. 

37. Lee, C.P.; Tan, A.W.; Tan, S.C. Time-sliced averaged motion history image for gait recognition. 

J. Vis. Commun. Image Represent. 2014, 25, 822–826. 



Sensors 2015, 15 961 

 

 

38. Roy, A.; Sural, S.; Mukherjee, J. Gait recognition using pose kinematics and pose energy image. 

Signal Process. 2012, 92, 780–792. 

39. Venkatesh Babu, R.; Ramakrishnan, K. Recognition of human actions using motion history 

information extracted from the compressed video. Image Vis. Comput. 2004, 22, 597–607. 

40. Mu, Y.; Tao, D. Biologically inspired feature manifold for gait recognition. Neurocomputing 

2010, 73, 895–902. 

41. Guo, B.; Nixon, M.S. Gait feature subset selection by mutual information. IEEE Trans. Syst. Man 

Cybern. Part A Syst. Hum. 2009, 39, 36–46. 

42. Xue, Z.; Ming, D.; Song, W.; Wan, B.; Jin, S. Infrared gait recognition based on wavelet 

transform and support vector machine. Pattern Recognit. 2010, 43, 2904–2910. 

43. Veeraraghavan, A.; Roy-Chowdhury, A.K.; Chellappa, R. Matching shape sequences in video 

with applications in human movement analysis. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27, 

1896–1909. 

44. Dadashi, F.; Araabi, B.N.; Soltanian-Zadeh, H. Gait recognition using wavelet packet silhouette 

representation and transductive support vector machines. In Proceedings of 2nd International 

Congress on Image and Signal Processing (CISP'09), Tianjing, China, 17–19 October 2009;  

pp. 1–5. 

45. Ben-Arie, J.; Wang, Z.; Pandit, P.; Rajaram, S. Human activity recognition using 

multidimensional indexing. IEEE Trans. Pattern Anal. Mach. Intelli. 2002, 24, 1091–1104. 

46. Tanawongsuwan, R.; Bobick, A. Gait recognition from time-normalized joint-angle trajectories in 

the walking plane. In Proceedings of the 2001 IEEE Computer Society Conference on Computer 

Vision and Pattern Recognition (CVPR 2001), Kauai, HI, USA, 8–14 December 2001;  

pp. 726–731. 

47. Niyogi, S.A.; Adelson, E.H. Analyzing and recognizing walking figures in xyt. In Proceedings of 

IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'94), 

Seattle, WA, USA, 21–23 June 1994; pp. 469–474. 

48. Tafazzoli, F.; Safabakhsh, R. Model-based human gait recognition using leg and arm movements. 

Eng. Appl. Artif. Intell. 2010, 23, 1237–1246. 

49. Lee, L.; Grimson, W.E.L. Gait analysis for recognition and classification. In Proceedings of Fifth 

IEEE International Conference on Automatic Face and Gesture Recognition, Washington, WA, 

USA, 20–21 May 2002; pp. 148–155. 

50. Bobick, A.F.; Johnson, A.Y. Gait recognition using static, activity-specific parameters. In 

Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern 

Recognition (CVPR 2001), Kauai, HI, USA, 8–14 December 2001; pp. 423–430. 

51. Yam, C.; Nixon, M.S.; Carter, J.N. Automated person recognition by walking and running via 

model-based approaches. Pattern Recognit. 2004, 37, 1057–1072. 

52. Johansson, G. Visual motion perception. Sci Am. 1975, 232, 76–88.  

53. Chai, Y.; Ren, J.; Han, W.; Li, H. Human gait recognition: Approaches, datasets and challenges. 

In Proceedings of 4th International Conference on Imaging for Crime Detection and Prevention 

2011 (ICDP 2011), London, UK, 3–4 November 2011; pp. 1–6. 



Sensors 2015, 15 962 

 

 

54. Yang, S.X.; Larsen, P.K.; Alkjær, T.; Simonsen, E.B.; Lynnerup, N. Variability and similarity of 

gait as evaluated by joint angles: Implications for forensic gait analysis. J. Forensic Sci. 2014, 59, 

494–504. 

55. Yang, X.; Zhou, Y.; Zhang, T.; Shu, G.; Yang, J. Gait recognition based on dynamic region 

analysis. Signal Process. 2008, 88, 2350–2356. 

56. Bashir, K.; Xiang, T.; Gong, S. Gait recognition without subject cooperation. Pattern Recognit. 

Lett. 2010, 31, 2052–2060. 

57. Hosseini, N.K.; Nordin, M.J. Human gait recognition: A silhouette based approach. J. Autom. 

Control Eng. 2013, 1, 40–42. 

58. Kale, A.; Rajagopalan, A.; Cuntoor, N.; Kruger, V. Gait-based recognition of humans using 

continuous hmms. In Proceedings of Fifth IEEE International Conference on Automatic Face and 

Gesture Recognition, Washington, WA, USA, 20–21 May 2002; pp. 336–341. 

59. Sarkar, S.; Phillips, P.J.; Liu, Z.; Vega, I.R.; Grother, P.; Bowyer, K.W. The humanid gait 

challenge problem: Data sets, performance, and analysis. IEEE Trans. Pattern Anal. Mach. Intell. 

2005, 27, 162–177. 

60. Lee, T.K.M.; Belkhatir, M.; Sanei, S. A comprehensive review of past and present vision-based 

techniques for gait recognition. Multimed. Tools Appl. 2014, 72, 2833–2869. 

61. Yu, S.; Tan, D.; Tan, T. A framework for evaluating the effect of view angle, clothing and 

carrying condition on gait recognition. In Proceedings of IEEE 18th International Conference on 

Pattern Recognition (ICPR 2006), Hong Kong, China, 20–24 August 2006; pp. 441–444. 

62. Kusakunniran, W.; Wu, Q.; Zhang, J.; Li, H. Gait recognition under various viewing angles based 

on correlated motion regression. IEEE Trans Circuits Syst. Video Technol. 2012, 22, 966–980. 

63. Zheng, S.; Zhang, J.; Huang, K.; He, R.; Tan, T. Robust view transformation model for gait 

recognition. In Proceedings of 2011 18th IEEE International Conference on Image Processing 

(ICIP), Brussels, Belgium, 11–14 September 2011; pp. 2073–2076. 

64. Han, J.; Bhanu, B. Individual recognition using gait energy image. IEEE Trans. Pattern Anal. 

Mach. Intell. 2006, 28, 316–322. 

65. Kusakunniran, W.; Wu, Q.; Zhang, J.; Li, H. Support vector regression for multi-view gait 

recognition based on local motion feature selection. In Proceedings of 2010 IEEE Conference on 

Computer Vision and Pattern Recognition (CVPR 2010), San Francisco, CA, USA, 13–18 June 

2010; pp. 974–981. 

66. Kusakunniran, W.; Wu, Q.; Zhang, J.; Li, H. Cross-view and multi-view gait recognitions based 

on view transformation model using multi-layer perceptron. Pattern Recognit. Lett. 2012, 33,  

882–889. 

67. Hu, H. Multi-view gait recognition based on patch distribution feature and uncorrelated 

multilinear sparse local discriminant canonical correlation analysis. IEEE Trans. Circuits Syst. 

Video Technol. 2014, 24, 617–630. 

68. Lam, T.H.W.; Lee, R.S.T. A new representation for human gait recognition: Motion silhouettes 

image (MSI). In Proceedings of International Conference (ICB 2006), Hong Kong, China,  

5–7 January 2006; pp. 612–618. 



Sensors 2015, 15 963 

 

 

69. Han, J.; Bhanu, B. Statistical feature fusion for gait-based human recognition. In Proceedings of 

the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition 

(CVPR 2004), Washington, WA, USA, 27 June–2 July 2004; pp. 842–847. 

70. Liu, J.; Zheng, N. Gait history image: A novel temporal template for gait recognition. In 

Proceeings of 2007 IEEE International Conference on Multimedia and Expo, Beijing, China,  

2–5 July 2007; pp. 663–666. 

71. Chen, S.; Gao, Y. Recognition with wavelet moments of silhouette change images. J. Xi'an 

Jiaotong Univ. 2009, 43, 90–94. 

72. Gong, X.; Zhou, J.; Wu, H.; Gong, M. Gait recognition using gabor-based enhanced active energy 

image. J. Inf. Comput. Sci. 2011, 8, 3565–3572. 

73. Yang, Q.; Xue, D.; Cui, J. Gait recognition based on sparse representation. J. Northeast. Univ. 

2012, 33, 43–46. 

74. Zhang, E.; Zhao, Y.; Xiong, W. Active energy image plus 2dlpp for gait recognition. Signal 

Process. 2010, 90, 2295–2302. 

75. Ma, Q.; Wang, S.; Nie, D.; Qiu, J. Recognizing humans based on gait moment image. In 

Proceedings of 8th ACIS International Conference on Software Engineering, Artificial 

Intelligence, Networking, and Parallel/Distributed Computing, Qingdao, China, 30 July–1 August 

2007; pp. 606–610. 

76. Ma, Q.; Wang, S.; Nie, D.; Qiu, J. Moment gait energy image based human recognition at a 

distance. Acta Electron. Sin. 2007, 35, 2078–2082. 

77. Zhang, H.; Liu, Z.; Zhao, H. Gait modeling and identifying based on dynamic template matching. 

J. Comput. Inf. Syst. 2011, 7, 1155–1162. 

78. Bodor, R.; Drenner, A.; Fehr, D.; Masoud, O.; Papanikolopoulos, N. View-independent human 

motion classification using image-based reconstruction. Image Vis. Comput. 2009, 27, 1194–1206. 

79. Chen, C.; Liang, J.; Zhao, H.; Hu, H.; Tian, J. Frame difference energy image for gait recognition 

with incomplete silhouettes. Pattern Recognit. Lett. 2009, 30, 977–984. 

80. Chen, C.; Liang, J.; Zhao, H.; Hu, H.; Tian, J. Factorial hmm and parallel hmm for gait 

recognition. IEEE Trans. Syst. Man Cybern. Part C 2009, 39, 114–123. 

81. Chen, C.; Liang, J.; Zhu, X. Gait recognition based on improved dynamic bayesian networks. 

Pattern Recognit. 2011, 44, 988–995. 

82. Yang, X.; Zhou, Y.; Zhang, Y. Gabor-based DCV gait recognition using enhanced gait energy 

image. J. Shanghai Jiaotong Univ. 2008, 42, 1988–1992. 

83. Wang, C.; Zhang, J.; Pu, J.; Yuan, X.; Wang, L. Chrono-gait image: A novel temporal template 

for gait recognition. In Proceedings of 11th European Conference on Computer Vision, Heraklion, 

Greece, 5–11 September 2010; pp. 257–270. 

84. Liu, Y.; Zhang, J.; Wang, C.; Wang, L. Multiple hog templates for gait recognition. In 

Proceedings of 2012 21st International Conference on Pattern Recognition (ICPR), Tsukuba, 

Japan, 11–15 November 2012; pp. 2930–2933. 

85. Wang, C.; Zhang, J.; Wang, L.; Pu, J.; Yuan, X. Human identification using temporal information 

preserving gait template. IEEE Trans. Pattern Anal. Mach. Intel. 2012, 34, 2164–2176. 

86. Lam, T.H.; Cheung, K.H.; Liu, J.N. Gait flow image: A silhouette-based gait representation for 

human identification. Pattern Recognit. 2011, 44, 973–987. 



Sensors 2015, 15 964 

 

 

87. Jia, S.-M.; Wang, L.-J.; Wang, S.; Li, X.-Z. Personal identification combining modified gait flow 

image and view. Opt. Precis. Eng. 2012, 20, 2500–2506. 

88. Bashir, K.; Xiang, T.; Gong, S. Gait recognition using gait entropy image. In Proceedings of 3rd 

International Conference on Crime Detection and Prevention (ICDP 2009), London, UK,  

3 December 2009; pp. 1–6. 

89. Kumar, A.; Zhang, D. Biometric recognition using feature selection and combination. In 

Proceedings of 5th International Conference on Audio- and Video-Based Biometric Person 

Authentication (AVBPA 2005), Hilton Rye Town, NY, USA, 20–22 July 2005; pp. 813–822. 

90. Huang, G.-C.; Wang, Y.-D. Human gait recognition based on X-T plane energy images. In 

Proceedings of International Conference on Wavelet Analysis and Pattern Recognition 

(ICWAPR'07), Beijing, China, 2–4 November 2007; pp. 1134–1138. 

91. Chen, S.; Ma, T.; Huang, W.; Gao, Y. A multi-layer windows method of moments for gait 

recognition. J. Electron. Inf. Technol. 2009, 31, 116–119. 

92. Lam, T.H.; Lee, R.S. Human identification by using the motion and static characteristic of gait. In 

Proceedings of IEEE 18th International Conference on Pattern Recognition (ICPR 2006),  

Hong Kong, China, 20–24 August 2006; pp. 996–999. 

93. Lam, T.H.; Lee, R.S.; Zhang, D. Human gait recognition by the fusion of motion and static  

spatio-temporal templates. Pattern Recognit. 2007, 40, 2563–2573. 

94. Wang, L.; Suter, D. Informative shape representations for human action recognition. In 

Proceedings of IEEE 18th International Conference on Pattern Recognition (ICPR 2006),  

Hong Kong, China, 20–24 August 2006; pp. 1266–1269. 

95. Ojala, T.; Pietikainen, M.; Maenpaa, T. Multiresolution gray-scale and rotation invariant texture 

classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24,  

971–987. 

96. Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of 

IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), 

San Diego, CA, USA, 25–25 June 2005; pp. 886–893. 

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/4.0/). 


