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Abstract: To enhance the performance of location estimation in wireless positioning 

systems, the geometric dilution of precision (GDOP) is widely used as a criterion for 

selecting measurement units. Since GDOP represents the geometric effect on the 

relationship between measurement error and positioning determination error, the smallest 

GDOP of the measurement unit subset is usually chosen for positioning. The conventional 

GDOP calculation using matrix inversion method requires many operations. Because more 

and more measurement units can be chosen nowadays, an efficient calculation should be 

designed to decrease the complexity. Since the performance of each measurement unit is 

different, the weighted GDOP (WGDOP), instead of GDOP, is used to select the 

measurement units to improve the accuracy of location. To calculate WGDOP effectively 

and efficiently, the closed-form solution for WGDOP calculation is proposed when more 

than four measurements are available. In this paper, an efficient WGDOP calculation 

method applying matrix multiplication that is easy for hardware implementation is 

proposed. In addition, the proposed method can be used when more than exactly four 

measurements are available. Even when using all-in-view method for positioning, the 

proposed method still can reduce the computational overhead. The proposed WGDOP 

methods with less computation are compatible with global positioning system (GPS), 

wireless sensor networks (WSN) and cellular communication systems. 

Keywords: weighted geometric dilution of precision (WGDOP); geometric dilution of 

precision (GDOP) 
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1. Introduction 

Mobile positioning, allowing us to obtain the location information, is becoming increasingly 

important. In general, the position of the mobile device can be determined by a set of base stations 

(BSs), satellites, or wireless sensors [1,2]. For example, Global Positioning System (GPS) can provide 

an accurate position to the user from signals received from the satellites [3]. However, GPS users 

usually require a particular handset device to calculate their positions when they are fully or partially 

equipped with a GPS receiver. In addition, GPS-embedded handsets are not functional in buildings or 

shadowed environments, where direct line-of-sight (LOS) propagation is not achievable. Without the 

aid of GPS, network-based positioning schemes become a solution, which use time or/and angle 

measurements from the set of BSs to determine the mobile station (MS) location [2,4]. Wireless sensor 

networks (WSN) are another solution, which is usually applied to indoor measurements, but the 

locations of the sensor nodes should be known [1]. 

Initially, geometric dilution of precision (GDOP) is set as a criterion to select better satellites to 

meet the desired positioning precision in GPS. In general, a smaller GDOP indicates the positioning 

accuracy is better. Therefore, the subset with the smallest GDOP is selected for the optimal subset and 

can be used for positioning [5–7]. Nowadays, GDOP can be used to find the best subset of 

measurement units. For example, if there are N (N ≥ 4) usable measurement units, an optimal subset of 

four measurement units can be found by GDOP. Hence, there will be C (N, 4) possible GDOP values 

to be calculated. The GDOP calculation using the matrix inversion method is not suitable here because 

it requires significant computational operations. When more measurements are used, the complexity of 

the matrix inversion method increases rapidly [8]. 

When sufficient measurements are available, the determined optimal measurements with the 

minimum GDOP can improve the positioning accuracy. Satellite selection techniques can be used with 

a limited number of channels on the GPS receivers and for application in real time navigation. Due to 

the limited resources associated with mobile devices and the vast number of measurements required, 

selecting a subset with the most appropriate measurement units rapidly and reasonably is very critical. 

The conventional method for calculating GDOP is to use matrix inversion, requiring an enormous 

amount of computation. Recently, there have been extensive publications discussing how to obtain the 

GDOP value, or the approximate one, without executing matrix inversion. Some of those papers 

propose various methods to obtain approximate GDOP [9–12]. 

In the conventional calculation of GDOP, the variances of range errors are assumed to be identical 

and independent distributed [13]. However, this assumption contradicts the practical environment, 

because the error variance from each measurement does not have equivalent amplitude [14]. For 

example, some GPS satellites are relatively old and have less accuracy. If we assume the same error 

variance, it will cause positioning errors. A satellite signal is related with the user range accuracy 

value, carrier-to-noise ratio, elevation angle, and the date of ephemeris, it is unreasonable to be 

assumed that all these signals have the same variance. Thus, the weighted GDOP (WGDOP) is 

proposed to overcome this problem [15]. WGDOP is performed by measuring the elevation and the 

signal-to-noise ratio (SNR) of the receiver [16], so that the location is estimated. A WGDOP minimum 

algorithm for the combined GPS-Galileo navigation receiver was proposed in [17]. In the past two 

decades, there has been extensive research on calculating WGDOP to yield superior GPS positioning 
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accuracy [18–25]. Matrix inversion is a widely-used method for calculating WGDOP in most 

literatures. The trade-off between the quality of performances and the complexity of calculations needs 

to be seriously concerned. Solving WGDOP algorithm in a short time is critical for real-time applications. 

Good measurements, as well as WGDOP algorithm, are key factors that determine the characteristics of 

wireless positioning systems. When the measurements have different error variances or come from 

integrated positioning systems, the WGDOP minimum criterion can be used to select the appropriate 

measurement units to reduce the positioning error. This can present challenges to real time practical 

applications. The WGDOP calculation using the matrix inversion method is a time and power 

consuming procedure, and fast calculation of WGDOP is most concerned. WGDOP decreases as the 

number of satellites increases. Thus, the all-in-view method is adopted by reference [16] and the 

optimal WGDOP value was obtained through computing all-in-view satellites. With the development 

of electronics technology, receivers can track many satellites simultaneously and use all the visible 

satellites to position to improve the accuracy. If the processing capability of the receiver is powerful 

and the number of visible satellites is not large, the all-in-view method is a good choice to improve the 

positioning accuracy. However, it takes a considerable computation time. There will be 70–90 satellites in 

the sky at the same time when Glonass and Galileo reach full operation capability [26], and the visible 

satellite number can reach 30 in any moment. It thus will become very difficult for people to use the 

all-in-view procedure for location estimation in the future. 

Nowadays, due to the vibrant developments of GPS embedded systems, most smart phones and 

other wearable electronic devices are already equipped with GPS. Despite the performance increases, 

these devices still possess limited battery capacities and fast calculation capability. Since the battery 

life and the processing delay are the main limitations on the performance of mobile phones, GPS 

service should be provided under the condition of high processing ability and low power dissipation. 

Hence, for the location-estimating applications, how to derive WGDOP efficiently from a large of 

measurements sent from different satellites is a critical challenge. Due to the limited resources 

associated with many mobile devices and the very large number of visible satellites, selecting the 

desired data from a limited number of suitable satellites is a possible solution [26]. Interpreting the 

original and complicated WGDOP algorithm as a set of simple approximations greatly reduces the 

computational complexity. By restricting the scale of measurements, the mobile phones can not only 

reduce the processor load, but also effectively increase the charged period of batteries. Furthermore, 

the saved memory space can be used to run other programs. 

This paper considers all positioning systems, that is WGDOP can select any suitable measurement 

units, such as satellites, BSs, or wireless sensors. A smaller WGDOP value is obtained with more 

usable measurement units. In [15–25], the authors focus on improving the GPS positioning accuracy 

by WGDOP concepts. Selecting four from 30 satellites would give 27,405 possible subsets. The 

conventional method for calculating WGDOP is to use the matrix inversion method, which requires a 

large amount of computation. In order to avoid complicated matrix inversion operations, we presented 

a novel architecture based on resilient back-propagation (Rprop) to obtain the approximate WGDOP 

for location estimation in [27]. However, machine learning techniques require computational resources 

to train a model, which needs troublesome processes and consumes more time. Furthermore, machine 

learning techniques offer only approximations to the target values. This method suffers from the 

approximation error and inaccuracy incurred by approximating the inverse matrix in calculating 
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WGDOP. The major drawbacks of neural networks are the need of a training phase with several  

input-output patterns. 

This paper proposes a new hardware design architecture for WGDOP calculations without 

calculating the inverse matrix. When more than four measurements are available, the proposed formula 

provides the best computational efficiency. It is a method of multiplication matrices of fixed 

dimensions. There are many ways to simplify the hardware’s complexity for use. The WGDOP 

scheme we propose does not need of a training phase and the calculation of matrix inversion. It is 

designed to only need simple matrix multiplication. As a result, this WGDOP calculation with matrix 

multiplication is easy to implement in practical hardware equipment. In addition, we also provide a 

computational architecture applied to the computation of more than four measurement units to achieve 

more advantages in practical application. To further reduce the computational overhead and save 

battery, satellite selection methods should be used in the GPS receivers in the future, and even in the 

all-in-view method, the proposed method will contribute to reduce the computation load. The 

remainder of this paper is organized as follows: Section 2 describes the calculation of GDOP and 

WGDOP. Section 3 reviews the previous literature for the calculation of WGDOP by the Rprop 

approximation and closed-form solution methods. The matrix multiplication for WGDOP calculations 

in the case of N (N ≥ 4) measurements with different variances are proposed in Section 4. Simulation 

results are given in Section 5. Lastly, conclusions are given in Section 6. 

2. Calculation of GDOP and WGDOP 

GDOP is commonly used to choose the appropriate subset of measurement units from all available 

ones by determining the geometric effect of their configurations. It assumes that each measurement has 

the same error variance. If the subset of the measurement unit has the smallest GDOP value, the subset 

will be used as the most accurate one for positioning. Define ),,( zyx   and ),,( iii ZYX   are the locations 

of the user and satellite is , respectively. The pseudo distances between satellite i  and the user could be 

expressed as ir . We set ir̂  as ir  at the approximate user position )ˆ,ˆ,ˆ( zyx . The GDOP is a measure of 

accuracy for positioning systems and relates closely with the geometry matrix H . 

1)( −= HHtrGDOP T  (1)
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In a real environment, each measurement usually has various variances. The combination of 

different positioning systems is a significant example. W is a diagonal matrix and defined as a 

weighted matrix: 
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where nikii ,....1 ,12 ==σ  are variances of measurement errors. According to the formula above, 

WGDOP is given by the trace of the inverse of the WHH T  matrix: 

1)( −= WHHtrWGDOP T  (3)

with the minimum WGDOP, the subset is the optimal result we want. In this paper, we apply WGDOP, 

instead of GDOP for measurement units selection to improve the location accuracy. One of the tasks is 

to calculate the matrix inversion for all subsets in the conventional method for calculating WGDOP. 

When the number of dimensions increases, the computation time will increase rapidly. In this paper, 

we employ a novel scheme to only calculate the matrix multiplication rather than matrix inversion. It 

will simplify the requirements of hardware computing and be beneficial to the hardware design. 

3. Related Work 

In this section, we discuss different GDOP and WGDOP techniques. The positioning accuracy 

depends on the suitability of the selection of optimal measurement units. Several methods based on 

GDOP and WGDOP have been proposed to improve the GPS positioning accuracy [15–25]. These 

methods need matrix inversion to calculate GDOP and WGDOP. However, the conventional matrix 

inversion method is rather time consuming and presents a significant computational burden. It 

increases the computational complexity and is not applicable to real hardware requirements. The 

handheld GPS devices and mobile phone with GPS chip possess only limited processing ability and 

power dissipation capability. In order to reduce the computational overhead and improve location 

performance, many researchers utilize the approximate method or simplify the matrix to avoid the 

matrix inversion calculations. 

3.1. Neural Network for GDOP and WDGOP Approximation 

3.1.1. Neural Network for GDOP Approximation 

It is known from some related literatures that the calculation complexity of an inverse matrix is 

higher than that of neural networks. A back-propagation neural network (BPNN) is capable of learning 

and realizing for both linear and nonlinear functions [28]. Simon and El-Sherief used BPNN to obtain 

a GDOP approximation [9,10]. It is a function approximation technique that uses a training process to 

find a relationship between inputs and outputs. The BPNN learning process can be considered as a 

gradient descent method that minimizes some measures. BPNN here is applied to learn the relationship 

between the entries of a measurement matrix and the eigenvalues of its inverse. Another solution using 

BPNN for GDOP approximation depending on three other input-output relationships was proposed  

in [11]. Considering both effectiveness and efficiency, we present two novel architectures based on an 
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alternative artificial neural networks method, namely, the Rprop method, to calculate GDOP [12]. 

Compared to the traditional BPNN, the Rprop algorithm offers faster convergence and is effective for 

escaping local minima [29]. The proposed Rprop-based architectures for GDOP always have a high 

degree of accuracy compared with other architectures. Simulation results show the proposed 

architectures using Rprop and the matrix inversion method provide nearly identical GDOP value. This 

can reduce the computational complexity required to compute the matrix inversion for calculating 

GDOP. The main disadvantage of neural network-based methods is that they can incur approximation 

errors and need input-output patterns for training. 

3.1.2. Neural Network for WDGOP Approximation 

Similarly, neural network can also be applied to obtain WGDOP values. The author of this paper 

are devoted to using the novel Rprop-based architectures to simplify WGDOP calculation [27]. The 

original four types of GDOP mapping of traditional BPNN is extended to WGDOP based on Rprop 

and two new mapping architectures are proposed. Instead of calculating the inverse matrix, we collect 

the elements of related matrix and the desired WGDOP value to train the Rprop neural network in 

practical applications. Finally, the subset with minimum WGDOP is used to estimate the MS location. 

From simulation results, the proposed architectures always give a better accuracy, compared with the 

other architectures for WGDOP approximation. Compared with BPNN, the proposed Rprop-based 

architecture for Type 6 provides faster convergence on a solution and reduce the number of training 

iterations [27]. However, the drawback in the neural network-based WGDOP algorithms is the need of 

a long duration training period with several input-output patterns. 

3.2. Closed-Form Formulas for GDOP and WDGOP Calculation 

3.2.1. Closed-Form Formulas for GDOP Calculation 

To achieve both high accuracy and low computational requirements, an efficient closed-form 

scheme for GDOP has been proposed in [7]. Because the closed-form method obtains the solution 

directly instead of utilizing an approximation method, the closed-form formulas for GDOP calculations 

are the most accurate among all. The GDOP formulas can reduce the computational complexity 

required for computing the matrix inversion. If exactly four measurements are available, the  

closed-form formula method can provide the best computational efficiency. The disadvantage is that it 

can be applied for four measurements only. 

3.2.2. Closed-Form Formula for WGDOP Calculation 

To improve the WGDOP accuracy effectively and efficiently, the author of this paper proposed the 

closed-form solutions for two WGDOP formations for the case of processing four measurements with 

different variances and one of the measurements with better accuracy than the others [30]. When 

exactly four measurements are used, the formula provides the best computational efficiency. The 

computation load of the closed-form formula is greatly less than that of the matrix inversion method. 

The proposed efficient formula can provide the exact solution of WGDOP calculation. The WGDOP 

calculations formula can eliminate the poor geometry influence and reduce the computational overhead. 
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4. GDOP and WGDOP Calculation with Matrix Multiplication 

4.1. GDOP Calculation with Matrix Multiplication 

GDOP is a measurement which is used to select the better satellite set in a GPS system. GDOP is 

used to determine which measurements are suitable for carrying out the positioning process. In order to 

reduce the complexity and without having to invert a matrix, reference [31] proposed a simple formula 

for computing GDOP values. They use Newton’s identities to calculate GDOP from the input 

parameters, including the traces, second and third powers, and the determinant of the measurement matrix. 

4.2. Proposed WGDOP Calculation with Matrix Multiplication 

In practice, the GDOP minimum criteria is not suitable to represent positioning accuracy when the 

measurements contain different error variances The WGDOP criterion can select more appropriate 

measurement units by combining GDOP with the weighted scheme. WGDOP has also been proven to 

have better performance in positioning schemes. The matrix inversion computation is a severe task for 

solving WGDOP. The training phase has to spend lots of costs, time and hardware and software 

resources to collect the training data. In some cases, the system is unable to collect sufficient historical 

information for training. The lack of sufficient training data could often affect the accuracy of 

prediction. It is very important that how to achieve higher accuracy when the training data is not 

enough. Therefore, faster convergence and fewer number of training are very important in the neural 

network field. 

Here, we propose an efficient solution of WGDOP calculation with less computation when more 

than four measurements are available for locating purposes. In order to obtain WGDOP efficiently, the 

proposed WGDOP scheme with matrix multiplication does not need a training phase. We apply 

Newton’s identities to reduce the calculation complexity and obtain WGDOP value directly. The 

proposed novel computation architecture for WGDOP is beneficial for hardware design in more than 

four measurements. In the viewpoint of hardware, many computational rules would be a heavy burden 

to hardware equipment. Here, we derived the WGDOP value only from matrix multiplication. The 

proposed WGDOP calculation with matrix multiplication can provide very precise solution of 

WGDOP approximation and does not incur any approximation errors. 

By combing GDOP with weighted scheme, WGDOP can be expressed as Equation (3). In order to 

guarantee the matrix TH WH  is a symmetric one in later operation, we refreshed the formulation above: 

1 1 1 1
1 1 12 2 2 2( ) ( ) ( )T T TWGDOP tr H WH tr H W W H tr W HH W− − −= = =  (4)

4.2.1. Four Measurement Units 

We have the measurement matrix M given that: 
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and following the relationship: 
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2
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We have a simple form of trace and a guaranteed symmetric matrix M: 
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where 41 ,1332211 ≤<≤+++= jieeeeeeB jijijiij . 

Utilizing the leaner algebra method, WGDOP can be written as: 

1
4

1
3

1
2

1
1

1)( −−−−− +++== λλλλWHHtrWGDOP T  (8)

Defining the following functions: 

1 1 2 3 4( ) ( ) ( )Tp trace H WH trace Mλ λ λ λ λ= + + + = =  (9a)

2 2 2 2 2 2
2 1 2 3 4( ) [( ) ] [ ]Tp trace H WH trace Mλ λ λ λ λ= + + + = =  (9b)

3 3 3 3 3 3
3 1 2 3 4( ) [( ) ] [ ]Tp trace H WH trace Mλ λ λ λ λ= + + + = =  (9c)

)det()( 43214 WHHp T=⋅⋅⋅= λλλλλ  (9d)

After verify that the measurement matrix is symmetric, we can use Newton's identity for reduction 

Equation (8). The WGDOP formula is thus obtained: 

)
2

3

2

1
(

3

1
321

3
1

4

pppp
p

WGDOP +−=  (10)

Based on the operation rules above, we derive the WGDOP value only from calculating Equation (10). 

The formula values of p1, p2, p3 requires matrix multiplication and p4 requires only simple arithmetic. 

Because the measurement matrix M is a symmetric matrix, the components of M present a symmetric 

form. We can determine that the matrix of M2, M3 are symmetric matrices also, so only the upper half 

components of matrix M, M2, M3 needs to be calculated. Then the WGDOP can be solved by the 

proposed matrix multiplication scheme for four measurement units. According to the above described 
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matrix multiplications, we can easily find the value of the WGDOP and avoid the calculation of the 

matrix inverse. We summarize WGDOP formula process and present it in Figure 1.  

 

 

Figure 1. Block diagram of WGDOP process. 

The steps for positioning in GPS, WSN, and cellular communication systems are listed as follows: 

(1) After a mobile device receives the signals from the positioning device, we arbitrarily select m 

measurements among n measurements to generate different subsets, thus the n measurements are 

classified into C (n, m) possible subsets. 

(2) The optimal subset is often obtained by minimizing the WGDOP value. 

(3) The subset with the smallest WGDOP value is selected as the optimal measurement  

constellation subset: 

(a) First, we calculate the measurement matrix M. 

(b) Then the matrix of M, M2, and M3 are obtained by matrix multiplication method which is 

acceptable to most hardware. The determinants and trace values are calculated. 

(c) Finally, these parameter values can be used to calculate WGDOP value. The values of 

variance 1/ki, i = 1, 2, 3, 4, can be treated as constants, which are previous assumed for the 

calculation of Equation (2). 

(4) Finally, select the optimal subset of m measurements to estimate the location solution. From Table 1, 
the matrix multiplication scheme needs only 134 additions, 212 multiplications, one division and 
one square root. 

Table 1. The complexity of WGDOP calculation when the four measurements with 

different error variances. 

 Additions Multiplications Division Square Root 
M  18 34 0 0 

2M  30 54 0 0 
3M  30 50 0 0 

det( )M  45 68 0 0 
WGDOP 11 6 1 1 

Total 134 212 1 1 
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4.2.2. Five or More Measurement Units 

Many scholars have proposed WGDOP calculation methods only using in the case of exactly four 

measurement units. Most of the existing literatures and patents only discuss the derivations of the 

formula in the situation of selecting four measuring devices. When the number of measurements 

increases, WGDOP is decreasing. More than four measurements are selected because more 

measurements can obtain a higher positioning accuracy. Here, we expand the WGDOP computational 

formulas, so that it can be successfully applied in the case of more than four measurements. This 

calculation device greatly enhances WGDOP computing applications in practice. If the number of 

measurement units is N, the dimension of measurement matrix M  is N × N. When more than four 

measurements are available for location purposes, Equations (9) and (10) can still be adopted to 

describe the calculation forms of )(1 λp , )(2 λp , )(3 λp , )(4 λp  and WGDOP. 

In this method, the rest formula for ( 5)N N ≥  may be deduced by analogy. Reduction by Newton’s 

identities simplifies WGDOP formula and satisfies the needs of obtaining various parameters in the 

formula. Finally, we can obtain the WGDOP value for positioning. From Table 2, the matrix 

multiplication scheme with five measurements needs only 221 additions, 326 multiplications, one 

division, and one square root. Simultaneously, the computational complexity of the proposed WGDOP 

criteria can be reduced by a matrix multiplication scheme for measurement units ( 5)N N ≥ . These 

results show that the WGDOP methods proposed in this paper have low computational complexity and 

are easy to implement in the hardware equipment because of the simplicity of its operation rules. The 

proposed WGDOP formula with matrix multiplication does not limit the number of measurement  

units selected. 

Table 2. The complexity of WGDOP calculation when the five measurements with 

different error variances. 

 Additions Multiplications Division Square Root 
M  30 55 0 0 

2M  60 98 0 0 
3M  60 90 0 0 

det( )M  60 77 0 0 
WGDOP 11 6 1 1 

Total 221 326 1 1 

5. Simulation Results 

We consider a center hexagonal cell with six adjacent hexagonal cells of the same size. Each cell 

has a radius of 5000 m and the MS locations are uniformly distributed in the center cell [32]. There are 

seven BSs in cellular communication systems. The serving BS, that is, BS1, is located at (0, 0, 0.2 km). The 

heights of the other six BSs, BS2, BS3, BS4, BS5, BS6, and BS7, are 0.15 km, 0.14 km, 0.16 km,  

0.12 km, 0.11 km, and 0.13 km, respectively. The height of MS is assumed to be at uniformly 

distributed over (0, 0.06 km). The NLOS propagation model is based on the uniformly distributed noise 

model [33], in which the TOA measurement error is assumed to be uniformly distributed over ),0( iU ,  

for ...7 2, ,1=i  where iU  is the upper bound. The variables are chosen as follows: 1U  = 0.2 km,  
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2U  = 0.4 km, 3U  = 0.35 km, 4U  = 0.7 km, 5U  = 0.3 km, 6U  = 0.5 km and 7U  = 0.35 km. The 

reciprocal of the square root of an upper bound of the NLOS errors is set to be diagonal elements of 

the weight matrix W . Therefore, the previously proposed BSs selection criterion chooses the serving 

BS first and combines it with three optimal measurements to form a subset [27]. The number of the 

subsets is reduced from 35 ( 7
4C ) to 20 ( 6

3C ) and the calculation load can be relaxed. The subset of the 

serving BS and three optimal BSs with minimum WGDOP is used to estimate the mobile station (MS) 

location. The WGDOP residual is defined as the difference between the WGDOP value by matrix 

inversion and the estimation methods. 

In order to verify the superior properties of the proposed formula, we compare the results of 

WGDOP calculation accuracy for all methods and matrix inversion method. Figure 2 shows 

cumulative distribution functions (CDFs) of the average WGDOP residual for the proposed formula, 

the previously proposed method [30] and Rprop-based algorithm for Type 6 [27] when four 

measurements are available. From simulation results, the proposed method and matrix inversion 

method provide nearly identical WGDOP estimation. The average WGDOP residual of the proposed 

formula is 2.024245 × 10−12. The proposed efficient formula provides very precise solution of 

WGDOP calculation. Table 3 shows average WGDOP residual for all methods. Compared to other 

previously proposed methods, the proposed method always yields much better WGDOP residual than 

the previously proposed methods. 

 

Figure 2. The CDFs curves of WGDOP residual for all methods when four measurements 

are available. 

Table 3. Comparison of average WGDOP residual for all methods when four 

measurements are available. 

Method Average WGDOP Residual 

Proposed formula 2.024245 × 10−12 

Previously proposed method [30] 1.694013 × 10−11 

Previously proposed Rprop-based algorithm for Type 6 [27] 0.238554 
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The improvement in WGDOP accuracy using the proposed formula can also be seen, the CDF 

curves of the average WGDOP residual for all methods when five BSs are available for location 

purposes, as shown in Figure 3. The proposed formula can give much better WGDOP estimation as 

compared with the other previously proposed methods. Table 4 shows the average WGDOP residual 

for all methods under the constraint that the MS can be heard by five BSs. The average WGDOP 

residual of the proposed formula is 3.110480 × 10−3. It was observed that the proposed formula gives 

the best performance among the previously proposed methods. 

 

Figure 3. The CDFs curves of WGDOP residual for all methods when five measurements 

are available for location purpose. 

Table 4. Performance comparison of average WGDOP residual for all methods when five 

measurements are available for location purpose. 

Method Average WGDOP Residual 

Proposed formula 3.110480 × 10−14 

Previously proposed method [30] Cannot calculate 

Previously proposed Rprop-based algorithm for Type 6 [27] 0.16803456595604 

6. Conclusions 

Traditionally, the concept of GDOP is commonly used to determine the geometric effect of GPS 

satellite configurations. It is desirable to select a set of satellites with GDOP as small as possible. 

When the measurements have different error variances or in integrated positioning systems, WGDOP 

is appropriate to select the measurement units to reduce the positioning error. The matrix inversion 

method guarantees the optimal subsets but with a significant computational burden. To further reduce 

the complexity, a novel matrix multiplication scheme is proposed to compute WGDOP. The matrix 

multiplication scheme not only avoids complex computations, but is also easy to design in hardware 

architecture. The proposed WGDOP calculation with matrix multiplication does not need to implement 
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a training phase and the calculation of matrix inversion. It is designed to only need simple matrix 

multiplication in which the a priori error information of each measurement is not the same.  

In addition, we also provide a calculation device applied on the computation of more than four 

positioning devices. No matter how many measurements are used, the proposed WGDOP scheme has 

the best computational efficiency. The proposed WGDOP calculation with matrix multiplication 

provides very precise WGDOP calculation solutions and is very suitable to implement in practical 

hardware equipment. 
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