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Abstract: A GNSS/INS deeply-coupled system can improve the satellite signals tracking 

performance by INS aiding tracking loops under dynamics. However, there was no 

literature available on the complete modeling of the INS branch in the INS-aided tracking 

loop, which caused the lack of a theoretical tool to guide the selections of inertial sensors, 

parameter optimization and quantitative analysis of INS-aided PLLs. This paper makes an 

effort on the INS branch in modeling and parameter optimization of phase-locked loops 

(PLLs) based on the scalar-based GNSS/INS deeply-coupled system. It establishes the 

transfer function between all known error sources and the PLL tracking error, which can be 

used to quantitatively evaluate the candidate inertial measurement unit (IMU) affecting the 

carrier phase tracking error. Based on that, a steady-state error model is proposed to design 

INS-aided PLLs and to analyze their tracking performance. Based on the modeling and 

error analysis, an integrated deeply-coupled hardware prototype is developed, with the 

optimization of the aiding information. Finally, the performance of the INS-aided PLLs 

designed based on the proposed steady-state error model is evaluated through the 

simulation and road tests of the hardware prototype. 

Keywords: GNSS/INS deeply-coupled integration; INS-aided PLLs; PLL tracking error; 

steady state error model; hardware prototype 
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1. Introduction 

The tracking loop design of the traditional global navigation satellite system (GNSS) receiver is 

suffering a dilemma. In order to reduce the thermal noise to improve the signal receiving accuracy in 

the GNSS receiver, the bandwidth of its tracking loops should be narrow enough. However, the narrow 

bandwidth would increase dynamic stress error [1]. Therefore, receiver measurement errors during 

dynamic periods are systematically larger than those during static periods [2]. The inertial navigation 

system (INS) has a superior dynamic characteristic, which is highly complementary to GNSS. 

GNSS/INS integration can be briefly classified as loosely-coupled, tightly-coupled and deeply-coupled, 

listed in order of complexity. While GNSS navigation results are fused with INS information in  

the loosely-coupled integration, GNSS observation results are fused with INS information in the 

tightly-coupled integration. The GNSS receiver’s baseband structure need not be adjusted in  

loosely-coupled integration and tightly-coupled integration, but satellite signal receiving performance 

cannot be improved. The deeply-coupled integration is the fusion of GNSS and INS information in the 

signal processing level, which could further take advantage of the INS dynamic characteristic to 

improve satellite signal acquisition and tracking performances under dynamics [3]. 

Based on the type of tracking loops used in receivers, deeply-coupled integration can be 

implemented in two different ways, which are shown in Figure 1, respectively named: (1) scalar-based 

architecture; and (2) vector-based architecture [4]. The term “scalar-based architecture” refers to aiding 

the individual tracking loops by inertial measurements, proposed by Stanford University [5].  

By contrast, the term “vector-based architecture” is considered as a vector-based receiver integrated 

with an inertial measurement unit (IMU), in which the traditional code and carrier tracking loops are 

eliminated, proposed by MIT [6]. Although the vector-based architecture can make fuller use of the 

available information and get better signal sensitivity, the architecture is more complex and 

challenging for realizing a real-time system. Meanwhile, since the deeply-coupled Kalman filter output 

accuracy is insufficient for carrier phase tracking, individual tracking loops still need be used in the 

vector-based architecture [7]. As a simpler approach, the scalar-based architecture, whose tracking 

loops are individual, is valuable for carrier phase tracking. 

(a) (b) 

Figure 1. Two different architectures of GNSS/INS deeply-coupled integration. (a) Scalar-based 

architecture; (b) vector-based architecture. NCO means numerically controlled oscillator. 
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Most previous research on the tracking loops of deeply-coupled integration was mainly based on 

relatively simple modeling and simulation. There was no literature available on the complete modeling 

for the INS branch in the INS-aided tracking loops, so there was no mature model supporting the 

design and evaluation of INS-aided tracking loops, such as the design of the tracking loop’s 

bandwidth, selection of inertial sensors, implementation optimization of aiding information delay and 

quantitative analysis of tracking performance [6–15]. He et al. proposed a mathematical structure of 

the INS-aided delay lock loop (DLL) in 1998, shown in Figure 2a [9]: the INS branch is simply 
modeled as (1 ) / ( 1)b sτ− + , where b is the error of the IMU scalar factor and τ  is delay time in the 

filter. However, the error of the IMU bias and the navigation error were not considered in the model. 

Alban proposed a mathematical structure of the INS-aided phase lock loop (PLL) in 2003, shown in 

Figure 2b [10]: the IMU is simply modeled as a low pass filter, which could not correctly reflect the 

error transformation of IMU; the INS information delay to tracking loops was not considered. 

Therefore, these models only demonstrated that satellite signal tracking performance could be 

enhanced with INS aiding, but could not be used for quantitative analysis to guide IMU selection, 

parameter optimization and quantitative analysis of INS-aided PLLs. In addition, since developing a 

deeply-coupled system requires the adjustment of the receiver internal structures, there were only 

limited cases of real-time hardware systems achieved by the co-operation of companies [14,15]. 

However, most research institutions use software platforms [16–18], resulting in literature being scant 

on the deeply-coupled system performance verification on embedded hardware platforms. 
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Figure 2. INS-aided GNSS receiver tracking loop model in previous work [9,10].  

(a) Proposed by He et al.; (b) proposed by Alban. 
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To provide a theoretical tool for IMU selection, parameter optimization and quantitative analysis of 

INS-aided PLLs, this paper builds the error transfer function of INS-aided PLLs based on a scalar-based 

architecture in Section 2, which reflect the relationships between all known error sources (including 

thermal noise, oscillator noise, INS errors and the delay of INS aiding information) and carrier phase 

tracking error. What needs to be emphasized is that INS errors are modeled in detail in this paper, 

which is proposed for the first time, compared to previous works. Based on that, it derives and 

analyzes the PLL steady-state error model before and after INS information assistance in Section 3, 

which can be used for the parameter design of INS-aided PLLs, IMU selection and hardware system 

development. Moreover, an integrated real-time deeply-coupled hardware prototype is developed in 

Section 4, in which the real-time running and the INS information delay are optimized. The proposed 

hardware prototype design is also unique compared to software systems in previous works. In Section 5, 

tests and analysis of PLL tracking performance in dynamic conditions are carried out based on a 

GPS/INS simulator and vehicle. Finally, the INS-aided PLLs on a deeply-coupled hardware prototype 

are summarized and concluded. 

2. Error Transfer Function of INS-Aided PLLs 

Compared with the DLL, the PLL is more sensitive to dynamic stress and much easier to lose 

locking, since the carrier wavelength is much shorter than the code chip length. Therefore, this paper 

studies the tracking performances of the PLL as an example. Error transfer function derivation is the 

precondition of the steady-state error modeling used for INS-aided PLLs design. To derive the error 

transfer function of INS-aided PLLs, its mathematical structure should be obtained based on the 

deeply-coupled system principle. In this section, the detailed architecture of the scalar-based  

deeply-coupled system will be introduced first. Then, the mathematical structure of INS-aided PLLs is 

proposed, reflecting the effects of all known error sources on tracking error. Based on that, the error 

transfer functions between all error sources and tracking error are modeled. 

2.1. INS-Aided PLLs’ Principle 

With the GPS L1 single frequency receiver as example, Figure 3 shows the detailed components of 

the scalar-based deeply-coupled system. While the upper part represents the GPS receiver subsystem, 

the lower part is the inertial navigation subsystem. Compared with loosely-coupled integration and 

tightly-coupled integration, the INS information is sent to the receiver’s baseband (red arrows in the 

figure), realizing the assistance to the receiver at the signal processing level. Compared with the 

vector-based deeply-coupled integration, the two subsystems are relatively independent in the  

scalar-based deeply-coupled integration, in which the internal structure is adjusted less. Since the 

receiver and INS are two kinds of navigation sensors, they can respectively measure the same vehicle 

motion information in different ways. As the INS and receiver’s tracking loop are both used to 

compute the vehicle motion information, i.e., the vehicle dynamics is commonly experienced by both 

the IMU and the tracking loop, the IMU measurement information could assist the tracking loop based 

on the concept of feed-forward [8].  
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Figure 3. Detailed architecture of a scalar-based deeply-coupled system. DLL, delay lock loop. 

Based on the scalar-based deeply-coupled system architecture, the principle of the INS-aided PLLs 

is shown in Figure 4. The PLL can track the carrier phase changing between a satellite and the vehicle, 

which measures the phase difference between local numerically controlled oscillator (NCO) and the 

input signal, by the discriminator converts the phase difference to the frequency by a low pass filter 

and adjusts the local NCO to follow the input signal. On the other hand, the vehicle movement 

information in the navigation frame can be directly measured by IMU. The measured velocity 

information is mapped to the line of sight (LOS) between the satellite and the vehicle to obtain the 

Doppler of relative motion, which combines with the receiver’s clock drift, forming the Doppler aiding 

information. Therefore, with the aid of the INS feed-forward information, the tracking loop only needs 

to undertake the error of the INS aiding information, which significantly reduces the dynamic stress 

affecting the tracking loop. 

 

 

Figure 4. Principle of INS-aided PLLs. C/A code, coarse/acquisition-code. 
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Different error sources lead to different effects on the tracking loop. The error sources of the normal 

PLLs mainly include thermal noise, oscillator noise and dynamic stress. By contrast, the dynamic 

stress is replaced by the INS measurement error in the INS-aided PLLs. The INS measurement error 

could be divided into INS bias-type errors that are unrelated to dynamic and INS scale factor-type 

errors, which are related with the dynamics. In addition, the aiding information delay should be 

considered in the INS-aided PLLs. Hence, the error sources of the INS-aided PLLs include thermal 

noise, oscillator noise, INS bias-type errors, INS scale factor-type errors and aiding information delay. 

Moreover, the INS bias-type errors can be further divided into IMU sensor errors (constant bias, bias 

instability and white noise) and the initial navigation error (velocity error and attitude error) after 

correction of the GNSS/INS integration algorithm; the INS scale factor-type errors can be further 

divided into IMU scale factor error and IMU non-orthogonal error.  

2.2. Error Transfer Function of INS-Aided PLLs 

According to the principle of INS-aided PLLs introduced in Section 2.1, the mathematical structure 

of the INS-aided PLLs is shown in Figure 5, in which the tracking error δθ  is affected by all of the 
error sources simultaneously. As for a normal PLL, the effects of the thermal noise ϕω  and oscillator 

noise _clk errorθ  on the tracking error are uncorrelated with each other. Besides, the error sources from 

the INS branch are physically independent from the PLL branch. Since the NCO is controlled by the 

sum of the PLL filter output and the INS aiding information, the relation of the tracking error caused 
by them is additive. According to the inertial navigation principle, the INS bias-type errors IMUfΔ , the 

INS scale factor-type errors aK  and the INS aiding information delay 0ste−  are independent of each 

other. Therefore, all of the error sources of the INS-aided PLLs are independent, and their effects on 

the tracking error are additive. All of the known major errors in the INS branch are considered in 

Figure 5, which is much more complete than the errors considered in Figure 2. 
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Figure 5. Mathematical structure of INS-aided PLLs. 

The normal PLL’s error transfer function was derived from its mathematical structure [18]. The 

mathematical structure become more complex after INS aiding, and the INS-aided PLL’s transfer 

function cannot be obtained based on Figure 5 directly. Since the effects of all of the error sources on 
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the tracking error are additive, the error transfer function between each error source and the tracking 

error could be analyzed individually. Additionally, the error transfer function of the INS-aided PLLs 

could be obtained by the superposition of the effects of all of the error sources, which is written as 

Equation (1). This error transfer function is the precondition of the steady-state error modeling in the 

next section. 

( ) 0
_

( )
( ) 1 ( ) ( ) ( ) ( ) (1 ) ( ) ( ) ( )stIMU

clk error a i i

f s
s H s s K s s e s H s s

s
−Δ = − − − + − − 

 
ϕδθ θ θ θ ω

 
(1)

where ( )H s  is the system transfer function of the normal PLL, which can be written as follows [19]. 
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3. Steady-State Error Modeling and Analysis 

The tracking threshold of the PLL is the maximum steady-state error for the receiver to keep PLL 

locked. Additionally, the receiver loses lock when the steady-state tracking errors exceed a certain 

boundary. Because the tracking loops are nonlinear, especially near the threshold regions, only Monte 

Carlo simulations under the combined dynamic and signal-to-noise radio (SNR) conditions can 

determine the true tracking performance. However, general rules that approximate the tracking errors 

can be used based on the steady-state error model of tracking loops. Although numerous tracking error 

sources are in both normal PLLs and INS-aided PLLs, it is sufficient as a rule of thumb to track 

thresholds to analyze only the dominant error sources. In this section, to compare the PLL performance 

before and after INS aiding, a normal second-order PLL steady-state error model is deduced based on 

previous research [1,20,21]. Then, INS-aided second-order PLL steady-state error model is proposed 

based on its error transfer function. The INS bias errors are considered in detail when the error model 

of the INS-aided PLL is built. Finally, the steady-state error characteristic of PLLs before and after 

INS aiding is compared based on their steady-state error models, which could guide the optimal 

bandwidth selection in the deeply-coupled system design. 

3.1. Steady-State Error Modeling of Normal Second-Order PLLs 

A conservative rule of thumb for tracking threshold is that the three-sigma jitter must not exceed  

one-fourth of the phase pull-in range of the PLL discriminator [1]. When the PLL two-quadrant 

arctangent discriminator is used, it has a phase pull in the range of 180°. Previous research shows that 

the dominant sources of phase error in a normal PLL are phase jitter and dynamic stress error; while 

the phase jitter is the root sum squared (RSS) of every source of uncorrelated phase error, such as 

thermal noise and oscillator noise. The dynamic stress error is a three-sigma effect and is additive to 

the phase jitter [1]. Therefore, the one-sigma rule threshold for the PLL for the two-quadrant 

arctangent discriminator is: 

( )2 2 2 / 3 15PLL tPLL rv rA eσ σ σ σ θ= + + + ≤ ° (3)
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where PLLσ  is one-sigma tracking error of the normal PLL in degrees. tPLLσ  is one-sigma thermal noise 

in degrees. rvσ  is one-sigma vibration-induced oscillator jitter in degrees. rAσ  is Allan variance-induced 

oscillator jitter in degrees. eθ  is dynamic stress error in the PLL. 

In the second-order PLL, the typical relationship of the noise bandwidth nB  (Hz) and the natural 

radian frequency nω  (rad/s) is 0.53n nB ω=  [1]. Therefore, the thermal noise jitter for the second-order 

PLL is computed as follows [1]: 

( )
0 0

360 1
1

2 / 2 /
n

tPLL
coh

B

C N T C N
σ

π
 

= + ° ⋅   
(4)

where 0/C N  is the carrier-to-noise power expressed as a ratio (Hz) and cohT  is coherent integration  

time (seconds). 

The vibration-induced oscillator phase noise is a complex analysis problem. Assuming that all 

occurring vibrations are equally distributed across the entire frequency range, the vibration-induced 

oscillator phase jitter for the second-order PLL is written as follows [20]: 

( )
2 2

0180
2.67

g g
rv

n

f K G

B
σ = °

 
(5)

where gK  is the g-sensitivity of the oscillator, gG  is the single-sided spectral density of vibration and 

0f  is carrier frequency. 

The Allan deviation phase noise is caused by the drift of the receiver oscillator, which is determined 

by the oscillator’s material and craft. The second-order PLL jitter due to Allan deviation phase noise is 

written as follows [20]: 

( )
2

2 02 1
0 23

180 2
4(1.89 )2(1.89 ) 4 2(1.89 )
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hh h
f

BB B

π πσ − −
 

= + + ° 
   

(6)

In the equation, the clock parameters 2h− , 1h−  and 0h  represent the frequency stability of a  

certain oscillator. 

Due to the permanent motion of the satellites and possible receiver motion, the PLL has to track the 

resulting signal dynamics. Signal dynamics is a major problem for non-static applications and 

principally degrades the PLL tracking performance, because it causes phase jitter. The second-order 

PLL tracking loop dynamic stress error can be expressed by [1]. 

( )2(1.89 )e
nB

θ = Δℜ °
 

(7)

where Δℜ  is the maximum LOS acceleration dynamics (°/s2). 

Therefore, the steady-state error model of the normal second-order PLL can be given based on 

Equations (3)–(7), and it is expressed by: 
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(8)

As we know the running conditions of the receiver, including GNSS signal strength and the vehicle 

dynamics, the optimal bandwidth of the normal PLL can be calculated based on the error model in 

Equation (8), as described in [21]. Using the idea of the optimal bandwidth of the normal PLL, a tool 

for the bandwidth selection of the INS-aided PLLs can be proposed. Therefore, if the INS errors in the 

INS-aided PLLs are modeled in detail, an error model of the INS-aided PLLs, like Equation (8), could 

be built, which could truly reflect the effect of the INS error on the tracking loop physically and be 

used for the parameter optimization of the INS-aided PLLs. 

3.2. Steady-State Error Modeling of INS-Aided Second-Order PLLs 

Under vehicle dynamic conditions, ( )IMUf sΔ  are the main error sources in the INS branch. Hence, 

while ( )IMUf sΔ  is modeled in detail, which refers to our preliminary study in the literature [22], ( )aK s  

and 0ste−  are simply modeled as random constants in the INS-aided PLL error transfer function 

(Equation (1)). For the horizontal movement of vehicles, the lower the satellite elevation is, the larger 

the PLL mapping error from the INS is. Meanwhile, the north error and the east error of the INS are 

symmetrical in the north-east-down (NED) navigation frame. Here, we use the north direction as an 

example. If the vehicle is aligned with the NED navigation frame and moves toward the north, the PLL 

tracking a satellite at the north direction of the vehicle will map the largest error from the INS. The 

largest error of the aiding information should be considered for the parameter design of the PLLs. 

Therefore, without loss of generality, assume that the vehicle is aligned with the NED navigation 
frame and a satellite is at the north direction of the vehicle; ( )IMUf sΔ  can be expressed by:  
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(9)

where _ax cb  is the constant bias of the X-axis accelerometer (i.e., forward direction), _gy cb  is the 

constant bias of the Y-axis gyro (i.e., pitch gyro), (0) ( )ax GMaxGM w s+  is a first-order Gauss–Markov 

process representing the bias instability of the X-axis accelerometer, (0) ( )gy GMgyGM w s+  is a first-order 

Gauss–Markov process representing the bias instability of the Y-axis gyro, ( )axw s  is the white noise of 

the X-axis accelerometer, ( )gyw s  is the white noise of the Y-axis gyro, (0)NVδ  is the north initial 

velocity error after correction of the GNSS/INS integration algorithm and (0)Eφ  is the east initial 
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attitude error (i.e., pitch error) after coupled navigation correction. Next, this detailed model of the INS 
bias errors ( )IMUf sΔ  is analyzed for the error modeling of the INS-aided PLL. 

Since the error sources, including the INS bias-type errors and the INS scale factor-type errors, are 

corrected when the coupled navigation results are updated, the relationship between each error source 

and the tracking error in time domain should be analyzed in the update interval of coupled navigation. 

While the tracking errors caused by the error sources with a random constant feature are analyzed by 

transforming their transfer functions to the time domain, the tracking errors caused by the error sources 

with the noise feature are analyzed by Monte Carlo simulation. 

Only considering the INS bias-type errors in Equation (1), taking Equation (9) into Equation (1), we 

get the concrete model reflecting the relationship between all of the INS bias-type errors and the phase 

tracking error. The influence of each INS bias-type error on the tracking error can be quantitatively 

analyzed from the concrete model. Analysis results in the literature [23] showed that, compared with 

the tracking error caused by other INS bias-type errors, the tracking error caused by the north initial 
velocity error after correction of the GNSS/INS integration algorithm (0)NVδ  was dominant. 

Therefore, using the tracking error caused by (0)NVδ  to express the steady-state error of INS-aided 

PLLs caused by the INS bias-type error sources:  

( )(0)
360

1.89
N

bias
n

V

e B

δθ
λ

= °
⋅ ⋅  

(10)

where e is the Euler number and λ  is the carrier wavelength. 

Since the INS scale factor-type errors are modeled as random constants, the steady-state error could 

be derived from its error transfer function. When the acceleration dynamics Δℜ  appear, the INS scale 
factor-type errors bring frequency ramp estimation errors aK ⋅Δℜ  into the second-order PLL, which 

can generate a steady-state error. Therefore, the steady-state error of the INS-aided PLL caused by the 

INS scale factor-type errors can be expressed as: 

( )2

360

2 (1.89 )a
n

a
K

K
Bπ

θ °⋅Δℜ=
 

(11)

When the vehicle movement changes, the jitter brought into the second-order PLL caused by the 

aiding delay is the frequency step stimulus, which does not generate steady-state tracking error.  
Since the phase error biasθ  is uncorrelated with that due to thermal noise and oscillator noise, the 

steady-state error caused by biasθ  is the geometric sum relationship to that caused by thermal noise and 

oscillator noise. Therefore, compared with Equation (3), the one-sigma rule threshold for the  

INS-aided PLL tracking loop is:  

( )2 2 2 2
_ / 3 15Aid PLL tPLL rv rA bias Kaσ σ σ σ θ θ= + + + + ≤ °

 (12)

The steady-state error model of the INS-aided second-order PLL can be given based on  

Equations (4)–(12), and it is expressed as: 
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(13)

Just as the parameter optimization idea of the normal PLL, if the GNSS signal strength and the 

vehicle dynamics are known, the optimal bandwidth of the INS-aided PLLs could be calculated based 

on Equation (13). Comparing Equation (13) with Equation (8), after the INS aiding, the effect of the 

INS bias-type errors is added into the steady-state error model; but the steady-state error caused by the 

dynamic stress error is replaced by the INS scale factor-type errors, which is only a small portion of 

the original dynamic stress error. In the next part, the steady-state error characteristic of PLLs before 

and after INS aiding is compared in detail based on the steady-state error models. Meanwhile, the 

optimal parameters of the normal PLLs and the INS-aided PLLs could be obtained. Moreover, thanks 

to the detailed model of the INS branch, the INS initial velocity error after correction of GNSS/INS 
integration (0)NVδ  as the main factor of all of the INS bias-type errors is established in relation to  

the carrier phase tracking error shown in Equation (10), which has never been discussed in  

previous works. 

3.3. Steady-State Error Analysis 

In order to analyze the INS effect on the PLLs, a typical low-grade INS with the model of MTI-G 

and a typical medium-grade INS with the model of FSAS are selected as illustrations [24,25], with 
their initial velocity errors (0)NVδ  of about 0.02 m/s and 0.005 m/s, respectively, based on GNSS  

real-time kinematic (RTK)/INS integration testing. In addition, an oven controlled crystal oscillator 

(OCXO) is used with the parameters listed in Table 1. 

Table 1. OCXO parameters. 

gK
 gG

 2h−  1h−  0h  

1e−10 (1/g) 0.05 (g2/Hz) 2.51e−22 2.51e−23 2.51e−26 

Since the INS bias-type errors are extra added error sources to the PLL, their impact to the  

steady-state error should be analyzed (under static conditions). Assuming that the acceleration Δℜ  

equals zero, Figures 6 and 7 show the steady-state tracking errors due to each individual error source 

and the total effect based on their steady-state error models (Equations (8) and (13)). 

Figure 6 depicts the relationship between the bandwidth and the steady-state error of the low-grade 

INS (MTI-G)-aided PLLs with an integration time of 1 ms and 30-dB-Hz signal power under static 

conditions. When the horizontal axis represents the noise bandwidth nB  ( 0.53n nB ω= ) of the PLL, the 

vertical axis is the steady-state phase tracking error in degrees. Similar to the trend of the steady-state 

error due to OCXO errors rvσ , rAσ , the steady-state error due to the INS bias-type errors biasθ  rapidly 

decreases with the widening of the bandwidth. Hence, compared with the normal PLL’s steady-state 

error PLLσ , the low-grade INS PLL’s steady-state error _Aid PLLσ  almost has no increase with a wide 
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bandwidth. Only when the bandwidth is too narrow, _Aid PLLσ  is just a little larger (less than one degree) 

than PLLσ . Therefore, when the acceleration equals zero (under static condition), the low-grade INS 

does not obviously increase the PLL’s steady-state error, unless the bandwidth is excessively narrow. 
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Figure 6. Tracking errors of MEMS INS-aided PLL under static conditions. MTI-G is a 

model of a typical low-grade INS. 
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Figure 7. Tracking errors of medium-grade INS-aided PLL under static conditions. FSAS 

is a model of a typical medium-grade INS. 

Compared with Figure 6, Figure 7 shows the relationship of the bandwidth and the steady-state 

error of the medium-grade INS FSAS-aided PLL. The INS bias-type errors caused steady-state error 

biasθ  of the PLL, with the medium-grade INS aiding being less than that with the low-grade INS 

aiding, especially when the bandwidth is narrow. Since the curve of AidPLLσ  is in good agreement with 

that of PLLσ , the medium-grade INS does not obviously increase the static steady-state errors, even if 
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the bandwidth is excessively narrow. Therefore, if the PLL is aided by a medium-grade INS, the effect 

of biasθ  on the total phase tracking error can be ignored. 

Under dynamic conditions, the steady-state error caused by the dynamic stress should be 

considered. When the vehicle acceleration is 9.8 m/s2, the carrier to noise ratio (CNR) is 40 dB-Hz and 

the integration time is 1 ms, the relationships of the steady-state tracking errors and the bandwidths 

caused by normal second-order PLL, MTI-G-aided PLL and FSAS-aided PLL are as shown in Figure 8. 

It can be seen that the optimal bandwidth of the normal PLL is wider than 25 Hz, and its minimum 

tracking error is larger than five degrees; the optimal bandwidth of PLL with MTI-G or FSAS aiding is 

narrower than 5 Hz with the minimum tracking error being no more than three degrees. When the 

GNSS signal is attenuated to 30 dB-Hz, with other conditions unchanged, the result is as shown in 

Figure 9. Similar to the trend in Figure 8, the optimal bandwidth of the normal PLL must be wider than 

20 Hz, due to the dynamic stress; and that of PLL with MTI-G or FSAS aiding can be narrower than  

3 Hz. In addition, with the GNSS signal attenuated to 30 dB-Hz, the minimum tracking error of the 

normal PLL increases to 15 degrees; and that of the INS-aided PLL only increases to five degrees.  
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Figure 8. Steady-state tracking errors with the acceleration of 9.8 m/s2 and CNR of 40 dB-Hz. 
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Figure 9. Steady-state tracking errors with the acceleration of 9.8 m/s2 and CNR of 30 dB-Hz. 
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Steady-state error analysis shows that, with the assistance of INS information, the dynamic  

tracking bandwidth of the PLL could be narrower, and the dynamic tracking error can be reduced.  

It should be note that even the low-grade INS can significantly improve the PLL performance under 

dynamic conditions.  

We summarize the steady-state error analysis as follows. The negative effect of the INS aiding, 

caused by the INS bias-type errors, is small and can be neglected, as shown in Figures 6 and 7. The 

positive effect of the INS aiding, by compensating for the dynamic stress of vehicle motions, is large 

and can improves the total steady-state phase tracking significantly, as shown in Figures 8 and 9. 

Hence, the steady-state error model could be used for optimizing the INS-aided PLL parameters, 

selecting inertial sensors and analyzing INS-aided PLL performance. Under static conditions with  

30-dB-Hz signal power, the optimal bandwidth of the INS-aided PLLs is about 3 Hz, which is almost 

the same as that of the normal PLLs, and the static tracking error caused by INS bias-type errors is less 

than one degree. When the vehicle acceleration is 9.8 m/s2 and the signal power is 40 dB-Hz, the 

optimal bandwidth of the INS-aided PLLs is still about 3 Hz, which is much narrower than that of the 

normal PLLs (15 Hz). The dynamic tracking error of the INS-aided PLLs with optimal bandwidth is 

clearly lower than that of the normal PLLs, especially when the signal power drops to 30 dB-Hz. 

Therefore, the GNSS signal tracking sensitivity and accuracy of the PLLs can be proven after the INS 

aiding under dynamic conditions. 

4. Design and Optimization of Hardware Prototype System 

Based on the system modeling and error analysis in the previous sections, a scalar-based  

deeply-coupled system on an embedded platform is developed. The design and optimization methods 

of the hardware prototype are described in this section. The INS-aided PLLs in the deeply-coupled 

system will be designed based on the proposed steady-state error model on the embedded  

hardware platform. 

4.1. Hardware Prototype Design 

A hardware platform [26] with the processing core of a digital signal processor (DSP) plus a field 

programmable gates array (FPGA) is shown in Figure 10. While the DSP specializes in complex 

calculations and task scheduling, the coprocessor FPGA is good at high-speed digital signal processing 

in parallel and the interface control. The GNSS RF unit and the MEMS IMU unit are used to receive 

GNSS signals and inertial data, which are connected to the processor by the I/O of FPGA. The MEMS 

IMU on the prototype consists of a tri-axis accelerometer (LIS344ALH), a single-axis gyroscope 

(LPR510AL) and a double-axis gyroscope (LY510ALH). In addition, all units on the platform share 

the same clock, which can be TCXO, OCXO or other external clocks. 

The scalar-based deeply-coupled system described in Figure 3 is implemented on the hardware 

platform, and its task assignment is shown in Figure 11. While the FPGA is responsible for GNSS IF 

data sampling, GNSS baseband correlators, IMU data sampling and preprocessing, etc., DSP is used 

for GNSS baseband control, satellite positioning, INS mechanization, Kalman filter algorithm, the 

LOS Doppler estimation and tracking loop aiding. Using the sampling clock generated by the FPGA, 

the down-converted GNSS IF signal is digitized in the RF unit and sent to the baseband for digital 
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signal processing. The correlators with high speed and multi-channels (including carrier NCO, code 

NCO, code generator, mixer and accumulator) are completed in the FPGA, and the timing module 

needs to be realized in the FPGA. The accumulating results are passed to DSP via the data bus in every 

interrupt, and the acquisition and tracking control of all channels are realized by the flexible DSP 

program. High-speed data exchange between the FPGA and DSP is carried out through the external 

memory interface (EMIF) of the DSP. 

 

Figure 10. Hardware platform of a GNSS/INS deeply-coupled system. DSP means digital 

signal processor. 

 

Figure 11. Integrated GNSS/INS deeply-coupled software architecture. PR represents 

pseudo-range, CP represents carrier-phase. 

There are several advantages to implementing the deeply-coupled system on this hardware platform. 

(i) All of the function units are triggered by the same clock, which is beneficial for  

time synchronization.  

(ii) Different types of oscillators, IMUs and GNSS RF units can be chosen for a series of 

comparative experiments.  

(iii) The high-speed interface is helpful for frequent data exchanging in the deeply-coupled system.  
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(iv) All of the software algorithms are realized on the same DSP, which is consistent with the 

integration feature of the deeply-coupled system.  

4.2. Hardware Prototype Optimization 

Different from the deeply-coupled system implemented in software receivers, the hardware 

prototype optimization copes with embedded software architecture, synchronization of IMU and 

GNSS data sampling and INS aiding information delay. 

4.2.1. Embedded Software Architecture 

DSP needs to respond and process GNSS data, as well as IMU data simultaneously. Therefore, DSP 

should respond to two external interrupts, priority interrupt (Interrupt 1), used for receiving and 

processing GNSS correlator output, and priority interrupt (Interrupt 2) used for receiving and 

processing IMU raw data. Since the correlators update every millisecond, the interval time of  

Interrupt 1 must be less than 1 ms to receive each integration result. Considering the processor 

computing power and the maximal vehicle dynamics, the interval time of Interrupt 1 is set as  

0.707 ms the Interrupt 2 as 50 ms. 

When DSP enters an interrupt service routine, other interrupts are forbidden by default, whatever 

their priority. If the execution time of an interrupt exceeds 0.707 ms, some 0.707-ms interrupts will be 

missed. Therefore, interrupt priority control and interrupt nesting in the software are necessary. 

Interrupt 1 with a 0.2-ms execution time has the highest priority, and Interrupt 2 with a 10-ms 

execution time has the second highest priority. At the same time, interrupt nesting is allowed in the 

lower priority interrupt. Tests showed that the processor was able to handle all tasks completed within 

the tolerated time, even with abundant free time [26]. 

4.2.2. Synchronization of Data Sampling 

In the GNSS/INS applications, unknown timing errors between IMU and GNSS measurements have 

a significant influence on the data fusion performance of the Kalman filter. Additionally, the most 

effective method is to sample IMU data under the GNSS PPS (pulse per second) trigger, which could 

realize the time synchronization essentially. It needs two conditions: (i) the GNSS receiver can provide 

PPS; or (ii) the IMU sampling time could be controlled by an external signal. In this hardware 

prototype; the GNSS receiver subsystem could provide PPS, and the IMU module consists of 

gyroscopes and accelerometers with analogue interfaces, sampled by a multiplexing analog to digital 

converter (ADC) with controllable sampling time. 

The IMU data sampling control module is designed in the FPGA, without additional cost of  

hardware [26]. Six signals from the sensors (three-axis gyroscopes and accelerometers) are sent to the 

input of the ADC, and the ADC is triggered by a 200-Hz pulse train to sample the IMU data. The PPS 

signal is generated in the time base module of the receiver to initialize a time-stamp counter. Then, the 

counter could generate the 200-Hz pulse train to trigger the ADC, and the time stamp is added to the 

IMU data. Figure 12 shows the sequence diagram of the IMU data sampling. The starting time of the 

first ADC channel conversion is delayed by two clock cycles compared to the PPS signal, with the first 
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cycle using PPS rising edge detection and generating 200-Hz sampling pulses and the second cycle for 

triggering the conversion by the 200-Hz pulse train. Since the system clock is 39 MHz in the logic 

analyzer, the signal delay of Channel No. 0 is 0.05 μs. Other channels’ signal synchronization errors 

are caused by their previous channel sampling time, and the longest delay is five-times the ADC 

sampling time. Since the shortest delay is 0.05 μs and the longest one is 22 μs, the effect of sampling 

time delay could be ignored for the deeply-coupled system, even in a highly dynamic environment. 

 

Figure 12. Sequence diagram of the IMU data sampling. PPS means pulse per second. 

4.2.3. INS Aiding Information Delay 

If the INS aiding information cannot be provided to the receiver tracking loop and reflect the 

vehicle dynamics in time, its contribution will be greatly degraded, especially with strong vehicle 

dynamics. To ensure the performance of the deeply-coupled system, the time delay of the aiding 

Doppler should be short enough. 

Data transmission is carried out between the FPGA and DSP in the integrated system. On the one 

hand, GNSS data and IMU data use the same transmission channel (EMIF), which causes basically the 

same delay. On the other hand, the EMIF can make communication efficient and seamless. Therefore, 

the processing time difference between loop filter output and INS aiding information is mainly caused 

by the different processing time of the discriminator, loop filter and INS mechanization, as well as 

Doppler estimation. In order to reduce the INS aiding information delay, the Doppler estimation is 

firstly executed once the INS mechanization is completed. Figure 13 shows the test result of adding 

data delay. While the operation time is about 382 μs, the transmission time is about 12 μs, which is 

negligible. Assume the dynamics of the platform is 100 m/s2; the Doppler change rate will be  

525 Hz/s. Therefore, a delay of 0.4 ms causes a 0.21-Hz Doppler error, which has very little effect to 

the tracking loop.  
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Figure 13. Time delay of the INS aiding data. 

Based on the design and optimization of the hardware prototype, the scalar-based deeply-coupled 

system was implemented on the platform in real time. With the guidance of the proposed steady-state 

error model, the INS-aided second-order PLL is designed on the embedded hardware platform. Next, 

the tracking performance evaluations of the second-order PLL before and after INS aiding will be 

carried out on the hardware prototype. 

5. Tracking Performance Verification 

To verify the effect of the INS aiding to carrier phase tracking performance for dynamic 

applications, comparison testing of normal PLLs and INS-aided PLLs is carried out on the hardware 

prototype under simulation and field vehicle scenarios.  

The parameters of PLLs are selected based on the analysis results of the steady-state models given 

in Section 3. According to Figure 8, the optimal bandwidth of INS-aided PLLs is about 3 Hz when the 

vehicle acceleration is 9.8 m/s2, the bandwidth of INS-aided PLLs is set as 3 Hz. Figure 6 shows that 

the tracking error of normal PLLs under static conditions is also minimum when the bandwidth is set at 

about 3 Hz. However, the bandwidth of normal PLLs has to be widened to keep lock under motion 

conditions in practice, as shown in Figure 8. To verify the conclusion that the bandwidth can be set 

narrow enough under motion conditions only when the PLLs are aided by INS, the tracking 

performance of the normal PLLs with a bandwidth of 3 Hz is compared with the INS-aided PLLs with 

the same bandwidth. To demonstrate another conclusion that INS-aided PLLs could reduce the 

tracking error under motion conditions, the tracking error of the normal PLLs with a bandwidth of  

10 Hz is compared with the INS-aided PLLs with a bandwidth of 3 Hz.  

5.1. Simulator-Based Testing and Verification 

A GNSS/INS hardware signal simulator can generate typical scenarios with strict repeatability, well 

controlled motion states, less external disturbance and, most importantly, with perfect true values for 

error analysis. The simulation testing setup is shown in Figure 14. GPS L1 and IMU signals from the 

simulator are connected to the deeply-coupled hardware prototype through the RF module and the 

IMU module, respectively. Additionally, Table 2 shows the two typical IMU configuration parameters 

used in the simulation, one for low-grade MEMS IMU, the other for medium-grade IMU. To test the 

PLL’s dynamic tracking performance, two sets of motion scenarios are designed, including the static, 
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acceleration/deceleration, constant speed, turning, etc., while the maximum acceleration is less than  

5 m/s2 in the first set of motion scenarios, and the maximum acceleration is about 25 m/s2 in the 

second set of motion scenarios. 

 

Figure 14. Setup of the simulation testing. 

Table 2. IMU configuration parameters in the simulator. IXSEA is the model of a typical 

medium-grade INS. 

Parameters 
Low-Grade IMU 

(MEMS) 
Medium-Grade IMU 

(IXSEA) 

Gyro bias (deg/h) 36 0.05 
Gyro white noise (deg/√h) 3.0 0.003 
Gyro scale factor (ppm) 300 30 

Accelerometer bias (mGal) 2000 100 
Accelerometer white noise (m/s/√h) 0.12 0.09 

Accelerometer scale factor (ppm) 300 40 

In the lower dynamic scenario (the maximum acceleration is less than 5 m/s2), the tracking error of  

pseudorandom noise (PRN) 22 as an example is analyzed with a CNR of 45 dB-Hz and an elevation of 

20 degrees. Figure 15 shows the tracking errors of normal PLLs and INS-aided PLLs. While the upper 

part in each subfigure is the Doppler between the vehicle and satellite, which could reflect the vehicle 

movement toward the satellite, the lower part is the discriminator output, which could reflect the phase 

tracking error [27]. 

Figure 15a shows the tracking performance of the normal second-order PLL with an integration 

time of 20 ms and a bandwidth of 10 Hz. Since the vehicle acceleration is small and the bandwidth of 

the PLL is wide, the tracking error almost has no change when the vehicle movement changes.  

Figure 15b depicts the tracking error of the normal second-order PLL with an integration time of 20 ms 

and a bandwidth of 3 Hz. The overall magnitude of the tracking error does not significantly reduce 

compared with that in Figure 15a. That is because compressing the bandwidth cannot remove much 

thermal noise when the GNSS signal is strong, which can be explained by Equation (4). However, a 

larger error would appear once the vehicle movement changes due to the narrow bandwidth. The above 

phenomenon illustrates that a normal PLL is not suitable for a narrow bandwidth to suppress noise 
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under dynamic conditions. As is seen in Figure 15c,d, with the MEMS INS or the medium-grade INS 

aiding, the tracking error of the PLL with an integration time of 20 ms and a bandwidth of 3 Hz does 

not increase when the vehicle accelerates/decelerates.  
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Figure 15. GNSS carrier phase tracking error in the lower dynamic scenario testing based 

on the simulator. (a) Normal PLL (20 ms, 10 Hz); (b) normal PLL (20 ms, 3 Hz);  

(c) MEMS INS-aided PLL (20 ms, 3 Hz); (d) medium-grade INS-aided PLL (20 ms, 3 Hz). 

In the higher dynamic scenarios (the maximum acceleration is about 25 m/s2), the tracking error of  

PRN 24 as an example is analyzed with a CNR of 50 dB-Hz and an elevation of 34 degrees. Figure 16 

shows the tracking errors of normal PLLs and INS-aided PLLs. Figure 16a shows the tracking 

performance of the normal second-order PLL with an integration time of 20 ms and a bandwidth of  

10 Hz. Although the bandwidth is wide, the phase tracking error has a significant increase due to large 

dynamics. The above phenomenon illustrates that a normal PLL is not suitable for long time 

integration and a narrow bandwidth to suppress noise when the vehicle acceleration is large (more than 

9.8 m/s2). As seen in Figure 16b, the phase tracking error of MEMS INS-aided second-order PLL with 

an integration time of 20 ms and a bandwidth of 3 Hz slightly increased because of the large dynamics. 
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Figure 16. GNSS carrier phase tracking error in the higher dynamic scenario testing based 

on the simulator. (a) Normal PLL (20 ms, 10 Hz); (b) MEMS INS-aided PLL (20 ms, 3 Hz). 

The test results in Figures 15 and 16 are summarized in Table 3, which clearly shows the 

performance differences of various types of PLLs. 

Table 3. Standard deviations of carrier phase tracking errors (in degrees) for PLLs. 

1 PLL Type Testing Conditions Static Portions Motion Portions All Portions

2 
Normal PLL 
20 ms, 10 Hz 

Acc = 5 m/s2 
CNR = 45 dB-Hz 

6.0 7.9 6.3 

3 
Normal PLL 
20 ms, 3 Hz 

Acc = 5 m/s2 
CNR = 45 dB-Hz 

5.1 21.0 8.7 

4 
MEMS-aided PLL 

20 ms, 3 Hz 
Acc = 5 m/s2 

CNR = 45 dB-Hz 
5.4 6.1 5.5 

5 
IXSEA-aided PLL 

20 ms, 3 Hz 
Acc = 25 m/s2 

CNR = 45 dB-Hz 
5.2 6.0 5.3 

6 
Normal PLL 
20 ms, 10 Hz 

Acc = 25 m/s2 
CNR = 50 dB-Hz 

1.4 18.2 6.6 

7 
Normal PLL 
20 ms, 3 Hz 

Acc = 25 m/s2 
CNR = 50 dB-Hz 

 Lose lock  

8 
MEMS-aided PLL 

20 ms, 3 Hz 
Acc = 25 m/s2 

CNR = 50 dB-Hz 
1.3 2.1 1.7 

Comparing Line 2 and Line 3 in the table, the statistical results of the normal PLL and the INS-aided 

PLL with a bandwidth of 3 Hz under a CNR of 45 dB-Hz and an acceleration of 5 m/s2 show that the 

static tracking error of the normal PLL is slightly lower than that of the INS-aided PLL, which is 

because the INS bias-type errors are transferred to the PLL. However, the dynamic tracking error of 

the normal PLL is much larger than that of the INS-aided PLL, which is consistent with the model 

analysis result in Figure 8. Hence, the bandwidth of the PLL can be set narrow enough only when the 

PLL is aided by INS to respond to the vehicle dynamics, which verifies the model analysis conclusion 

in Section 3.3. Comparing the statistical results of the normal PLL with a bandwidth of 10 Hz (Line 1) 

with the INS-aided PLL with a bandwidth of 3 Hz (Line 3) under a CNR of 45 dB-Hz and an 
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acceleration of 5 m/s2, the static and dynamic tracking errors of the INS-aided PLL are both lower than 

that of the normal PLL, which is consistent with the model analysis result shown in Figure 8. The 

advantage of the PLL with INS aiding would be more apparent with the GNSS signal attenuation, as 

shown in Figure 9. When the maximum acceleration is up to 25 m/s2, the dynamic tracking error of the 

normal PLL with a bandwidth of 10 Hz has significant increases. Therefore, the bandwidth of the 

normal PLL needs to be wider to reduce the dynamic error. On the contrary, the INS-aided PLL’s 

dynamic tracking error only has a small increase, compared to its static tracking error. Therefore, the 

INS-aided PLL could reduce the carrier phase tracking error by compressing the bandwidth under 

motion conditions, which agrees with the analysis conclusion in Section 3. 

Comparing Line 2 and Line 3, the static tracking error of the INS-aided PLL is slightly worse (not 

more than one degree) than that of the normal PLL, because of the INS bias-type errors, which is 

consistent with the analysis result shown in Figure 6. The dynamic tracking error of the PLL aided by 

the MEMS INS is almost the same as that aided by the medium-grade INS under vehicle dynamic 

conditions, which agrees with the model analysis results in Figures 8 and 9. All test results are 

consistent with the analysis results of the models, which verifies the feasibility of the proposed models 

in Section 3. 

5.2. Vehicle-Based Testing and Verification 

The objective of the field vehicle test is to validate the simulation results obtained in the previous 

section and to evaluate the real-time navigation performance of the deeply-coupled hardware prototype 

under realistic conditions.  

 

Figure 17. Setup of vehicle testing. 

The vehicle dynamic testing was carried out in the suburbs of Wuhan under the open sky on  

21 June 2013, to further verify the tracking performance. The test consists of a vehicle equipped with 

the self-built deeply-coupled prototype, medium-grade INS (FSAS), etc., and the open sky drive test, 

as shown in Figure 17. A GPS intermediate frequency (IF)/IMU raw data recording and playback unit 

is developed based on the hardware prototype, which cannot only replay GPS IF/IMU data to debug 

the deeply-coupled hardware prototype, but also can replace the onboard MEMS IMU data by other 
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IMU data, such as FSAS, to achieve medium-grade INS-aided PLLs testing. The acceleration and 

deceleration of the road vehicle tests were less than 5 m/s2. Using PRN 13 as an example, the tracking 

error was analyzed with a CNR of 48 dB-Hz and an elevation of 45 degree.  
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Figure 18. GNSS carrier phase tracking error testing based on the real vehicle test.  

(a) Normal PLL (20 ms, 10 Hz); (b) normal PLL (20 ms, 3 Hz); (c) MEMS INS-aided PLL 

(20 ms, 3 Hz); (d) medium-grade INS-aided PLL (20 ms, 3 Hz). 

Figure 18 shows the tracking errors of normal PLLs and INS-aided PLLs. Figure 18a depicts the 

tracking error of a normal second-order PLL with an integration time of 20 ms and a bandwidth of  

10 Hz. The tracking error almost has no change when the vehicle movement changes, similar to the 

simulator testing results in Figure 15a. Although the road vehicle dynamics are small (less than 5 m/s2), 

the dynamic tracking error increases significantly when the bandwidth of the normal PLL is 

compressed to 3 Hz, as shown in Figure 18b, similar to the simulator testing results in Figure 15b. 

Therefore, if the bandwidth of the normal PLL is compressed to enhance the tracking sensitivity of the 

carrier phase, its dynamic response error would increase, which is consistent with the normal PLL’s 

error model, shown in Equation (8). 

Figure 18c,d respectively depict the tracking error of the MEMS INS-aided PLL and the  

medium-grade INS-aided PLL with an integration time of 20 ms and a bandwidth of 3 Hz. The carrier 

phase tracking error does not increase with the vehicle dynamics, which is consistent with the 
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theoretical analysis and the simulator test results. Furthermore, the assisting effect of MEMS IMU to 

the PLL is almost as good as the medium-grade IMU aiding effect. Therefore, the vehicle test results 

further validate the performance of INS-aided PLL designed based on the proposed steady-state error 

model on the deeply-coupled hardware prototype. 

INS-aided PLLs can reduce the tracking error, and the navigation precision should be improved 

accordingly. This is verified by comparing the velocity errors of integrated navigation using the 

Doppler measurement from the PLLs without and with MEMS INS aiding. Table 4 shows the 

performance differences of the integrated navigation results without and with INS aiding. The velocity 

errors are clearly smaller when the PLL is aided by INS, as expected. Therefore, the INS-aided loops 

in deeply-coupled systems can improve the navigation performance. 

Table 4. Standard deviations of velocity errors (in m/s) of integrated navigation. 

PLL Type Vel_N Vel_E Vel_D 

Normal PLL (20 ms, 10 Hz) 0.040 0.040 0.127 
MEMS aided PLL (20 ms, 3 Hz) 0.018 0.018 0.046 
IXSEA aided PLL (20 ms, 3 Hz) 0.011 0.011 0.025 

6. Conclusions 

The GNSS/INS deeply-coupled system can realize INS-aided GNSS PLLs and improve the 

dynamic tracking performance of the GNSS receiver. Based on the principle of the scalar-based 

deeply-coupled system, this paper proposes comprehensive error models and analyzes the detailed 

steady-state error model of the INS-aided PLLs, which can be used to guide IMU selection, parameter 

optimization and quantitative error analysis of INS-aided PLLs, compared to previous works of rough 

models for qualitative analysis. Then, the real-time deeply-coupled prototype based on a hardware 

platform was developed and optimized, which is unique and convincing compared to previous 

software receiver implementations. Finally, the tracking performances of normal PLLs and INS-aided 

PLLs are tested and compared through simulation and vehicle tests. The test results show that the 

dynamic tracking error of INS-aided PLL is much lower than that of the normal PLLs, compared with 

that of the normal PLLs, but its static tracking error is no more than one degree bigger, which is 

consistent with the proposed steady-state error model in this paper. The test results also verified that 

low-cost MEMS IMU performs as well as medium-grade INS in aiding PLLs. Moreover, the final 

navigation performance can be improved in terms of the INS-aided GNSS tracking loops. The 

proposed error model and the developed deeply-coupled hardware prototype in this paper can be further 

applied to the high-sensitivity and anti-interference GNSS receiver design and optimization under  

dynamic conditions. 
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