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Abstract: Land surface temperature (LST) images retrieved from the thermal infrared (TIR) 

band data of Moderate Resolution Imaging Spectroradiometer (MODIS) have much lower 

spatial resolution than the MODIS visible and near-infrared (VNIR) band data. The coarse 

pixel scale of MODIS LST images (1000 m under nadir) have limited their capability in applying 

to many studies required high spatial resolution in comparison of the MODIS VNIR band data 

with pixel scale of 250–500 m. In this paper we intend to develop an efficient approach for 

pixel decomposition to increase the spatial resolution of MODIS LST image using the VNIR 

band data as assistance. The unique feature of this approach is to maintain the thermal radiance 

of parent pixels in the MODIS LST image unchanged after they are decomposed into the 

sub-pixels in the resulted image. There are two important steps in the decomposition: initial 

temperature estimation and final temperature determination. Therefore the approach can be 

termed double-step pixel decomposition (DSPD). Both steps involve a series of procedures 

to achieve the final result of decomposed LST image, including classification of the surface 

patterns, establishment of LST change with normalized difference of vegetation index 
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(NDVI) and building index (NDBI), reversion of LST into thermal radiance through Planck 

equation, and computation of weights for the sub-pixels of the resulted image. Since the 

Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) with much 

higher spatial resolution than MODIS data was on-board the same platform (Terra) as MODIS 

for Earth observation, an experiment had been done in the study to validate the accuracy and 

efficiency of our approach for pixel decomposition. The ASTER LST image was used as the 

reference to compare with the decomposed LST image. The result showed that the spatial 

distribution of the decomposed LST image was very similar to that of the ASTER LST image 

with a root mean square error (RMSE) of 2.7 K for entire image. Comparison with the evaluation 

DisTrad (E-DisTrad) and re-sampling methods for pixel decomposition also indicate that our 

DSPD has the lowest RMSE in all cases, including urban region, water bodies, and natural 

terrain. The obvious increase in spatial resolution remarkably uplifts the capability of the 

coarse MODIS LST images in highlighting the details of LST variation. Therefore it can be 

concluded that, in spite of complicated procedures, the proposed DSPD approach provides an 

alternative to improve the spatial resolution of MODIS LST image hence expand its applicability 

to the real world. 

Keywords: pixel decomposition; land surface temperature; spatial resolution;  

MODIS; ASTER 

 

1. Introduction 

MODIS thermal infrared (TIR) band data are mainly used to retrieve land surface temperature with 

such techniques as split window algorithms for the study of land surface energy budgets [1,2], water 

resource management [3,4], agricultural drought [5,6], and environmental biogeochemistry processes [7]. 

However, spatial resolution of the data is 1000 m under nadir, which is very low in comparison with that 

of visible and near-infrared band data (for example, 250 m for bands 1 and 2). The retrieved LST images 

from MODIS TIR data are also with much low spatial resolution (1000 m under nadir), which has limited 

their applications in many studies requiring high spatial resolution to identify detailed variation of thermal 

heat flux over the region under study [8]. Therefore, it is very necessary to increase the spatial resolution 

of MODIS LST images in order to meet the needs of many studies [9,10] requiring pixel scale to identify 

the details of LST variation under complicated environments[11,12]. 

To increase the spatial resolution of an image actually means to decompose its pixels into smaller 

ones. A number of studies have been done for visible and infrared band data [13–15]. Data fusion has been 

a well-known technique to integrate multi-sensors or multi-sources image data with different spatial 

resolutions (hence pixel scales) into an image with better pixel scale [16,17]. Gao et al., proposed the 

spatial and temporal adaptive reflectance fusion model (STARFM) for fusing Landsat and MODIS 

surface reflectance data to produce a synthetic “daily” surface reflectance product at the ETM + spatial 

resolution [18]. Hilker et al., improved the model through adding the day of disturbed information, extracted 

from the time-series MODIS images, to reduce the possible errors in the resulting fused image [19]. 
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Several attempts have also been made to increase the spatial and temporal resolutions of thermal 

infrared imagery or LST data [20–22]. Guo and Moore developed a pixel block intensity modulation (PBIM) 

method to improve 120 m spatial resolution of Landsat TM thermal band 6 image into 30 m through 

integrate topographic details in reflective spectral bands for each thermal pixel block. The method 

improves the thermal variation caused by topography to 30 m resolution while maintaining the average 

thermal digital number (DN) unchanged [22]. Liu and Pu developed two methods to downscale the coarse 

resolution TIR radiance for sub-pixel temperature retrieval [23]. By considering the relationship of LST 

or emissivity between NOAA-AVHRR and Landsat TM data, Stathopoulou and Cartalis improved the PBIM 

method by defining a scaling factor to downscale AVHRR LST [24]. Nichol developed an emissivity 

modulation with a simplified assumption that thermal emissivity was uniform within the low-resolution 

pixels to decompose the images with coarse pixel scale into fine one using the emissivity estimated from 

the auxiliary data with the same pixel scale as the decomposed one [25]. Recently attempts have been 

made to use the spectral unmixing model and artificial neural network for disaggregation of the TIR or 

LST data [20,21]. 

Due to very high temporal resolution, MODIS data have been widely used for various studies.  

The low spatial resolution of MODIS thermal band data have been a major obstacle for application of 

the data to many studies such as urban heat island monitoring and agro-drought monitoring that required 

high spatial resolution to highlight details of spatial variation in the region under study. Several efforts 

have been made to down-scale the coarse pixel of MODIS thermal infrared band data into better spatial 

resolution [11]. The down-scaling was generally done through the well-known LST-NDVI relationship. 

Kustas et al., developed an approach called DisTrad method to establish a simple linear regression equation 

between LST and NDVI to decompose MODIS LST image into a better spatial resolution [26]. Essa et al., 

improved the evaluation DisTrad (E_DisTrad) method for urban areas [27]. 

NDVI is not only one of the factors affecting variation of LST in the real world [12]. Other relevant 

indices have also been used for decomposition of MODIS thermal band data [27,28]. An approach using 

fractional vegetation cover instead of NDVI was developed in Agam et al., for thermal band data 

sharpening [29]. Stathopoulou and Cartalis used the intensity of surface urban heat island to downscale 

the AVHRR LST images into the same spatial resolution as Landsat TM 6 band data [24]. Essa et al., 

compared the applicability of 15 different indices for pixel decomposition of MODIS LST images and 

found that the correlation between LST and the impervious percentage was the best in urban areas [30]. 

Zakšek and Oštir decomposed the pixels of MODIS LST images through principal components and 

regression equation within a moving widow over the assistant image with high resolution [12]. Jing and 

Cheng used a non-linearly transformation to produce the maximal correlation between MODIS TIR bands 

and multiple reflective bands for pixel decomposition of MODIS LST images [28]. These attempts of pixel 

decomposition usually are able to generate a result that is acceptable in image interpretation of thermal 

infrared data. However, they are not able to maintain the thermal infrared radiance of the pixels unchanged 

after decomposition. 

Objective of this paper is to develop an efficient approach for pixel decomposition of MODIS LST 

image to increase its spatial resolution while the thermal radiance of sub-pixels in the resulted decomposed 

LST image remains as the same of the parent pixel from which the sub-pixels are generated. How to 

maintain the radiance of LST image pixels unchangeable while decomposing them properly is the core 

breakthrough of this study. Since two steps are involved in our proposed approach for pixel decomposition 
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of MODIS LST image: initial temperature estimation for the sub-pixels in the resulted LST image and 

final temperature determination through weighting approach to maintain the thermal radiance unchanged 

after decomposition, we term it the double-step pixel decomposition (DSPD). After describing the theoretical 

basis and the image processing procedures of the DSPD approach, we designed an experiment to validate 

it through comparison with evaluation DisTrad (E-DisTrad) method developed by Essa et al. [27], which 

is very close to our DSPD method in the first step of pixel decomposition. Therefore, the paper is organized 

as a methodology section presenting the details of the DSPD approach and a result section to validate 

the approach as well as a conclusion to summarize the key points of the study. 

2. Background 

To increase the spatial resolution of a MODIS LST image actually means to decompose its pixels 

into smaller ones with relative high spectral multispectral image as assistance. Since ASTER was on 

board the same Terra platform as MODIS for Earth observation, the spatial resolution of MODIS LST 

can be decomposed from 1000 m into 250 m with its VNIR data or 90 m with ASTER visible/infrared 

(VNIR) data. The LST observed by ASTER can be the true value to validate the MODIS LST decomposed 

result, so the LST product and multi-spectral data of MODIS and ASTER are chosen as our experiment data. 

2.1. Dataset 

For the application site of Washington (Figure 1), the MODIS LST product (MOD11A1), MODIS 

emissivity product (MOD11A1, MOD11B1), ASTER LST product (AST_08), ASTER emissivity 

product (AST_05) and ASTER multi-spectral data (AST_L1B) are collected. A pair of MODIS and 

ASTER images were obtained for this experiment. The images were acquired at 16:03 Greenwich time 

(12:03 US east time) on 24 August 2003. The MODIS image covers the eastern region of USA (Figure 1a), 

while the ASTER image only occupies a small part of the MODIS image due to its very high spatial 

resolution. Figure 1b shows the ASTER image. After geometric correction, the pixel scale of the MODIS 

image is 1000 m while the scale of ASTER image is 90 m. 

In order to validate the approach, a small typical subset of image covering the same region was made 

from the MODIS and ASTER images. Figure 1c shows the subset from MODIS image with  

50 × 50 pixels and Figure 1d is the subset from ASTER image with 550 × 550 pixels. The subset covers 

parts of Washington DC and Maryland region, with Chesapeake Bay in its east. Three surface patterns 

can be easily identified in the subsets: urban region, water surface and natural terrain. 

2.2. Pre-Processing of the Dataset 

Since the spatial resolution and data format are different between MODIS LST product and VNIR 

data, the dataset need to do some pre-processing before they can be used. The coordinate reference 

system of MODIS product need to be converted to the UTM/WGS84 same as the ASTER data. Then an 

image-to image georeferencing is performed by collecting many dispersed ground control points (GCPs) 

throughout each image and applying 1st-order polynomial transformation to match the ASTER data with 

MODIS using the nearest neighbor resampling method. Then the co-registered images are overlaid over 

one another in order to examine potential pixel misalignement caused by different spatial resolution of 
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MODIS and ASTER. Indeed, some misalignment was visually detected, which is further corrected by 

the upper-left corner of the ASTER image [24]. 

 

Figure 1. The location of the data used of the approach through experiment with the MODIS 

and ASTER images on-board the same Terra platform of remote sensing system for Earth 

observation, (a) the MODIS image and its geographical location in the eastern part of USA, 

RGB: 321; (b) the ASTER image, RGB: 3N21; (c) the MODIS subset covering the 

Washington DC and Maryland region; (d) the ASTER subset covering the same region. The 

rectangles A, B, C, and D are the interested areas for comparison.  

3. Methodology 

3.1. Theoretical Principle of DSPD 

The TIR band data of remote sensing system such as MODIS are usually with relative much lower 

spatial resolution than the reflective ones (usually in VNIR spectral region) on the same system due to 

the fact that TIR data were obtained through detecting the ground-emitted thermal radiance which is 

much weaker than the ground-reflected solar irradiance which becomes the energy for optical imaging 

system according to spectral theorem described by Planck equation. As to MODIS, the LST product 

retrieved from MODIS TIR data (bands 29–36) are with a spatial resolution of 1000 m under nadir 

viewing while VNIR data (bands 1 and 7) are with the resolution of 250 m for bands 1 and 2 or 500 m 

for bands 3–7. This coarse pixel scale of the MODIS LST images has limited their application to 

environmental issues requiring high spatial resolution to detect the exiguous variation of thermal properties.  



Sensors 2015, 15 309 

 

 

One way to solve the problem of low spatial resolution of MODIS LST images is to increase their 

spatial resolution through so-called pixel decomposition techniques. In this paper we intend to develop 

a new approach for the decomposition of MODIS LST images. Since the existing methods for 

decomposition of thermal infrared data and its retrieved LST images does not keep the thermal radiance 

of pixels unchanged after they are decomposed, our goal in the study is to break through this limit to 

maintain the thermal radiance in the decomposed image equal to their parent pixel from which they  

are generated. 

Decomposition of MODIS LST images usually requires assistance of auxiliary data. In our case, the 

available auxiliary data covering the same region as the LST image are the MODIS VNIR band data 

such as bands 1 and 2 with pixel scale of 250 m or bands 3–7 in 500 m. Therefore, our specific goal is to 

develop an approach for pixel decomposition to increase the 1000 m spatial resolution of MODIS LST 

images into the same scale of 250 m using the available MODIS VNIR band data (e.g., bands 1 and 2) 

as auxiliary data. 

Figure 2 illustrates the main theoretical principle of our approach for pixel decomposition. In order to 

divide the 1000 m MODIS LST image pixel into the decomposed sub-pixels of 250 m scale and to 

maintain the thermal radiance of the parent pixel unchanged, we have to use the auxiliary data to compute 

a weight for each of the decomposed sub-pixels so that the total thermal radiance of the parent pixel can 

be distributed among the sub-pixels. The final result of decomposed LST image can be computed using 

the relationship between thermal radiance and surface temperature for each sub-pixel. 

 

Figure 2. Theoretical principle of our DSPD approach for pixel decomposition of MODIS 

LST image with its VNIR/SWIR data. 
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Therefore, for a parent pixel i in the MODIS LST image (Figure 2), we can use the known land surface 

temperature (Ts) to compute its thermal radiance R(Ts) as follows using the Planck equation formula 

about the radiance at a given wavelength range [31–33]: 
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where R(Ts) is the thermal radiance with land surface temperature Ts at given wavelength range (W·m−2) 

of the parent pixel i in MODIS LST image; εi is the emissivity of the pixel at given wavelength range 

λ1–λ2 (μm); Rb(Ts) (Unit, W·m−2) is the blackbody thermal radiance at a given wavelength range  

λ1–λ2 (μm). Ts is the land surface temperature (K); C1 and C2 are the radiance constants with  

C1 = 1.191 × 108 W·μm4·sr−1·m−2 and C2 = 1.439 × 104 μm K respectively.  

For convenient calculation and model, the relationship between thermal radiance of blackbody (Rb) 

and temperature (Ts) in specific wavelength (e.g., 8–13.5 μm, 10.78–11.28 μm) range will be found: 
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where K1 and K2 are the coefficient of thermal radiance and temperature of the blackbody at different 

wavelength range given in Table 1. 

Table 1. Coefficient of thermal radiance and temperature of the blackbody at different 

wavelength ranges. 

Wavelength (μm) K1 (W·m−2) K2 (K) 

8–13.5 17,890 1411 

10.78–11.28 1321 1339 

If we are able to find a radiance weight for each sub-pixel in the decomposed LST image, the thermal 

radiance of the sub-pixels can be easily computed as follows:  

Rd_k = Wk R(Ts) for k = 1,2,3….16 (3) 

where Rd_k is the thermal radiance of sub-pixel k, and Wk is the weight of the sub-pixel k, R(Ts) is the 

thermal radiance of the parent pixel. Since the pixel scale of auxiliary data (e.g., MODIS NVIR bands 1 

and 2) is 250 m, the number of the decomposed sub-pixels for the parent pixel should be 16. In order to 

maintain the thermal radiance of the parent pixel i unchanged, we have: 
16
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Then the LST of each sub-pixel in the decomposed LST image can then be computed with Equations (1) 

and (2) as follows: 
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 (5) 

where Td_k is the decomposed LST for the sub-pixel k in the decomposed LST image. 
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In order to use Equation (5) to compute the land surface temperature for the decomposed pixels, one 

has to determine the weight and the emissivity for each sub-pixel. This can be done through the auxiliary 

VNIR band data. 

3.2. Determination of Weight for the Pixel Decomposition 

The radiance weight is needed to the computation of thermal radiance for each sub-pixel in the 

decomposed LST image. Then the LST of each sub-pixel could be calculated by its decomposed thermal 

radiance. Since we are not able to directly obtain the true decomposed temperature for determination of 

the weight to decompose the parent pixel, we use other estimated temperature for computation of weight for 

the sub-pixels and we term the estimated temperature at this stage the initial temperature for the sub-pixels.  

If we can estimate the initial decomposed temperature (Tk) and emissivity (εk) for each sub-pixel of 

the decomposed LST image as shown in Figure 2, we are able to compute the thermal radiance at given 

wavelength of each sub-pixel as follows using Planck equation formula about the radiance as follows: 
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 (6) 

where Rk is the estimated thermal radiance for sub-pixel k, Tk and εk are the estimated initial temperature 

and emissivity of the sub-pixel. Therefore the total thermal radiance of the sub-pixels can be estimated 

as follows: 

16
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  (7) 

where Rtot is the total thermal radiance of the decomposed sub-pixels from the parent pixel. In order to 

meet the Equation (4) to maintain the thermal radiance of the parent pixel unchanged after decomposed, 

the weight for each sub-pixel can be determined as follows: 

Wk = Rk/ totR  = 16
16

1

/k k

k

R R


  (8) 

Therefore the importance for weight determination is to properly estimate the emissivity and the 

initial temperature for each sub-pixel k. 

3.3. Estimation of Emissivity for the Sub-Pixels 

It is well known that emissivity of an object is mainly determined by its thermo-physical 

characteristics of the object. For the ground surface, the components composing of the surface are the 

main factors determining the ground emissivity [32,34,35]. Many effective methods have been approved to 

obtain the emissivity, e.g., the Day/Night method [36], grey body emissivity method [37], et al., Since the 

emissivity at different spatial resolution is needed in the decomposition process, we should find a method 

to estimate the emissivity of MODIS at different resolution. So the NDVI thresholds method (NTM) [38] is 

chosen to estimate the emissivity respectively at resolution of 250 m and 1000 m. 

While the emissivity is variable with the wavelength, the NTM can estimate the emissivity of different 

land surface accurately at 10–12 μm range, so we choose the wavelength of band 31 (10.78–11.28 μm) 
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for emissivity estimation and thermal radiance calculate based on the MODIS band wavelength design. 

At this wavelength range, the emissivity can be modeled as follows [38]: 
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Subject to: 

'(1 ) (1 )s v vC F P       (10) 

where ελ is the band emissivity, εvλ and εsλ are respectively the vegetation and soil emissivity, Pv is the 

proportion of vegetation, C is a term due to surface roughness (C = 0 for flat surface), NDVIv and NDVIs 

are the NDVI for a fully vegetated pixel and soil one respectively, F' is a geometrical factor ranging 

between zero and one. 

Usually vegetation cover fraction at pixel scale can be computed from its NDVI as follows [39,40]: 
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v s
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 (11) 

Over particular areas, NDVIv and NDVIs values can be extracted from the NDVI histogram. Values 

of NDVIv = 0.5 and NDVIs = 0.2 were proposed by in to apply the method in global conditions [38]. 

While the value for vegetated surfaces (NDVIv = 0.5) may be too low in some cases, for higher resolution 

data over agricultural sites, the NDVIv can reach 0.8 or 0.9 [41]. 

3.4. Estimation of the Initial Temperature for the Sub-Pixel 

Since the core of our approach for pixel decomposition is to divide the LST of the parent pixel into 

the decomposed sub-pixels, the temperature of the sub-pixel is the final result of the decomposition that 

we intend to obtain from the decomposition. Thus, we are not able to use the true decomposed 

temperature for determination of the weight to decompose the parent pixel. We have to use other 

approaches to estimate the temperature for computation of weight for the sub-pixels and we term the 

estimated temperature at this stage the initial temperature for the sub-pixels. 

It has been well known that land surface temperature was determined by the surface structure shaping 

the thermal performance of the ground surface [26,42,43]. Vegetation has been recognized as the most 

important factor governing the performance of LST variation at regional scale [29]. Thus the relationship 

between vegetation index and LST has been extensively examined for various applications to such issues 

as drought and evaporation [4,5], urban heat island [20] and spatial sharpening of thermal imagery [29]. 

In the study we also use the relationship between NDVI and LST to estimate the initial temperature of 

the sub-pixels for weight determination. Among the three patterns of ground surface, natural terrain has 

the most obvious feature of vegetation dynamics. Thus the relationship between NDVI and LST is 

mainly used to estimate the initial temperature for the sub-pixels categorized as the pattern of natural 

terrain. The establishment is done over the MODIS LST image and the re-sampled NDVI image 

retrieved from the auxiliary VNIR band data to match the pixel scale of LST image at 1000 m. Therefore 

we have the relationship for the initial temperature estimation as follows: 
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Tns = an + bn NDVIr (12) 

where Tns is the LST for the pixels of natural terrain in the LST image, NDVInr is the vegetation index  

in the resampled NDVI image of the pixels, an and bn are the regression coefficients between LST and 

the NDVI. This regression is usually with a standard error of estimation (SEE) due to the fact that the 

relationship is not actually with a rigorous linearity but with a vibration on both sides. Therefore we 

improved the relationship by consideration of this estimate error and then applied to the retrieved NDVI 

image for the estimation of initial temperature of the sub-pixels as follows: 

Tnk = an + bn NDVIs + Rn (T) (13) 

where Tnk is the estimated initial temperature of the sub-pixels classified as natural terrain pattern; NDVIns 

is the NDVI of the sub-pixels computed from the auxiliary VNIR band data; an and bn are regression 

coefficients obtained from Equation (18), Rn(T) is a function to generate random number using computer 

clock as the initial for randomization. Since regression of the relationship between LST and NDVI is 

generally with a SEE, the inclusion of the random number by the function is conFigured to be as follows: 

Rn(T) ≤ ±ASEEn (14) 

where ASEEn is the adjusted SEE, which should be as a function of NDVI with a maximum of ±3 K 

according to our experiences. This is because the vibration of LST for the same NDVI level is with a trend 

of increasing for a decreasing of NDVI in magnitude. Therefore, for sub-pixels with high value of NDVI, 

the LST is generally low and with a vibration to be also small. As a contrast, the LST is usually not only 

very high but also with high vibration for the pixels with a low value of NDVI (Figure 3). Accordingly we 

have the function of ASEEn to NDVI for the natural terrain pattern as follows: 

















8.03.0

8.01.03.03

1.03

NDVIfor

NDVIforNDVI

NDVIfor

ASEEn  (15) 

 

Figure 3. The ASEE as a function of NDVI for estimation of initial temperature to determine 

the weight for pixel decomposition of MODIS LST image. 
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Though natural terrain occupies most of the ground in pixel scale, urban region and water are also the 

common surface patterns that we encounter in remote sensing images. This is especially true when high 

spatial resolution images are under studies. For the VNIR band data with pixel scale of 250 m, the two 

surface patterns also frequently appear. To estimate the initial temperature for the two patterns, we follow 

the same methodology as done for natural terrain. Instead of NDVI, the normalized difference of building 

index (NDBI) and water color index (WCI) are used for the estimation of initial temperature, respectively 

as follows: 

Tmk = am + bmNDBIs + Rm(T) (16) 

Twk = aw + bwWCIs + Rw(T) (17) 

where Tmk and Twk are the estimated initial temperature for the sub-pixels of building surface and water 

bodies, NDBIs and WCIs are the normalized difference of building index and water color index for the 

two surface patterns respectively, am and bm are the regression coefficients between LST and NDBI, aw 

and bw are the regression coefficients between LST and WCI, Rm (T) and Rw (T) are the random function 

for the two surface patterns, which can be given according to the magnitude of their surface temperature 

vibration as follows: 

Rm (T) ≤ ± 4.0 (18) 

Rw (T) ≤ ± 0.3 (19) 

Thus we have the initial temperature determination as follows: 











bodywaterforT
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terrainnaturalforT
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(20) 

where Tk is the estimated initial temperature for weight determination in our approach. 

3.5. Estimation of the Important Parameters for the Approach 

Three important parameters are required to determine for the approach: NDVI, NDBI and WCI. Since 

we use MODIS bands 1 and 2 as our auxiliary data for the decomposition of LST image, the parameter 

NDVI for the auxiliary data can be computed as follows: 

12

12

BB

BB
NDVI




  (21) 

where B2 and B1 are the pixel value of MODIS bands 2 and 1 respectively. Atmospheric correction should 

be done to the two band data before they are used to compute the NDVI. 

The normalized difference of building index (NDBI) and water color index (WCI) can be computed 

as follows: 

26
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  (22) 
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where B6 is the pixel value of MODIS band 6, and ND2 is the DN value of water pixels in MODIS band 2. 

Therefore, the value of WCI ranges from 0–1.0. The color of water tends to be light as WCI increases. 

3.6. Procedures of the Approach for Pixel Decomposition 

The procedures to conduct pixel decomposition with the approach can be summarized as follows: 

(1) Preparing the required data. This includes the MODIS LST and emissivity product with pixel scale 

of 1000 m for the pixel decomposition and the required auxiliary data which is the MODIS VNIR 

band data (e.g., bands 1 and 2) with pixel scale of 250 m, and band 6 with pixel scale of 500 m. 

Resampling MODIS band 6 to pixel scale of 250 m matching that of bands 1 and 2. Geometric 

correction is required to be done for the LST image and the VNIR band data so that they are 

coordinately matched with each other to cover the same geographical region. 

(2) Classifying the auxiliary data. A classified image with three surface patterns for the pixels is 

generated: natural terrain, urban region, and water body. 

(3) Estimating the essential parameters. This is to compute the four essential parameters (e.g., NDVI, 

NDBI, WCI, and Pv) from the auxiliary data, resulting in four corresponding parameter images 

with pixel scale of 250 m. The parameter images are then re-sampled to the pixel scale of 1000 m. 

(4) Estimating emissivity. This is done to the auxiliary NDVI data (250 m) with the NTM, resulting 

in an emissivity image at the wavelength of 10.78–11.28 μm required to compute the weight. 

(5) Establishing regressions equations for the 3 surface patterns. This includes to take a samples of 

pixels from the MODIS LST image and the re-sampled image of the corresponding parameter at 

pixel scale of 1000 m and then to carry on regression analysis between LST and the corresponding 

parameters to determine the coefficients of the regression equations. 

(6) Estimating the initial temperature. This is to apply the regression equations obtained in step 5 to 

the auxiliary data with pixel scale of 250 m, using the classified image and the parameter images 

as assistance. 

(7) Determining the weight. This includes to compute the thermal radiance from the initial temperature 

image and the emissivity image with pixel scale of 250 m and to summarize thermal radiance for 

each block with 4 × 4 pixels in order to match the pixel scale of the MODIS LST image. 

(8) Computing thermal radiance of the sub-pixels with scale of 250 m. This includes to compute the 

thermal radiance of the LST image for each parent pixel and to compute the thermal radiance for 

each of the sub-pixels in the block. 

(9) Reversing temperature from the thermal radiance of the sub-pixels to generate the final result of 

decomposing the LST image. 

The above procedures are illustrated in Figure 4 showing the technical process of the approach.  
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Figure 4. Technical process of the DSPD for pixel decomposition of MODIS LST image with 

its VNIR/SWIR data. 

3.7. Experiments for Validation of the Approach 

The best way to validate the applicability of the approach is to compare the decomposed LST image 

with the simultaneous measurement of LST in the same geographical region. Since ASTER was on board 

the same Terra platform as MODIS for Earth observation, we can use ASTER LST product to validate 

the decomposed LST image if we can find a pair of ASTER and MODIS images matching precisely the 

acquisition time and place. We can use the ASTER LST product to validate the decomposed LST image 

if we can find a pair of ASTER and MODIS images matching precisely the acquisition time and place. 

Spatial resolution of ASTER LST data is with pixel scale of 90 m. Therefore we can decompose the MODIS 

LST image into the same pixel scale as ASTER LST image to check the accuracy of the approach, which 

can be assessed through the root mean error, standard deviation and mean square error between the 

ASTER LST and the decomposed LST image: 

ME = ( ) /m aLST LST N  (24) 

STD = 2( ) /m aLST LST ME N   (25) 

RMSE = 2( ) /m aLST LST N  (26) 
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where ME, STD and RMSE are respectively the mean error, standard deviation and root mean square error 

of the decomposed LST image from the MODIS LST image in comparison with the ASTER LST image, 

LSTm and LSTa are the decomposed LST and the ASTER LST respectively for the corresponding pixels 

in scale of 90 m. N is the pixel number of the ASTER LST image. 

In order to conduct the validation, a series of procedures have to be conducted for computation of  

LST error statistics indices in Equations (24)–(26). As shown in the Figure 5, the decomposition process 

has some difference with the MODIS decomposition with its VNIR. The difference is mainly focus on 

the thermal radiance calculation with ASTER and MODIS. Because the wavelength range of the MODIS 

and ASTER thermal bands are different, and the effective emissivity varies with different wavelength 

range. The radiance cannot be compared directly between MODIS and ASTER. So the broadband 

emissivity (BBE) is used to calculate the thermal radiance of MODIS and ASTER in wavelength range 

8–13.5 μm. Ogwa et al., showed that surface broadband emissivity could be estimated as a linear 

combination of the narrowband emissivity estimates in the range of 8–13.5 μm [33,44]. And Cheng et al., 

give the broadband emissivity estimation method of ASTER and MODIS with their narrow thermal band 

emissivity [31]: 

_ 10 11 12 13 140.197 0.025 0.057 0.237 0.333 0.146bb ast           (27) 

_ 29 310.095 0.329 0.572bb mod      (28) 

where εbb_ast and εbb_mod are respectively the BBE of MODIS and ASTER, ε10 to ε14 are the ASTER thermal 

narrowband emissivity from band 10 to 14. ε29 and ε31 are the MODIS thermal narrowband emissivity for 

bands 29 and 31. 

 

Figure 5. Technical process of the DSPD for pixel decomposition of MODIS LST image with 

ASTER VNIR/SWIR data. 
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Similarly the thermal radiance of ASTER and MODIS pixel at 8–13.5 μm could be calculated  

as follow: 
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Then procedures to conduct MODIS LST pixel (1000 m) decomposition into ASTER LST (90 m) 

with the approach can be summarized as follows: 

(1) MODIS thermal radiance calculation: we will calculate the broadband emissivity with the MODIS 

emissivity of band 29 and 31. Then the MODIS thermal radiance at the wavelength range 8–13.5 μm 

will be calculate by the broadband emissivity and MODIS LST. Re-sampling the MODIS thermal 

radiance to 990 m with the nearest neighbor method. 

(2) Re-sampling the ASTER VNIR (15 m) and SWIR (30 m) band data into the pixel scale of 90 m 

to match the ASTER LST data. And calculate the broadband emissivity of ASTER with emissivity 

of 10–14 obtained from the AST_05 product. 

(3) Sub-setting the MODIS image to cover the same geographical region as the ASTER image. 

(4) Applying the procedures outlined in Section 3.6 to perform the pixel decomposition of the 

MODIST LST image into the same pixel scale as the ASTER LST image. Since the ASTER LST 

image has a pixel scale of 90 m and the MODIS thermal radiance data has resampled the scale 

to 990 m, there are 11 × 11 sub-pixels in the decomposed LST image for each parent pixel. 

(5) Selecting a sample representing the 3 surface patterns from the decomposed LST image and the 

ASTER LST data obtain from AST_08 data to compute the RMSE for assessment of the accuracy 

of the approach. 

(6) Comparing with other methods for pixel decomposition. In order to assess the efficiency of the 

approach, we also conduct the decomposition of MODIS LST image using re-sampling technique 

with linear model and the E-DisTrad method presented in Essa et al., for pixel decomposition of 

the MODIS LST image [27]. 

4. Results and Discussion 

4.1. Decomposition of MODIS LST with Its VNIR Data 

We applied the procedures of our DSDP approach to MODIS LST images for pixel decomposition 

with its VNIR data. Initial temperature for each sub-pixel in the decomposed image needs to be firstly 

estimated so that the weight can be computed for the decomposition. This is done on the basis of the 

relationships respectively between LST and NDVI for natural terrain, LST and NDBI for urban surface, 

LST and WCI for water surface. The relationship between LST and remote sensing indices could be 

obtained from the MODIS LST product and MODIS VNIR auxiliary data as shown in Table 2. 

Table 2. LST and remote sensing indices relationship with the MODIS LST and VNIR data 

Landcover LST-RS Indices R2 

Nature surface LSTn = 310.085 − 18.654NDVI 0.7555 

Urban LSTu = 304.884 + 35.212NDBI 0.7218 

Water LSTw = 296.258 + 3.406WCI 0.7603 
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Using the relationships established in Table 2, we are able to estimate the initial temperature for  

the decomposed image and to compute the weight for the decomposition. Then we can decompose the 

experiment MODIS LST image into the pixel scale of 250 m with the procedure in Section 3.6. Figure 6a 

shows the MODIS LST image from the MOD11A1 product with the pixel scale of 1,000 m and Figure 6b 

shows the decomposed result of the MODIS LST image into the pixel scale of 250 m by DSPD approach 

in the Washington DC and Maryland region.  

 

Figure 6. (a) MODIS LST image from the MOD11A1 product and (b) Decomposed result 

of the MODIS LST image into the pixel scale of 250 m by DSPD approach. 

Very similar distribution of the LST can be seen in the two images. Since Figure 6a has a pixel scale 

of 1000 m while the scale in Figure 6b is 250 m, many more details of LST variation in the Washington 

DC and Maryland region can be highlighted in Figure 6b than in Figure 6a. The low LST along the 

Potomac River flowing through Washington DC cannot be clearly identified in the MODIS LST image 

(Figure 6a), while it is clearly seen in the decomposed LST image (Figure 6b) Many more hot points in 

Washington DC are shown in the urban area through the decomposed LST image (Figure 6b). 

4.2. Comparison with the ASTER LST for Validation 

Using the procedure shown in Figure 5, we are able to decompose the entire MODIS LST image into 

the pixel scale of 90 m. Figure 7a shows the decomposed result of the MODIS LST image. The accuracy 

of the decomposed LST (Figure 7a) can be assessed through comparison with the simultaneous 

measurement of LST (Figure 7b) obtain from the ASTER LST product. Very similar distribution of the 

LST can be seen in the two images (Figure 7a,b), demonstrating that the decomposed LST from the coarse 

spatial resolution of MODIS LST image is applicable. 

In order to demonstrate the applicability of our approach, we also conducted the pixel decomposition 

of MODIS LST image using the E-DisTrad method and the re-sampled approach used in general image 

processing. Both E-DisTrad and re-sampled methods are unable to maintain the rule of thermal radiance 

unchanged after decomposition. Figure 7c,d show the results of these two methods. Obvious difference 

can be seen between the decomposed LST image by the E-DisTrad method and the re-sampled approach. 



Sensors 2015, 15 320 

 

 

Much details of LST change can be seen in the result of E-DisTrad method, while the LST distribution 

tends to be even in the result of re-sampled approach. On the other hand, similar LST distribution can 

be seen in the results from our approach and the E-DisTrad method because both are based on the relation 

between LST and remote sensing indices. However, detailed comparison reveals that our decomposed 

LST image is closer than the decomposed LST image of E-DisTrad method to the ASTER LST image. 

Table 3 compares the decomposition accuracy of our approach with the E-DisTad and re-sampled methods. 

As indicated in Table 3, ME and RMSE of our DSPD method is the smallest among the three methods for 

comparison, which demonstrates that our approach is the best among the three. For the entire image, the 

ME of our DSPD is −1.29 K, which mean the decomposition result is totally 1.29 K lower than its true 

result, and the RMSE is 2.7 K, which means that the decomposition accuracy is with an average error of 

~2.7 K in spite of its general applicability. This is mainly attributed to the uncertainty of LST change 

with NDVI and NDBI used to estimate the initial temperature for the sub-pixels. 

 

Figure 7. (a) Decomposed result of the MODIS LST image into the pixel scale of 90 m by 

our DSPD approach; (b) the corresponding ASTER LST image from the AST_08 product; 

(c) the decomposed results of the MODIS LST by E-DisTrad method (d) the LST  

re-sampling result with cubic convolution model for comparison. 

Comparison has been done to each of the three typical surface patterns. As seen in Table 3, our DSPD 

method has the lowest RMSE in all three surface patterns. For natural terrain, the RMSE is 2.1 K for our 

DSPD, 2.5 K for E-DisTrad and 3.1 K for resampling. For urban surface, the RMSE is 3.6 K for our DSPD, 

4.1 K for E-DisTrad and 4.3 K for resampling (Table 3).  
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Table 3. Comparison of LST error statistics indices for different decomposition methods. 

Cases 
DSDP Method E-DisTrad Method Re-Sampled Method 

ME STD RMSE ME STD RMSE ME STD RMSE 

Entire image −1.29 2.73 2.72 3.47 2.79 3.32 −1.50 3.49 3.58 

Natural terrain −0.96 2.94 2.12 6.13 3.34 2.48 −0.82 3.20 3.09 

Urban surface −1.94 2.54 3.59 −1.27 2.35 4.15 −2.86 4.22 4.34 

Water bodies −1.08 1.12 0.31 1.32 0.94 4.04 −1.12 1.42 2.19 

Area A 0.15 2.19 2.61 −1.15 3.02 3.25 −1.52 2.48 3.98 

Area B −0.58 1.71 1.78 6.02 1.26 2.43 −1.02 1.03 2.81 

Area C 0.23 0.27 0.22 2.12 0.84 1.14 0.33 0.32 1.32 

Area D −1.25 3.22 2.81 2.91 3.23 3.85 −1.37 2.22 4.68 

Note: Geographic location of the areas A, B, C, and D is shown in Figure 1d. 

The re-sampling method has the highest RMSE for natural terrain and urban surface and the highest 

RMSE of E-DisTrad method is in water body. Figure 7c indicates that the E-DisTrad method estimates LST 

to be around 304–306 K for the water body while the ASTER LST is generally <300 K (Figure 7b). Thus 

it has an overestimate of ~4 K. Precise comparison has been also conducted to typical areas in the image. 

Four typical areas were choose for the comparison (Figure 1d). Area A is mainly urban surface while area B 

is natural terrain. Area C is mainly water body and area D is a mixture of urban surface and natural terrain. 

Table 3 shows that our DSPD approach has the lowest RMSE among the three methods in these typical 

areas in comparison of the decomposed LST with the ASTER LST. Our DSPD approach has a RMSE of 

2.6 K in area A and 1.8 K in area B, while the RMSE of E-DisTad method is 3.3 K and 2.4 K respectively 

for areas A and B. The RMSE of re-sampled method is the highest, implying that the method is the worst 

in decomposing the pixels of coarse LST images into the fine images with high spatial resolution.  

4.3. Discussion with the Influence of Initial Temperature on DSPD Results 

Several studies such as Agam et al. [29] and Essa et al. [27] used the initial temperature as the  

final decomposed results because they only based on the relationship between LST and remote sensing 

indices for the decomposition. However, this is not the best result, because it does not maintain the 

thermal characteristics of pixel scale to be unchangeable after the decomposition. And Zhu et al., found the 

relationships of LST and remote sensing indices are variable at different spatial resolution [11]. Meanwhile, 

the remote sensing indices value ranges are also changeable with spatial resolution. e.g., the maximum 

NDBI values of MODIS and ASTER are respectively 0.2 and 0.5. So when we used the ASTER NDBI and 

NDBI-LST relationship of MODIS to obtain an initial decomposed temperature, the initial decomposed 

temperature may higher than its true value. This higher estimation has been apparently reflected by the 

scatter plot (Figure 8a) and the difference statistic chart (Figure 9a) between initial decomposed temperature 

and ASTER LST. While this inaccuracy LST estimation has got some improvement after we used the 

DSPD method based on the initial decomposed temperature as shown in Figure 8b and Figure 9b. 

We respectively made the scatter plot by the result of E_DisTrad and DSPD method with the ASTER 

LST respectively, the regression line of DSPD is much closer to the red 1:1 reference line with the slop 

of DSPD regression line (Figure 8b) is 0.65 better than that of E_DisTrad method 0.58 (Figure 8a). The 

difference statistic chart of the decomposed LST and ASTER LST (Figure 9b) also indicated a satisfactory 

estimation with our DSPD method than E_DisTrad method.  
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Figure 8. Scatter plot of the decomposed LST images and ASTER LST: (a) E_DisTrad result 

and ASTER LST image; (b) DSPD and ASTER LST image. 

 

Figure 9. Difference statistic chart of the decomposed LST images and ASTER LST:  

(a) E_DisTrad result and ASTER LST image; (b) DSPD and ASTER LST image. 

Since the E-DisTrad method may generate some error in the LST disaggregation process, we need to 

make some hypothesis to evaluate how much the error in the initial temperature estimated by E-DisTrad 

method would finally influence the DSPD result. For a MODIS LST pixel could decompose to 16 sub-pixels 

with its VNIR data, it is difficult to evaluate error of each sub-pixel could influence the final result. So 

we make an extreme hypothesis, the 16 sub-pixels composed by 15 vegetation sub-pixels (low LST) and 

1 urban sub-pixel (high LST), and the initial temperature error of vegetation and urban sub-pixels is in 

the range of ±3 K. Under this hypothesis, the MODIS LST and the parameters of its sub-pixels were 

given in Table 4. 

Table 4. Parameters of the MODIS LST sub-pixels. 

Vegetation BBE Urban BBE Vegetation (K) Urban (K) MODIS Thermal Radiance (W·m−2) 

0.96 0.92 300 312 158.5876 

The object of DSPD method is to maintain the thermal radiance to be unchangeable after the 

decomposition. If the 15 vegetation sub-pixels among total 16 sub-pixels have the same estimated initial 

temperature error, the thermal radiance conducted by this error will intentionally reflect on the other one 
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urban sub-pixel. As shown in Figure 10, we give the DSPD LST error of urban sub-pixel and vegetation 

sub-pixels under different initial temperature estimation error. An interesting phenomena will be found, 

if the vegetation initial temperature error and the urban initial temperature error increase or decrease 

together, the DSPD LST result of urban and vegetation will both have little error with the green color, because 

the weight for the sub-pixels change little under this situation. Meanwhile, if the vegetation initial temperature 

error and the urban initial temperature error increase or decrease inversely, the DSPD LST result of urban 

and vegetation will have high error with the blue or red color. This means if the 15 vegetation sub-pixels 

initial temperature are higher estimated and urban sub-pixel initial temperature are lower estimated, the 

DSPD urban sub-pixel LST will be much lower than its true LST (the blue region of Figure 10a) while the 

DSPD vegetation sub-pixel LST will be little higher than its true LST (the red region of Figure 10b). Under 

the maximum situation, the vegetation sub-pixels initial temperature have 3 K higher estimation and the 

urban sub-pixel initial temperature has 3 K higher estimation, the DSPD urban sub-pixel LST will be 

5.7 K lower than its true LST while the DSPD vegetation sub-pixels LST will only be 0.4 K higher than its 

true LST. And if the 15 vegetation sub-pixels initial temperature are lower estimated and urban sub-pixel 

initial temperature are higher estimated, the DSPD urban sub-pixel LST will be much higher than its true 

LST (the red region of Figure 10a) while the DSPD vegetation sub-pixel LST will be little lower than 

its true LST (the blue region of Figure 10b). Although the DSPD may obtain a large error under the maximum 

situation in the urban sub-pixel, the error RMSE of total 16 sub-pixels with DSPD is 0.8 K much less 

than the RMSE of initial temperature RMSE of 3 K (Figure 11), so the error RMSE of DSPD is totally 

better than the initial temperature.  

 

Figure 10. DSPD LST error of (a) urban sub-pixel and (b) vegetation sub-pixels under different 

initial temperature estimation error under hypothesis situation. 
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Figure 11. RMSE of total sub-pixels under hypothesis situation by (a) E-DisTrad and (b) DSPD. 

4.4. Applying the Approach to Another Case 

We applied the procedures of our DSDP approach to another site of Shanghai in east of China  

(Figure 12a). With rapid development of economy, urbanization is very obvious in the region, especially 

Shanghai City, the LST product with high spatial resolution is the essential data for urbanization study. 

As shown in Figure 12. The ASTER and MODIS LST in Shanghai area were acquired at 02:47:07 

Greenwich time (10:47:7 local time) on 1 August 2000. Figure 12c shows the subset of the MODIS LST 

image and Figure 12d is the subset of the ASTER LST image covers Shanghai region, the Taicang city 

and Jiading district. The decomposed results of E_DisTrad (Figure 12e) and our DSPD (Figure 12f) all 

could reflect the spatial distribution of high LST in the urban building area and low LST in the vegetation 

and water area. The decomposed LST result of E_DisTrad has an apparently high estimation compared 

with the ASTER LST data. The LST in vegetation area with about 306 K is highly estimated to 310 K, and 

the hot points in the urban area are much more. This high estimation result has been effectively decreased 

after our DSPD method. The decomposed LST result of DSPD in the vegetation area is lower than the 

E_DisTrad result and much similar with the observed ASTER LST. We would find the decomposed LST 

result of DSPD in the urban area of Taicang city and Jiading district is about 2 K lower than ASTER 

LST. This is mainly attributed to the discrepancy between the ASTER and MODIS LST product in this 

area [45]. Therefore our DSPD method provides an alternative approach to improve the spatial resolution 

of thermal remote sensing system such as MODIS with coarse pixel scale. 
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Figure 12. Applying the DSDP approach to the MODIS and ASTER LST image in east China, 

(a) the location of the data used in Shanghai; (b) the ASTER image, RGB: 3N21; (c) the 

MODIS LST subset covering the Shanghai region; (d) the ASTER LST subset covering the 

same region; (e) decomposed results of the MODIS LST into the pixel scale of 90 m by  

E-DisTrad method; (f) decomposed result of the MODIS LST image into the pixel scale of 

90 m by our DSPD approach. 

5. Conclusions 

An efficient approach has been proposed in the study to increase the spatial resolution of MODIS 

LST image. The theoretical basis of the approach is that the change of LST is with accordance with 

characteristics of surface patterns. Therefore, using a scheme to classify the image pixels into three 

surface patterns and establish the relationship between LST and NDVI or NDBI, we are able to decompose 

the pixel scale of the MODIS LST image into the same pixel scale of MODIS VNIR bands which are used 

as auxiliary data for the decomposition. Since the pixel scale of MODIS VNIR bands is 250 m, we are 

able to increase the spatial resolution of the MODIS LST image into 3 times, i.e., to decompose the pixel 

scale of the MODIS LST image from its original 1000 m into 250 m in the resulted LST image. The unique 

feature of this pixel decomposition approach is to maintain the thermal radiance of parent pixels in the 
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MODIS LST image unchanged after they are decomposed into the sub-pixels in the resulted image. There 

are two important steps in the decomposition: initial temperature estimation for the sub-pixels in the 

resulted LST image and final temperature determination through weighting approach to maintain the 

thermal radiance unchanged after decomposition. Therefore it is termed the double-step pixel 

decomposition (DSPD). 

A series of procedures have been developed for the pixel decomposition approach. These include  

re-sampling the MODIS VNIR data, classification of the image pixels into three surface patterns, 

establishment of the relationship between LST and NDVI or NDBI or WCI for the three surface patterns, 

computation of weight for each sub-pixel, and determination of final temperature for the sub-pixels. An 

experiment was conducted in the study to validate the applicability of the approach. Because ASTER and 

MODIS are on board the same platform for Earth observation, the ASTER LST which has much higher 

spatial resolution than the MODIS LST image was used as the true LST measurement to compare with 

the decomposed LST from the MODIS LST image. We compared the DSPD approach with the  

E-DisTrad method and re-sampling method. 

The comparison results indicate our DSPD approach is the best among the three. RMSE of our DSPD 

is 2.7 K for the entire image used for the experiment. Re-sampling method has the highest RMSE, 

implying that it is the worst for pixel decomposition. This is mainly because the method does not 

consider the effect of surface patterns on LST variation in its decomposition, while the DSPD and  

E-DisTrad methods are based on this effect for decomposition. The obvious difference of our DSPD 

from the E-DisTrad is that the thermal radiance remains unchanged after decomposition while E-DisTrad 

does not emphases this principle. 

In spite of general applicability, the decomposition accuracy is not as high as expected. For our DSPD, 

its RMSE indicates that the decomposition is with an average error of ~2.7 K. This is mainly attributed 

to the uncertainty of LST change with NDVI and NDBI used to estimate the initial temperature for the 

sub-pixels. Decomposition accuracy is different in different surface patterns. The lowest RMSE can be 

seen in the water body, which is followed by natural terrain. The urban region has the highest RMSE for 

the decomposition. This is due to the fact that LST has the lowest fluctuation in water bodies and the 

greatest variation in urban region.  

The DSPD approach has been applied to MODIS LST images in east USA and east China for pixel 

decomposition to increase their spatial resolution. Since the MODIS NVIR band data were used as 

assistance for the decomposition, the resulted LST images from the decomposition efficiently increase 

the spatial resolution in both cases. The pixel scale of MODIS LST images were 1000 m while the scale 

of the decomposed LST images is 250 m, implying that the spatial resolution of the LST image has 

increased by three times after decomposition. The obvious increase in spatial resolution remarkably 

uplifts the capability of the LST images in applying to the studies requiring high spatial resolution of 

LST distribution to highlight the tiny variation of thermal flux over ground surface. Much more details 

of LST variation can be clearly identified in the decomposed LST image than in the original MODIS 

LST. Therefore it can concluded that the DSPD approach provide an alternative opportunity to improve 

the spatial resolution of MODIS LST images hence expand the applicability of the images in the real world. 
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