
Sensors 2015, 15, 2086-2103; doi:10.3390/s150102086 
 

sensors 
ISSN 1424-8220 

www.mdpi.com/journal/sensors 

Article 

The Enhanced Formaldehyde-Sensing Properties of  
P3HT-ZnO Hybrid Thin Film OTFT Sensor and Further 
Insight into Its Stability 

Huiling Tai 1,†,*, Xian Li 2,†, Yadong Jiang 1, Guangzhong Xie 1 and Xiaosong Du 1 

1 State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic 

Information, University of Electronic Science and Technology of China (UESTC),  

Chengdu 610054, China; E-Mails: jiangyd@uestc.edu.cn (Y.J.); gzxie@uestc.edu.cn (G.X.); 

xsdu@uestc.edu.cn (X.D.)  
2 Tsinghua National Laboratory for Information Science and Technology (TNList),  

Institute of Microelectronics, Tsinghua University, Beijing 100084, China;  

E-Mail: lixian0317@mail.tsinghua.edu.cn 

† These authors contributed equally to this work. 

* Author to whom correspondence should be addressed; E-Mail: taitai1980@uestc.edu.cn;  

Tel.: +86-28-8320-6505; Fax: +86-28-8320-6123. 

Academic Editor: Ki-Hyun Kim 

Received: 24 October 2014 / Accepted: 5 January 2015 / Published: 19 January 2015 

 

Abstract: A thin-film transistor (TFT) having an organic–inorganic hybrid thin film 

combines the advantage of TFT sensors and the enhanced sensing performance of hybrid 

materials. In this work, poly(3-hexylthiophene) (P3HT)-zinc oxide (ZnO) nanoparticles’ 

hybrid thin film was fabricated by a spraying process as the active layer of TFT for the 

employment of a room temperature operated formaldehyde (HCHO) gas sensor. The effects 

of ZnO nanoparticles on morphological and compositional features, electronic and  

HCHO-sensing properties of P3HT-ZnO thin film were systematically investigated. The 

results showed that P3HT-ZnO hybrid thin film sensor exhibited considerable improvement 

of sensing response (more than two times) and reversibility compared to the pristine P3HT 

film sensor. An accumulation p-n heterojunction mechanism model was developed to 

understand the mechanism of enhanced sensing properties by incorporation of ZnO 

nanoparticles. X-ray photoelectron spectroscope (XPS) and atomic force microscopy (AFM) 

characterizations were used to investigate the stability of the sensor in-depth, which reveals 
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the performance deterioration was due to the changes of element composition and the 

chemical state of hybrid thin film surface induced by light and oxygen. Our study 

demonstrated that P3HT-ZnO hybrid thin film TFT sensor is beneficial in the advancement 

of novel room temperature HCHO sensing technology. 

Keywords: TFT; P3HT-ZnO; formaldehyde gas sensor; heterojunction; stability 

 

1. Introduction 

Formaldehyde (HCHO) is a colorless volatile organic compound (VOC) with a strong,  

pungent-smelling that can be toxic, allergenic and carcinogenic [1]. Breathing air containing low levels 

of HCHO can cause damage to the human body, such as central nervous system damage, blood and 

immune system disorders, as well as bronchospasm, pneumonia and respiratory disease [2,3]. However, 

as an important industrial chemical, HCHO has been widely used in many industrial processes, such as 

in the production of fertilizer and paper, cosmetics and rubber industry [4,5]. Meanwhile, indoor HCHO 

is found in many products used every day around the house. Considering its widespread use, toxicity 

and volatility, exposure to HCHO is a significant consideration for human health. Therefore, developing 

portable, cheaper and resumable HCHO gas sensors operated at room temperature is in urgent need in 

both industrial and residential environments. Considerable efforts have been devoted to the development 

of different types of HCHO gas sensors, including resistive sensors composed of metal oxide 

semiconductor [6] and carbon nanotubes [7,8], quartz crystal microbalance (QCM) sensors [9], organic 

thin-film transistor (OTFT) sensors [10] and fiber-optic biochemical sensors [11]. Among various 

sensors, OTFT has been shown to be an inexpensive, portable and disposable diagnostic device because 

of its low cost, ease of fabrication and solution processibility, which are favorable for gas sensor 

application [12,13].  

In an OTFT-based gas sensor, the active organic semiconductor layer in the channel is the critical 

element for the sensing performance [14]. The response behavior of OTFT sensor is strongly dependent 

on the active thin film properties such as morphology, doping level, surface trap density and grain 

boundaries, and so on. So far, most reports on OTFT-based gas sensors were based on the single sensitive 

materials such as small organic molecules [15,16] or conducting polymer [17,18]. Several approaches 

were demonstrated to improve the sensing performance of OTFT sensors by changing the grain structure 

of organic layer [19] or functional groups [20], or preparing bilayer sensing thin film [21]. Additionally, 

the concept of organic–inorganic hybrid material has been explored to obtain gas sensors with improved 

properties by taking full advantages of both component materials [22,23]. However, little work has been 

focused on employing of such hybrid materials as active layers in OTFT sensors, which could potentially 

combine the advantages of OTFT sensor with an enhanced sensing performance of hybrid materials.  

Until now, various metal oxide including non-transition-metal oxides (SnO2, ZnO, etc.) and 

transition-metal oxides (NiO, WO3, etc.) have been used as HCHO-sensing materials. Among these 

materials, ZnO has attracted particular attention in gas sensor development for a long time due to its 

advantages of high sensitivity, simplicity in fabrication and low cost [6]. The ZnO-based gas sensors 

have been widely used in HCHO detection [24–26]. Recently, some initial results on organic–inorganic 
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hybrid or bilayer thin films-based OTFT sensors were reported by our group using a spraying  

process [10,27,28]. A poly (3-hexylthiophene) (P3HT)-ferric oxide (Fe2O3) hybrid thin film HCHO 

OTFT sensor was demonstrated in [27]. A comparison analysis on P3HT-zinc oxide (ZnO)  

(P3HT-ZnO) hybrid and P3HT/ZnO bilayer films OTFT sensors was given in [28], which revealed that 

P3HT-ZnO hybrid film sensor exhibited optimum sensing properties. Meanwhile, an optimization on 

the process parameters such as P3HT: ZnO weight ratios and airbrushed masses for P3HT-ZnO film 

preparation were reported in [10].  

This work is aimed to acquire a deep and comprehensive understanding of P3HT-ZnO hybrid thin 

film OTFT HCHO sensor. A thorough comparative analysis was performed between single P3HT and 

P3HT-ZnO hybrid thin film OTFT sensors in terms of morphological, compositional, electrical and  

gas-sensing properties. The HCHO-sensing mechanism of the hybrid thin film sensor was also 

investigated. Furthermore, the stability of P3HT-ZnO film sensor in the environment was measured, and 

X-ray photoelectron spectroscope (XPS) and atomic force microscopy (AFM) techniques were 

employed to understand the deterioration of sensor responses.  

2. Experimental Section 

2.1. Preparation of P3HT-ZnO Hybrid Thin Film OTFT Sensors 

Details of experimental processes on OTFT sensor based on P3HT-ZnO hybrid thin film was reported 

in our earlier work in [10]. A schematic drawing of spraying process and OTFT devices is given in 

Figure 1. In short, P3HT (purchased from Luminescence Technology Corp.) chloroform solution was 

mixed with diluted ZnO nanoparticles (purchased from Sigma-Aldrich, 40 wt% dispersed in ethanol, 

<130 nm) to form the blending solution under ultrasonication, and then P3HT-ZnO hybrid thin film was 

spray-deposited on the bottom-contact OTFT device as the active layer. According to parameter 

optimization results in our previous work [10], optimal sensing-properties with maximum changes of 

threshold voltage and response value under 100 ppm HCHO exposure could be obtained when the weight 

ratio of P3HT:ZnO was 1:1 and the airbrushed mass of hybrid solution was 1 mL. These processing 

parameters were thus adopted for preparing P3HT-ZnO hybrid thin film in the present work. The deposited 

OTFT device was followed by heat treatment at 60 °C for 12 h in a vacuum until the solvent was completely 

evaporated. The pure P3HT film coated OTFT device was also prepared under the same condition for 

comparison. The channel width and length of both OTFT devices was 4000 and 25 µm, respectively.  

2.2. Measurement Procedure and Characterization 

The measurements were carried out in a home-built testing system as shown in Figure 2. An image 

of the whole sealed testing chamber was inserted. The OTFT sensor was loaded inside the chamber 

under dry air atmosphere flow before testing to eliminate the ambient gases. Mass flow controllers 

(MFC) were employed to dilute and introduce HCHO vapors with a series of concentrations. All the 

measurement results were obtained in a bright air environment at room temperature. The source 

electrode of OTFT sensor was set to be common and the drain voltage (VDS) is swept from 0 to −60 V 

at gate bias (VGS) between 0 and −50 V in a step of −10 V. The saturation drain-source current (IDS) in 

the accumulation mode was monitored as a good gas-sensing property parameter when exposed to 
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HCHO through Keithley 4200-SCS. The working point (VDS = −50 V, VGS = −30 V) of OTFT sensor 

was chosen in the saturation region of the output characteristics.  

 

Figure 1. A schematic drawing of spraying process and organic thin-film transistor (OTFT) devices. 

 

Figure 2. Schematic illustration of the experimental setup. 

The morphology features of sensitive films were observed using a field emission scanning electron 

microscope (FESEM, FEI Inspect F, Hillsboro, OR, USA) and atomic force microscopy (AFM, Asylum 

Research MFP3D-Bio, Santa Barbara, CA, USA). Ultraviolet-Visible (UV-Vis) spectra were measured 

with UV-1700 pharmaspec (Shimadzu, Kyoto, Japan) in the range of 300~1100 nm. The X-ray 

photoelectron spectroscope (XPS) analysis was performed with a commercial X-ray photoelectron 

spectrometer (Scienta ESCA-200, Uppsala, Sweden) using MgKα X-ray source. The charging effect was 

corrected by using the binding energy of C1s signal at 285 eV. 

3. Results and Discussion 

3.1. Characterization of P3HT, ZnO and P3HT-ZnO Films 

Figure 3 shows the typical SEM surface images of sprayed P3HT film, ZnO film and P3HT-ZnO 

hybrid film. It is seen that P3HT film exhibits discontinuous sheet structure with some cavities because 

of sprayed drops. ZnO nanoparticles appear spherical-like and the film surface is very compact.  



Sensors 2015, 15 2090 

 

 

P3HT-ZnO hybrid thin film with a porous structure is contiguous and dense at the micro-scale and ZnO 

nanoparticles are dispersed in P3HT. However, the hybrid film also exhibits non-uniform morphology 

to some extent, which is assumed to be related to the imperfect blending uniformity and solubility of 

P3HT-ZnO mixture in solvents and sprayed drops, although the blending solution is good enough for 

the film process in the experiment. As compared to the single P3HT film, P3HT-ZnO hybrid film has 

larger surface area and thus provides more adsorption sites, which could contribute to a faster diffusion 

of gas molecules and a higher response value. 

 

Figure 3. SEM graphs of sprayed (a) P3HT film; (b) ZnO film; (c) P3HT-ZnO hybrid film.  

Figure 4 shows the UV-Vis absorption spectra of the P3HT film, ZnO film and P3HT-ZnO hybrid 

film. For the pure P3HT film, the spectrum has a peak at 550 nm and a shoulder at about 600 nm in the 

visible zone, which is attributed to π-π* transition [29]. ZnO nanoparticles thin film absorbs UV light in 

the wavelength range from 300–400 nm because of its wide-band-gap of about 3.37 eV [30,31]. The 

spectrum of P3HT-ZnO hybrid thin film exhibits the overlapping absorption bands of P3HT and ZnO, 

and the maximum adsorption value of hybrid film is twice as much as that of pure P3HT film, indicating 

the increased thickness of hybrid film according to the Beer-Lambert Law. No obvious blue or red shift 

is observed for the hybrid film from as shown in Figure 4, indicating that no distinct chemical interaction 

between P3HT and ZnO occurred. This is further supported by the S 2p XPS spectra of single P3HT and 

P3HT-ZnO hybrid films as shown in Figure 5. The peak of 164.004 eV corresponds to S 2p3/2 of the 

thiophene ring of P3HT [22], and no new peaks are found in the hybrid film. However, the S 2 p3/2 

binding energy of hybrid film increases from 164.004 eV to 164.346 eV as compared to the pristine 

P3HT film, which is probably due to the synergetic effect between P3HT and ZnO components. 

 

Figure 4. UV-Vis absorption spectra of P3HT, ZnO and P3HT-ZnO thin films. 
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Figure 5. S 2p XPS spectra of P3HT and P3HT-ZnO thin films. 

3.2. Electrical Properties of Prepared OTFT Sensors 

The typical output (VGS = −30 V) and transfer characteristics (VDS = −50 V) curves of P3HT and 

P3HT-ZnO thin films based OTFT sensors are shown in Figure 6a,b, respectively. The two sensors 

exhibit a clear p-channel transistor behavior whereas the P3HT film OTFT possesses more obvious linear 

and saturation regions than the hybrid thin film device. The IDS in the saturated regime is given by the 

following equation: 

( )2

2 thGS
i

DS VV
L

CW
I −= μ

 
(1) 

where Ci (17.7 nF/cm2 here) is the capacitance of dielectric layer [10], W = 4000 µm, L = 25 µm. The 

threshold voltage (Vth) and field-effect mobility (µ) values could be extracted and calculated from  

Figure 6 and using Equation (1). A high Vth value of about 40 V for P3HT-ZnO and −2 V for P3HT thin 

film OTFTs was graphically extrapolated from Figure 6b, respectively, and the mobility value of two 

devices was about 6.7 × 10−5 cm2/Vs and 1.6 × 10−4 cm2/Vs, respectively. Based on the SEM analysis, 

the worse TFT characteristics of P3HT-ZnO thin film device could be attributed to the low degree of 

morphological and structural order of hybrid film, and the discontinuous ZnO nanoparticles might also 

affect the carrier mobility. This is not ideal for TFT application which requires higher mobilities, 

however, the contiguous and porous morphology of the hybrid film is beneficial for gas sensing 

applications, as its large surface effective area with more absorption sites offers stronger interaction with 

HCHO gas molecules [32]. 

 

Figure 6. The typical (a) output (VGS = −30 V) and (b) transfer (VDS = −50 V) characteristics 

curves of P3HT and P3HT-ZnO films based OTFT sensors. 
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3.3. HCHO-Sensing Characteristics  

The response and recovery properties to analytes are the most direct and important characteristics for 

gas sensors. The real-time response curves of P3HT and P3HT-ZnO OTFT sensors exposed to  

100 ppm HCHO at room temperature were measured and shown in Figure 7. The sensing response (R) 

is defined by R = (Iair − Igas)/Iair, where Iair and Igas is the IDS in dry air and being exposed to tested gas, 

respectively. A positive value of R implies that the IDS value decreases when the sensor is exposed to 

tested gas and vice versa. It is readily seen that an decrease of IDS is induced in the presence of HCHO 

for the two sensors, and the response was changed by about 0.08 and 0.201 for P3HT and P3HT-ZnO 

thin film OTFT sensor, respectively, indicating a significant enhanced response by more than two times 

for the hybrid thin film sensor. Meanwhile, the P3HT-ZnO OTFT sensor could recover completely to 

the original baseline while the P3HT sensor exhibited very poor reversibility. Therefore, the P3HT thin 

film OTFT sensor was not investigated during our additional measurements. Figure 8 exhibited the 

output (VGS = −30 V) and transfer (VDS = −50 V) characteristics curves of the P3HT-ZnO hybrid thin 

film OTFT sensor exposed to 100 ppm HCHO compared with those in air. It can be observed clearly 

that the output IDS decreases and the Vth of the sensor shifts toward the negative direction under HCHO 

exposure, from which ΔVth of 23 V was extracted. Furthermore, the µ value increases from  

6.7 × 10−5 cm2/Vs to 8.0 × 10−5 cm2/Vs, indicating the multi-parametric properties of OTFT gas sensors.  

 

Figure 7. Real-time response curves of P3HT and P3HT-ZnO film OTFT sensors exposed 

to 100 ppm HCHO at room temperature.  

The transient response of P3HT-ZnO hybrid thin film OTFT sensor as a function of time is shown in 

Figure 9a when exposed to different exposure/evacuation cycles of HCHO at concentrations from 10 to 

150 ppm, indicating a clear decrease of the current in all cases. The curve of sensing response values 

versus HCHO concentrations is given as inset in Figure 9a, in which the sectionalized linear fitting was 

performed for the low and high concentration range, respectively, indicating the good linearity degree 

of hybrid film sensor. Meanwhile, the detection limit of 4 ppm HCHO could be obtained for sensor as 

shown in Figure 9b. It was found that the sensor could not recover completely to their original baseline 

at the relatively low concentration, which is noted as baseline drift [16]. The causes for the baseline drift 

can be multiple. Firstly, there might be a discrepancy between the pre-exposure value and the recovered 

value during the initial exposures for gas sensors, and this effect is called conditioning as a result of 
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residual gas molecules at low concentration, which is likely due to trapping of gas molecules within the 

hybrid thin film [33]. Secondly, there is likely baseline instability in ChemFETs including electrical, 

thermal and analyte-induced instabilities. For OTFTs, the electrical instability is usually the major cause 

of baseline drift, which is associated with charge trapping in organic films and insulator by direct tunnel 

model. Therefore, the phenomenon also might be partly ascribed to the electrical instability when 

exposed to HCHO at the beginning [34]. However, the clear understanding of underlying mechanism of 

these causes should be researched further.  

 

Figure 8. The (a) output and (b) transfer characteristics curves of P3HT-ZnO film OTFT 

sensor exposed to 100 ppm HCHO compared with those in air. 

 

Figure 9. (a) The transient response of P3HT-ZnO hybrid film sensor when exposed to 

different HCHO concentrations, inset was the curve of response values versus concentration; 

(b) the detection limit (4 ppm) measurement curve at room temperature. 

The selectivity of OTFT sensors was investigated with some gases which might interfere with HCHO 

sensing, and the results showed a good specificity in our previously reported work [10]. However, a 

current decrease of sensor was observed when exposed to moisture (50% R.H.), and the response (0.2) 

was comparable to that for 50 ppm HCHO. The mechanism of this phenomenon was supposed to be that 

polar water molecules residing at the grain boundaries interact with hole carriers, or the diffusion of 

water molecules changes the intermolecular interactions in grain boundaries and increases the energy 

barrier for carrier transport [35]. Therefore, the interference of water on the prepared sensor was  
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non-negligible for the practical application. Accordingly, three possible approaches are proposed to 

eliminate the effect of moisture. (1) A gas filtering system could be designed to remove moisture from 

the sensing chamber; (2) Humidity compensation algorithm might be implemented in the read-out signal 

processing system of OTFT sensors; (3) The encapsulation of OTFT devices might be processed; that 

is, a moisture absorption layer (such as typical porous organic fiber humidity-sensitive materials) could 

be installed inside the encapsulation shell with the cover. When the sensor is exposed to HCHO gas, the 

cover could be removed and the moisture would be absorbed by the moisture absorption layer. HCHO 

molecules could penetrate this layer and react with the sensitive layer of OTFT sensor. However, the 

employment of proper technique should be studied further. The performance comparisons of our OTFT 

sensor to various kinds of sensors recently reported are summarized in Table 1. It can be seen that the 

present OTFT sensor can deliver responses at room temperature, unlike the ZnO-based sensor that 

detects HCHO at higher working temperatures. Meanwhile, such OTFT sensors work as reversible 

multi-parameter devices by a simple and feasible spraying process with low cost.  

Table 1. Brief summary of results reported for various types of HCHO sensors. 

Reference Sensor Types Sensitive Materials Preparation Method 
Operating 

Temperature (°C) 

Detection 

Range (ppm) 

[6] resistive ZnO-MnO2 
screen-printing + 

solution growth 
320 0–300 

[24] resistive 
Mn-doped ZnO 

nanorods 
PECVD 400 0–205 

[25] resistive ZnO nanopowders microwave heating 210 0.001–1000 

[36] resistive ZIF-67 --- 150 5–500 

[7] resistive 
MWCNTs with 

amino-group 
mounted suspension RT 0.02–0.2  

[8] conductance 
TFQ functionalized 

SWNT 

self-assembly + 

dropping 
RT 0.15–5 

[9] QCM 
PEI modified chitosan 

membrane 
Electrospinning RT 5–185 

[37] QCM PEI/PVA Electrospinning RT 10–255 

This work OTFT P3HT-ZnO spraying RT 4–150 

Note: ZIF: zeolitic imidazolate framework; TFQ: tetrafluorohydroquinone; PEI/PVA: polyethyleneimine/poly 

(vinyl alcohol); ---: not referred. 

3.4. The HCHO-Sensing Mechanism of Hybrid Thin Film OTFT Sensor 

The response of P3HT thin film to HCHO gas molecules could be explained via multiple factors. In 

general, the channel current would be changed by charge doping or trapping due to analytes for OTFT 

sensors [14]. Since the channel length (25 µm here) is much larger than the grain size of P3HT layer, 

the gas sensing mechanism should be described as polar HCHO molecules adsorbed on the active layer 

or sites dipole-induced charge trapping at grain boundaries through noncovalent bonds (such as 

hydrogen bonds and π interactions), which leads to a decrease in the current [20,38]. From the point of 

view of charge transfer interactions, the decreased current could be attributed to donated or injected 
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electrons from HCHO molecules to P-type P3HT layer, for HCHO is a reductive gas and acts as  

electron-donor, leading to the decreased hole carriers concentration in P3HT material [22].  

It is obvious that introducing ZnO nanoparticles into P3HT has led to the improved HCHO-sensing 

property. The sensing performance should be affected by three independent factors, i.e., receptor 

function, transducer function and utility [39]. The response difference of P3HT and P3HT-ZnO thin film 

sensors is analyzed as follows. (i) It has been proposed that the response behavior is strongly dependent 

on film morphology. Based on SEM images and analysis, the surface of P3HT-ZnO hybrid thin film is 

richer in HCHO molecules binding groups than P3HT thin film, so that HCHO binding probability is 

higher. Meanwhile, gas molecules could access the grains located at inner sites for the porous structure, 

that is, HCHO molecules are likely to bind, and also diffuse into the bulk when intercalating inside 

defects of the hybrid layer. The porous morphology of P3HT-ZnO hybrid film also promotes desorption 

of gas molecules compared with sheet structure of P3HT film, partly resulting in the better reversibility 

of hybrid film sensor; (ii) The donor-acceptor like complex between ZnO nanoparticles and P3HT might 

be formed. The energy diagram of P3HT-ZnO composite is plotted in Figure 10, in which ELUMO and 

EHOMO is the energy level of the lowest unoccupied molecular orbital (LUMO, −3.2 eV) and the highest 

unoccupied molecular orbital (HOMO, −5.0 eV) of P3HT, respectively [31]. EV (−7.6 eV) and  

EC (−4.4 eV) is the energy level of the valence band and the conduction band of ZnO, respectively [40]. 

So, an accumulation p-n heterojunction structure is formed in the P3HT-ZnO composite [41], as shown 

in Figure 10; P3HT acts as the dominant charge transfer with HCHO gas molecules, and more holes will 

accumulate in the heterojunction region for the balance after HCHO gas molecules interact with P3HT, 

which should facilitate charge transfer and result in better gas-sensing properties. Another possible 

mechanism for enhanced HCHO response and reversibility of hybrid film could be associated with lower 

potential barrier of P3HT surface because of the band bending, leading to the reduction of activation 

energy and enthalpy of physisorption for HCHO gas molecules [42], and thus adsorbed HCHO 

molecules are more easily displaced by oxygen at adsorption sites when HCHO was removed by dry air. 

 

Figure 10. The schematic diagram showing the energy level and charge accumulation of 

P3HT-ZnO composite.  
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3.5. The Stability Investigation of P3HT-ZnO Hybrid Thin Film Sensor 

Polymer-based devices are usually prone to the deterioration of performance upon long-term 

exposure in the presence of natural environment [43]. Our prepared P3HT-ZnO hybrid thin film sensor 

was stored in an open chamber at room temperature for two weeks in order to investigate the influence 

of light and air on gas-sensing characteristics. The variation in the sensing response is studied and the 

possible reason is further analyzed by SEM, AFM and XPS characterizations in this section.  

Figure 11 shows the output characteristic curves (VGS = −30 V) of P3HT-ZnO hybrid thin film OTFT 

sensor stored after 1 and 15 days, revealing that the IDS of the sensor after 15 days becomes higher than 

that of the sensor after 1 day. However, the p-channel transistor behavior of the sensor stored 15 days 

becomes weak. Figure 12 shows the response of the sensor on exposure to 100 ppm HCHO under 

ambient conditions for 1, 5, 10 and 15 days, showing that the response value decreased by approximately 

25% after 15 days.  

  

Figure 11. The typical output characteristic curves (VGS = −30V) of P3HT-ZnO hybrid thin 

film sensor stored after 1 and 15 days. 

 

Figure 12. The response of P3HT-ZnO sensor for 1, 5, 10 and 15 days when exposed to  

100 ppm HCHO. 
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The sensing performance of OTFT sensors could be influenced by the film composition, topographic 

features, and grain boundaries of sensitive thin films and so on. Therefore, the microstructures and 

chemical states of P3HT-ZnO hybrid thin film are investigated by SEM, AFM and XPS in order to better 

understand the performance variation of sensor. Figure13 shows SEM image of P3HT-ZnO hybrid thin 

film stored after 15 days. Compared to the previous SEM image of P3HT-ZnO film as given in  

Figure 3c, a similar surface morphology with three-dimensional structures and many holes is observed 

and no obvious difference exists. Next, the surface topography of hybrid thin film stored after 1 and  

15 days is further characterized with tapping mode AFM, and amplitude images and phase images of 

P3HT-ZnO hybrid thin film are shown in Figures 14 and 15, respectively. For the film stored after 1 day, 

the AFM image shows a relatively smooth and homogeneous grains surface with a RMS surface 

roughness of 41.769 nm. However, the P3HT-ZnO hybrid thin film shows the appearance of ZnO 

components on surface layer after 15 days as shown in Figure 15b, in which the darker spots should be 

ZnO nanoparticles, while the light background is the P3HT thin film, with a surface roughness of 72.092 nm. 

 

Figure 13. SEM graphs of P3HT-ZnO hybrid thin film stored after 15 days. 

 

Figure 14. AFM amplitude images of P3HT-ZnO hybrid thin film stored after (a) 1 and (b) 15 days. 

 

Figure 15. AFM phase images of P3HT-ZnO hybrid thin film stored after (a) 1 and (b) 15 days. 
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The element composition and chemical state of hybrid thin film surface could be examined by XPS. 

Therefore, the high-resolution of C, S, Zn and O XPS spectra of P3HT-ZnO hybrid thin film are 

measured for obtaining further insight into its stability, and the spectral survey results are recorded in 

Figure 16. For the pristine P3HT-ZnO hybrid thin film sample, gaussian-shaped three peaks are found 

at 284.8, 286.0 and 287.7 eV in C1s spectrum as shown in Figure 16a, which are assigned to C-C/C-H, 

C-S/C-O and C=O, respectively [44]. After 15 days, the subpeak at 287.7 eV of C1s spectrum exhibited 

a shift toward the higher binding energy direction, and a broadening on the high binding energy side is 

observed. For quantification, the area under each subpeak of C1s spectrum is determined and the 

oxidized carbon ratio is calculated. It is found that the ratio improves from 7.41%–8.12%, indicating that 

C=O group increases and the carbon atoms are further oxidized. The evolution of S 2p signal is given in 

Figure 16b. The S 2p spectrum exhibits a well-resolved doublet with a unique component at 164.346 eV 

(S 2p3/2), which is consistent with a single chemical state of sulphur in the polymer chain [45]. A new 

peak appears centered at 169.295 eV which is shifted by about 5.1 eV toward the higher binding energy 

relative to the original S 2 p3/2 signal after 15 days. This new signal should be assigned to be a sulphone 

(-SO2-) and is indicative for the oxidation of sulphur atoms of thiophenic ring [45,46]. Therefore, it is 

inferred from C1s and S 2p spectra that the degradation of aged P3HT-ZnO hybrid thin film occurred in 

certain degree resulting from the oxidation of P3HT due to the presence of the light or oxygen in the 

environment. In addition, Figure 16c exhibited the Zn 2p3/2 and Zn 2p1/2 subpeaks of ZnO located at 

1021.7 eV and 1044.8 eV for the original hybrid thin film, respectively [47]. However, the Zn 2p signals 

shift to binding energies which are higher than those for pristine Zn by 0.5 eV after storage of 15 days, 

indicating the further oxidation of Zn element, which was also probably related to the morphology 

instability based on AFM results [48]. For O element, the subpeaks at 530.9 and 532.7 eV in O1s 

spectrum of Figure 16d are assigned to Zn-O and C-O, respectively, and the O 1s subpeak at 532.7 eV 

of P3HT shifts toward lower binding energy. It is assumed that the oxygen molecules bound to the  

π-system of P3HT trap an electron and these oxygen species probably act as quenching sites for  

excited states of P3HT, resulting in a degradation of P3HT component [43]. The element contents of 

P3HT-ZnO film versus ageing duration are summarized in Table 2. One can notice the significant 

decrease of C and S elements contents, whereas the contents of O and Zn elements increase in the sample, 

indicating the increase of Zn element on the surface layer of hybrid thin film and the degradation of 

P3HT component. 

 

Figure 16. Cont. 
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Figure 16. XPS spectra of (a) C; (b) S; (c) Zn and (d) O elements for P3HT-ZnO hybrid 

thin film stored after 1 and 15 days. 

Table 2. The element contents of P3HT-ZnO film surface for 1 day and 15 days. 

Element Content (%) C O S Zn 

1 days 73.46% 15.05% 9.54% 1.96% 
15 days 68.36% 22.13% 4.49% 5.02% 

It has been considered that most mobile charge carries might be concentrated near the bottom layer 

at the dielectric–semiconductor interface for OTFT devices [20]. According to AFM and XPS analyses, 

ZnO nanoparticles content increases on the top surface of the hybrid layer, indicating that the influence 

of ZnO nanoparticles on the charge transport along the conducting channel gets weakened; meanwhile, 

it is supposed that oxygen molecules trap electrons which leave behind mobile holes. Therefore, the 

saturation source-drain current of P3HT-ZnO hybrid thin film OTFT increases. However, the 

degradation of P3HT and the increased content of ZnO nanoparticles on the surface affect the sensing 

characteristics of the OTFT sensor. For the application of sensing devices, the active layer surface should 

be rich in HCHO molecule binding groups [33], but the grain boundary effect of P3HT on the film 

surface is reduced for the degradation of P3HT component as seen from our AFM and XPS results. On 

the other hand, exposure to oxygen and light for a long-time induces the shift of HOMO level position to 

lower binding energies, accompanied by an increase of the work function [43]. As a result, it is assumed 

that the high current and worse sensing performance of the sensor stored after 15 days should be 

attributed to the component instability of hybrid thin film surface and the degradation of P3HT material 

when exposed to light and air. However, the response value of pure P3HT decreased by almost 35% 

when exposed to 100 ppm HCHO, indicating that the performance deterioration of hybrid film sensor is 

less than that of single P3HT film one, which should be attributed to the unchanged porous structure of 

P3HT-ZnO hybrid film based on SEM results. Anyway, the proper encapsulation of sensors should be 

developed for partly eliminating the effect of environmental factors on gas-sensing characteristics and 

the thin film process should also be further improved.  

4. Conclusions 

In summary, P3HT-ZnO nanoparticles’ hybrid thin film was deposited on the OTFT device by a 

simple solution spraying route for preparing HCHO gas sensors at room temperature. The improved 
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HCHO sensing properties with higher response value and better reversibility were obtained compared 

to pristine P3HT thin film sensor, which was attributed to three-dimensional porous morphology and 

accumulation p-n heterojunction structure of P3HT-ZnO hybrid thin film. However, the decreased 

response value of prepared sensor in the presence of natural environment was a matter of concern. The 

SEM, AFM and XPS analyses’ results demonstrated that component instability of the film surface and 

the degradation of P3HT material occurred when exposed to light and air, although no obvious surface 

morphological change was observed. Further work will be focused on optimizing the preparation process 

of hybrid thin film and developing new inorganic–organic hybrid/composite gas-sensing thin films for 

OTFT sensors. This work may open up new opportunities for fabricating OTFT HCHO sensors operated 

at room temperature based on organic–inorganic hybrid thin film after further development. 
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