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Abstract: Secure and accurate data fusion is an important issue in wireless sensor networks 

(WSNs) and has been extensively researched in the literature. In this paper, by combining 

clustering techniques, reputation and trust systems, and data fusion algorithms, we propose 

a novel cluster-based data fusion model called Double Cluster Heads Model (DCHM) for 

secure and accurate data fusion in WSNs. Different from traditional clustering models in 

WSNs, two cluster heads are selected after clustering for each cluster based on the reputation 

and trust system and they perform data fusion independently of each other. Then, the results 

are sent to the base station where the dissimilarity coefficient is computed. If the dissimilarity 

coefficient of the two data fusion results exceeds the threshold preset by the users, the cluster 

heads will be added to blacklist, and the cluster heads must be reelected by the sensor nodes 

in a cluster. Meanwhile, feedback is sent from the base station to the reputation and trust 

system, which can help us to identify and delete the compromised sensor nodes in time. 

Through a series of extensive simulations, we found that the DCHM performed very well in 

data fusion security and accuracy. 
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1. Introduction 

Wireless sensor networks (WSNs) are composed of a large number of wireless connected sensor 

nodes, which are strictly limited by power supply, computational capability, storage resources and 

communication bandwidth. To our knowledge, WSNs are increasingly used in many fields, such as 

military surveillance, agriculture monitoring and forest fire detection. After being deployed manually or 

scattered by aircrafts, the sensor nodes automatically construct a network connected with the base 

station, which is controlled by the users directly. Each sensor node senses the surrounding environment 

and then transfers the data to the base station by a one-hop or multi-hop method. 

In WSNs, saving energy is one of the most important issues. Data fusion can reduce energy 

consumption significantly because sensor nodes might generate significant redundant data and it is a 

waste of energy to transmit all the data. Recognizing that in-network computation would generate less 

energy consuming than communication, we can save the energy by fusing the data and transmitting the 

data fusion results instead of the original data. Multi-sensor data fusion algorithms have been extensively 

researched [1]. Bayesian data fusion [1] is one of the most important data fusion algorithms based on 

probability. In Double Cluster Heads Model (DCHM), we use it to fuse data. In large WSNs, clustering 

is an important management strategy, which has the natural ability to facilitate data fusion in WSNs. 

Another essential issue is security. Traditionally, cryptography is used to provide a solution for secure 

and reliable data fusion problem [2,3]. However, because of collaborative data processing problem and 

data authentication problem [4], it is not sufficient to protect network by cryptography only. As a result, 

reputation and trust systems originated from sociology are introduced into WSNs. In this paper, we 

define reputation and trust as follows [5,6]: 

Reputation: perception that an agent creates about another agent’s intention and norms, through direct 

and indirect observation of its’ past actions. 

Trust: a subjective expectation an agent has about another’s future behavior with respect to a  

specific action. 

In a WSNs’ reputation and trust system, the actions of every sensor node are observed by other sensor 

nodes in an attempt to evaluate its trustworthiness. However, for a large WSN, it is very difficult to build 

and maintain a reputation and trust system for the whole network, because the time delay is too large 

and it would take a lot of energy, which is strictly limited in WSNs. So in this paper a reputation and 

trust system is built and maintained by each small cluster. 

We find that, clustering, reputation and trust systems, and data fusion have one thing in common, i.e., 

locality, which allows them to supplement each other. Therefore, we propose a novel, cluster-based 

model by combing these three techniques, which is called Double Cluster Heads Model (DCHM) for 

secure and accurate data fusion in wireless sensor networks. Different from traditional clustering models, 

two cluster heads are selected for a cluster based on the reputation and trust system in DCHM and they 

perform data fusion independently of each other. It is highly possible that some sensor nodes in a WSN 

are compromised and selected as cluster heads. A compromised sensor node will obstruct data fusion by 

several attacks, such as jamming, message dropping, information falsifying and so on. We assume that 

the compromised cluster heads output a randomly generated result to mislead the users. Therefore, the 

outputs of two cluster heads in a cluster may be obviously different if one or two of them are 

compromised. Note that, not only the adversary or malicious sensor nodes can be detected and added to 
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the blacklist, but also the breakdown sensor nodes can’t monitor the surrounding accurately. From this 

view, the framework in this paper performs better than cryptography. We validate the performance of 

our model by several experiments. Simulations illustrates that DCHM performs very well in secure and 

accurate data fusion. 

Our contributions are summarized as follows: 

(A) We integrate clustering algorithm, reputation and trust systems, and data fusion together to 

provide a solution for secure and accurate data fusion. It is an interesting research direction in the field 

of data fusion in WSNs. 

(B) The security of data fusion improved by selecting credible sensor nodes as cluster heads; the 

accuracy is improved by deleting the outliers and fusing credible data. 

(C) Compared with traditional ones, the reputation and trust system in our paper converged faster and 

a reasonable explanation is that the feedback to the system makes contributions to the convergence time. 

The rest of this paper is organized as follows. Section 2 reviews the related work, and Section 3 

describes the assumptions and the thread model. We discuss the DCHM in Section 4. Section 5 presents 

the simulation results and Section 6 gives concludes for this paper. 

2. Related Work 

Several problems related to our protocol have been widely researched in wireless sensor networks. 

2.1. Clustering Algorithms for Wireless Sensor Networks 

We will give some published distributed algorithms for clustering WSNs. As far as we know, linked 

cluster algorithm (LCA) [7,8] is one of the earliest clustering algorithms. In LCA, cluster heads form a 

backbone network and connect with all the sensor nodes in its cluster directly. Hierarchical control 

clustering algorithm [9] forms a multi-tier hierarchical cluster structure. When clustering WSNs, the 

authors in [10] argued that it was very unwise to ignore the geographical information of the sensor nodes, 

especially for a large WSN. Therefore, they proposed GS  clustering algorithm, which used 

geographical radius of cluster instead of logical radius. Low energy adaptive clustering hierarchy 

(LEACH) [11] is another popular clustering algorithm for WSNs. LEACH forms clusters based on the 

received signal strength and uses the cluster heads as routers to the base station. It naturally facilitates 

the creation of a reputation system locally in a cluster and data fusion in WSNs. 

2.2. Reputation and Trust for Wireless Sensor Networks 

In WSNs, cryptography performs very well in providing data confidentiality, data integrity, sensor 

nodes certification and so on. It is definitely that all these techniques are needed to construct a secure 

WSN. However, cryptography alone can’t ensure the safety of data fusion in WSNs [4,12]. 

First, the sensor nodes in a common WSN are envisioned to be cheap and therefore very unlikely to 

be equipped with tamper-proof hardware. As a result, sensor nodes can be compromised by an attacker 

and the cryptography materials are recovered. The faked sensor nodes with the cryptography can 

communicate with other sensors and then attack data fusion process by generating some bogus data, 

which can mislead data fusion results. 
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Second, hardware failure in WSNs is another important issue that can’t be solved by cryptography. 

Most sensor nodes are made of cheap hardware and it is common that some sensor nodes fail to sense 

the surrounding environment. As a result, some wrong data can be generated by these sensor nodes and 

the data can significantly decrease the accuracy of data fusion. 

To solve the problems discussed previously, we introduce the reputation system into WSNs. The 

concept of reputation originated from sociology can be used to overcome the shortcomings of 

cryptography-based information fusion systems. Several reputation systems have been proposed in the 

literature [4,13]. In this paper, we will mainly pay our attention on the beta reputation system [13]. In 

beta reputation systems, reputation Ri,j is computed by sensor node Ni using beta density function of 

sensor node Nj’s previous actions. For example, sensor node Ni counts the number of good and bad 

actions of Nj as ri,j and si,j. Then, Ni records the reputation Ri,j about node Nj as  R , = Beta( |r , + 1, s , + 1)  and the trust T , = E(R , ) = ,, , , where Beta  

represents the Beta distribution which can be expressed by the gamma function Γ as:  Beta |r , + 1, s , + 1 = Γ , ,
Γ , Γ , , (1 − ) , , where 0≤p≤1, ri,j, si,j≥0. 

In a cluster, every node records the reputation and trust values of other nodes and updates them 

periodically. In this way, the cluster head that executes the information fusion programs can have all the 

nodes’ reputation clearly. In fact, the reputation is a small number ranging from 0 to 1. However, for 

convenience sake, we will transform the reputation of a sensor node into an integer from 0 to 10. Each 

normal sensor node needs to maintain a reputation table in which the reputation values of the neighbors 

are stored. 

2.3. Secure Data Fusion in Wireless Sensor Networks 

To our knowledge, secure data fusion in wireless sensor networks have not been widely researched, 

though there are several protocols recently proposed in the literature. Blind Information Fusion 

Framework (BIFF) is proposed in [14]. In BIFF, the data are transformed from normal space to the 

anonymous space and can’t be deduced once they are fused. Another secure distributed data fusion system 

based on a consensus averaging method is proposed in [15]. Random Offset Method in [15] is composed 

of two steps, i.e., obfuscate the fusion data by a noise process and recovery the obfuscating data by 

exploring high-frequency elimination property of consensus filter at fusion stage. A related problem is 

secure data aggregation in wireless sensor networks and it has been widely researched in [16,17]. 

3. Assumptions and Threat Model 

In this section, we will introduce some assumptions and threat model. To defend against the threats, 

a simple mechanism is also presented at the end. 

3.1. Assumptions 

(a) We consider a WSN that composed of a large number of cheap sensor nodes. Because of the poor 

quality, the sensor nodes are highly likely to be compromised by the enemies. As a result, the 



Sensors 2015, 15 2025 

 

 

enemies can get the secret keys through a physical way and cryptography alone can’t guarantee 

the safety of the WSNs sufficiently. 

(b) We assume that each sensor node can be selected as a cluster head and is capable of fusing data. 

The members of a cluster are stable unless some sensor nodes run out of energy. In this paper a 

randomized rotation of the high-energy cluster heads’ positions among the sensors is designed to 

avoid draining the battery of any sensor in the network. 

(c) We organize the WSN in a multi-tier hierarchical way, as shown in Figure 1. The sensor nodes 

are divided into several clusters and in each cluster they are controlled by a cluster head. Every 

sensor node can communicate with the members that in the same cluster and the cluster head. 

The cluster heads of the whole WSN comprise the second layer and they can communicate with 

each other. Custer heads can transfer information to the base station through a multi-hop manner. 

Besides, we assume that the base station, which is the bridge between the network and users, is 

secure all the time, i.e., the base station can’t be compromised. This is reasonable, because the 

quality of base station is much better than the sensor nodes. 

Ordinary Sensor Node
Cluster Head  

Figure 1. Topology of WSNs. 

(d) The same to [6], we assume that each sensor node has three keys, which are injected by the users: 

a master key, a cluster key and a pairwise key. The master key is shared by all the cluster heads, 

which facilitates the broadcast of the base station. The cluster key is unique for each cluster, 

which facilitates the communication from the cluster heads to the sensor nodes and group 

communication within a cluster. Node to node communication uses the pairwise keys. In this 

paper, we focus on describing the high level mechanism for protecting networks and therefore 

we do not consider the key distribution. 

(e) In the initial stage, we assume that all of the sensor nodes are credible and as a result, the 

randomly selected cluster head is also credible. This is reasonable, because after being deployed, 

the sensor nodes begin to build a network at once and an attacker compromise the sensor nodes 

in such a short time is highly impossible. 

3.2. Threat Model 

(a) Traditionally, a compromised sensor node can attack the network in several ways, such as 

jamming, message dropping, information falsifying and so on. Besides the traditional attacks, in 

this paper, we also pay our attention on the following two attacks, which can significantly mislead 

data fusion results. 
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(b) Falsifying the local values: A compromised ordinary sensor node can falsify its own readings and 

upload the falsified data to mislead the data fusion results. We consider two manners of falsifying 

the data. Case (i): If there is only one compromised sensor node, the sensor node can falsify the 

data in a random way, i.e., randomly generate the uploading data surrounding its own sensor 

reading with a distribution and variance. For example, when the sensor reading is 25 °C, the 

sensor can randomly generate the data with a Gaussian distribution with average 25 and variance 

10 which can significantly decrease the stability of the data; Case (ii): If there are several 

compromised ordinary sensors in a cluster, they tend to cooperate with each other to maximize 

the misleading effect on data fusion result. For example, the compromised sensors can make the 

normal data larger or smaller together rather than some of them do. In this way, data fusion results 

can be affected significantly. 

(c) Falsifying the fusion results: In a cluster, if the cluster head is compromised, the cluster head  

can attack the network by falsifying a data fusion result and upload the falsified result to the  

base station. It is obvious that falsifying the fusion result is a more serious attack compared  

with falsifying the local value. It is a big challenge to guard against this attack. However, we can 

address this attack by employing DCHM. 

Figure 2 gives a brief mechanism to defend against these threats effectively. In this mechanism, 

several techniques are employed and each technique is capable of defending a specific aspect of threat 

model. Intuitively, incorporating them together properly is a good solution. In fact, DCHM is a more 

complete version of the brief mechanism and we will introduce DCHM in the next section in detail. 

 

Figure 2. A brief mechanism to defend against threats. 

4. Double Cluster Heads Model for Data Fusion 

4.1. Overview of the Framework 

As shown in Figure 3, the whole framework of DCHM is composed of three modules, i.e., Cluster 

Module, Cluster Heads Module and Based Station Module. Cluster Module includes three sub-modules, 

i.e., clustering WSNs, Cluster Heads Election, Reputation and Trust System Construction or Update. 

Cluster Heads Election also includes three sub-modules, i.e., Weighted Outliers Detection, Credible Data 

Fusion, Fusion Results and Outliers Uploading. The function of base station part is judging the security 
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of the cluster heads based on the uploading information. There is a feedback from base station part to 

cluster part and the feedback makes contributions to improve the security of the cluster heads and 

accelerating the convergence of the reputation and trust systems. 
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Figure 3. Overview of the Framework. 

The DCHM is divided into three modules, because each module is performed in a particular position 

of the network and act as a particular role. In Clusters Module, each sensor node in a cluster needs to 

participate in the processes of clustering, cluster heads election and constructing and updating the 

reputation and trust system. This module is the basement of whole framework and the information 

collected by the sensor nodes in a cluster is transmitted to the cluster heads. Cluster Heads Module is  

a bridge between Clusters Module and Base Station Module. Cluster Heads Module is performed by the 

two cluster heads and has two responsibilities, i.e., outlier detection and credible data fusion. Cluster 

heads can guarantee the credibility of the sensor nodes in a cluster and its credibility needs to be checked 

by the Base Station Module. Based on the fusion results and the lists of outliers uploaded by the cluster 

heads, the base station establishes feedback to the Clusters Module which can help the clusters to update 

the reputation and trust systems. Note that, it is assumed that the base station is credible all the time. The 

three modules are integrated together to protect the network and can’t be separated from each other. We 

introduce each module of the framework in the following. 

4.2. The Cluster Module 

4.2.1. Clustering and Cluster Heads (CHs) Election 

In the initial phase, we divide the sensor nodes into several clusters by an arbitrary clustering 

algorithm, such as LEACH-C [11]. After clustering, two random sensor nodes in a cluster are selected 

as the cluster heads and, as discussed previously, the cluster heads are assumed to be trusted. Then, each 

sensor node in a cluster begins to monitor the surrounding environment and record the monitoring data. 

Meanwhile, each sensor needs to monitor the immediate neighbors’ behaviors and maintain a trust table 

in which the reputation of the neighbors is recorded in detail. 

A cluster head needs to be reelected under two circumstances: first, the residual energy of the cluster 
head falls below a threshold, ɑ, which is preset by the users; second, the cluster head have served for a 
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period of time which is longer than another preset threshold, t. In the simulation part, ɑ is set to 0.001 J 

and t is set to 100 s. In the process of cluster head election, cluster head, the candidate and ordinary 

sensor nodes have different actions and a high level description of these actions are shown in  

Figures 4–6, respectively. 

1. if Energy of Cluster Head ≤ ɑ or Cluster Head_Duration ≥ t 
2. broadcast a reelection message; 
3.  count the nominees elected by the ordinary sensor nodes; 
4.  if tie 
5.  randomly select a candidate; 
6.  else 
7.  select the top nominee as the candidate; 
8.  end 
9.  send a confirm message to the candidate to ensure the energy of the candidate

is enough; 
10.  if the energy of the candidate is enough; 
11.  select the candidate as the new cluster head; 
12.  else 
13.  go back to step 4; 
14.  End 
15. end 

Figure 4. Procedure performed by cluster head. 

The cluster head first broadcasts a reelection message in a cluster. Then, all the sensor nodes in the 

cluster vote for a new cluster and two candidates are uploaded by each sensor node. The current cluster 

head tallies the votes and decides the winner based on majority rule. After a sensor node being selected 

as a candidate, a confirm message is sent to the sensor node to ensure that the energy of the candidate  

is enough. However, if the energy of the candidate is not enough, the current cluster head need to  

select a new candidate until a candidate with enough energy is selected and this candidate is the new 

cluster head. 

1. if Energy ≥ γ 
2.  send a confirm message to the cluster head 
3. else 
4.  send a reelection message to the cluster head 
5. end 

Figure 5. Procedure performed by the candidate. 

If a sensor node is selected as a candidate, it needs to response confirm message based on its energy. 

If its energy is enough, a confirm message is sent to the cluster head; otherwise, a reelection message to 

the cluster head. Note that, a redundant cluster head, called vice cluster head, is on standby in case of 

emergency. Vice cluster head performs like normal sensor nodes when the cluster head works normally. 

However, when a cluster head breaks down suddenly, the vice cluster head needs to replace the cluster 

head to fuse data. Another problem is how to ensure the condition of vice cluster head. To solve this 

problem, the vice cluster head needs to send a normal condition message to the cluster head periodically. 
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If the energy of vice cluster head falls below a threshold γ, which is preset by the users, a reelection vice 

cluster head message is uploaded to the cluster head. Specially, we set γ to be 0.001 J, which is  

one-tenth of the initial energy. The procedure of reelecting a vice cluster head is the same with a cluster 

head. On the other hand, if the vice cluster head breaks down suddenly and the normal condition message 

cannot be uploaded periodically, the cluster head needs to start up the procedure of reelecting a vice 

cluster head. 

1. if a reelecting message is received 
2.  sort the trust values in trust table 
3.  upload two candidates that has the highest two reputation values to the

 cluster head 
4. end 

Figure 6. Procedure performed by ordinary sensor nodes. 

After receiving the reelection message, the ordinary sensor nodes vote for a candidate. Each sensor 

node needs to sort the trust values in its trust table and vote for two neighbors that have the highest two 

trust values. The voting message needs to be encrypted with the cluster key. 

4.2.2. Reputation and Trust System Initialization or Update 

The initialization of the reputation and trust system is the same to traditional ones [4] and we focus 

on updating our system. Based on the relation of ɑ and th which will be discussed in Section 4.4, the 

system updates in two ways. 

If the original cluster heads are credible, an outlier list is sent to the cluster and each sensor node 

needs to compare the list with its own trust table and the outliers’ trust value Tru decreases by a parameter 

β which will be discussed in Section 4.4 in detail. 

If the original cluster heads are incredible, only the cluster heads’ trust value is set to 0. 

4.3. The Cluster Module 

4.3.1. Outlier Detection Based on Weighted DBSCAN Algorithm 

DBSCAN algorithm [18] is one of the famous density-based clustering algorithms in data mining and 

it can be used to detect outliers. However, we need to revise DBSCAN slightly to apply it to weighted 

data outliers detection. First, some revised definitions are briefly introduced and the detailed presentation 

can be found in [18]. 

Definition 1: (Rad -Neighbor of a point) The Rad-Neighbor of a point q, denoted by NeiRad(q), is 

defined by NeiRad(q) = {p∈S | dist(p,q) ≤ Rad},where S is the set of all the data points. 

In reputation and trust-based sensor networks, each data object has a weight, i.e., the trust. We revise 

the definition of directly density-reachable as follows. 

Definition 2: (directly density-reachable) A point p is directly density-reachable is from a point q 

with regard to Rad and MinPts if: 

(1) p∈NeiRad(q) and 
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(2) Wei(NeiRad(q)) ≥ MinPts, 

where Wei(NeiRad(q)) is the total weight of all the neighbors of data point q. 

Definition 3: (density-reachable) A point p is density-reachable from a point q with regard to Rad 

and MinPts if there is a chain of points p1,…,pn, p1 = q, pn = p such that pi+1 is directly density-reachable 

from pi. 

Definition 4: (density-connected) A point p is density-connected to a point q with regard to Rad and 

MinPts if there is a point o such that both p and q are density-reachable from o with regard to Rad  

and MinPts. 

Definition 5: (cluster) Let S be a set of monitoring data X. A cluster C with regard to Rad and MinPts 

is a non-empty subset of S satisfying the following conditions: 

(1) ∀p,q: if p∈C and q is density-reachable from p with regard to Rad and MinPts, then q∈C. 
(2) ∀p,q∈C: p is density connected to q with regard to Rad and MinPts. 

Definition 6: (credible data) There may be several clusters in the set of data and each cluster contains 

some data points with different reputations. The data in the cluster that has the highest total weight are 

credible data. 

In this paper, Euclidean distance is adopted to measure the similarity between two data points when 

using DBSCAN algorithm to detect the outliers. A problem of Euclidean distance is that some feathers 

with large amplitude often cover the effect of other feathers with small amplitude. Therefore, a 

preprocessing is used to normalize the original  data points in data set X: = −−  (1)

where  is the th feather of data point , = 	( , , … , ) ,  = 	( , , … , ). The distance between data points  and  is defined by: , = sqrt( ( − ) ) (2)

where d is the dimension of the data points. After detecting the outliers, the normalized data points need 

to be restored by: = ∗ − +  (3)

In most cases, there is only one cluster in which the data are credible and other data are outliers. 

However, if the amount of compromised sensor node is very large, there may be several clusters and we 

can choose the credible data by definition 6. Based on the definitions presented previously, the DBSCAN 

algorithm can be directly used to detect the outliers in weighted data set. A challenge is to choose proper 

parameters Rad and MinPts. Fortunately, similar with the conclusion in [18], we find that MinPts can be 

set to 3 and we can always get a good result. As a result, Rad is determined by MinPts of the method  

in [18] and in simulation part, Rad is set to 0.2. 

Haven detected the outliers, the cluster heads need to use a list, called L, to record all these outliers 

and upload the list to the base station. Meanwhile, the data fusion result, called R, is also uploaded and 

data fusion is presented in following. 
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4.3.2. Credible Data Fusion 

After getting the credible data, we need to fuse them by a proper data fusion method. In this paper we 

fuse them by Bayesian data fusion. It is reasonable that the fusion results of the credible data are more 

accurate than the original data, since the outliers have been deleted. 

Bayesian data fusion enables fusion of pieces of data and lies at the core of probability based data 

fusion algorithms. We assume a state-space representation X which is the range of the fusion results, the 

Bayesian data fusion algorithm provides a method for computing the posterior conditional probability 

distribution/density of the hypothetical state xk given the set of measurements Z = {z1, z2,…,zn}, where n is the number of sensor nodes whose readings need to be fused and the prior distributions, as following: p(x |Z) = p(x ) ∗ p(Z|x )p(Z)  (4)

where p(Z|xk) is called the likelihood function and based on the given sensor measurement model, p(Z) 

is a constant and it is merely a normalization term to ensure that the probability density function is 

integrate to one. We maximize p(xk|Z) to get xk which is the data fusion result. Specially, in our approach, 

Z is the set of the temperatures need to be fused and p(Z|xk) is decided by the property of the sensor 

nodes. In addition, we set p(xk) to a uniform distribution in the range of possible temperatures. 

Note that, both data fusion result and outliers list are needed to upload to the base station and they are 

used to compute the dissimilarity coefficient. 

4.4. The Base Station Module 

The main function of Base Station Module is computing Dissimilarity Coefficient, denoted by ɑ, and 

comparing ɑ with a threshold th, which is preset by users. We define ɑ based on both two data fusion 

results R1, R2 and the outlier lists L1, L2 as follows: = ∗ 2 ∗ | − || + | + ∗ (1 − | ∩ || ∪ |) (5)

where ɛ1 and ɛ2 are the weights preset by the users and the sum of them equals to 1. |L1∩L2| is the 

number of the common outliers in L1 and L2. |L1∪L2| is the number of all the outliers in L1 and L2.  

The threshold th is another parameter preset by the users. In simulation part, ɛ1 and ɛ2 are both set to be 

0.5 and th is set to be 0.2. It is obvious that, if the two cluster heads are both credible, ɑ would be smaller 

than a constant value th and vice verse. After checking whether the cluster heads are credible, a feedback 

loop is designed to reelect the cluster heads or to decrease the trust values of the outliers. 

If ɑ ≤ th, which means that both the cluster heads are credible, only the reputation and trust system 
should be updated. The base station sends the list of |L1∩L2| to the cluster and each of the sensor nodes 

in the cluster needs to check whether its trust table contains the outliers or not. If a outlier is contained 

in the trust table, the trust of the outlier decreases to Tru*β, where 0 ≤ β < 1. In this paper, β is defined 

as follows: = 1 − , ≤0, >  (6)
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where K is a parameter which can control the rate of change of β and T are the times that a sensor node’s 

monitoring data is detected as an outlier. In the simulation part, K is set to be 5. As shown  

in Figure 7, with the increasing of K, the change rate of β decrease. Another property is that when  

T = K, β decreases to 0. 

 

Figure 7. Decay function β. 

If ɑ > th, two temporary cluster heads in the cluster need to be reassigned by the base station and then 

two new cluster heads need to be reelected as discussed in Section 4.2. In the process of reputation and 

trust system updating, the original cluster heads’ trust values are set to 0. 

When a sensor node’s trust value is 0, there will be a black hole phenomenon, i.e., all the neighbors 

will not cooperate with the sensor node. As a result, the sensor node with trust value 0 can do nothing to 

attack the network. A pseudo-code of the feedback loop is shown in Figure 8. 

1. computing Dissimilarity Coefficient ɑ 
2. if ɑ ≤ th 
3.  broadcast a message of the outliers list |L1∩L2| to the cluster 
4. else 
5.  select two credible sensor nodes as the temporary cluster heads 
6. end 

Figure 8. The procedure performed by the base station. 

5. Performance Evaluations 

5.1. Simulation Setup 

We simulate our model based on the ns-3 (version ns-3.21) simulator [19]. In order to study the 

performance of DCHM, we consider a cluster based WSN to monitor the fire in a terrain. To recognize 

the fire, we need to record the temperature and humidity simultaneously. We assume that each sensor 

node is capable of detecting both the temperature and humidity. For our basic simulation network 

topology, 150 sensor nodes are scattered in a 400 m × 400 m square area randomly and they are divided 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Times of being an outlier

D
ec

a
y 

co
ef

fi
ci

en
t 
β

 

 

K=3
K=4
K=5



Sensors 2015, 15 2033 

 

 

into three clusters by LEACH-C [11]. The base station is located at the center of the square area and it 

is connected with the external network. Each node has a radio range of 50 m. 

In our simulation, the ns-3 simulator implements a 1 Mb/s 802.11 MAC layer. The length of message 

without using DCHM is always 24 bytes. However, in the networks using DCHM, each data message 

transmitted from an ordinary sensor node to the cluster heads is 27 bytes long. The length of the messages 

transmitted from cluster heads to the base station and transmitted from the base station to the ordinary 

sensor nodes depends on the number of outliers. There are three modes for a sensor node, i.e., sending 

message, receiving message and sleeping mode. As in [11,20], the energy consumption for sending a 

message is given by l × Eelec + l × ɛ × d2, and for receiving a message, the energy consumption is  

l × Eelec, where l is the length of a message, d is the distance of message transmission, Eelec is set at 50 nJ/bit. 

As in [20], in our simulations, each sensor node begins with only 0.01 J of energy. In our simulation, the 

data packets are generated every five seconds and the whole framework is updated meanwhile. 

In our simulation, the time that a compromised sensor node csni acts as a cluster head is denoted by 

ti and the probability of selecting compromised sensor nodes as cluster heads is defined as follows: P = ∑2 ∗  (7)

where nc is the number of compromised sensor nodes, Life is the lifetime of the whole network.  

Note that, the whole network is out of use when at least one sensor node in a cluster does not work.  

For example, the lifetime of a network is 10,000 s and in cluster 1, there is no cluster head acted by  

a compromised sensor node, in cluster 2, a compromised sensor node acts as a cluster head for 100 s, 

and in cluster 3, one cluster head is acted by a compromised senor node for 500 s and the other cluster 

head is acted by a compromised senor node for 400 s, then P equals to ∗ = 5%. 

As discussed previously, the compromised sensor nodes can attack the network in several traditional 

ways, such as jamming, message dropping, information falsifying and so on. However, for convenience, 

only message dropping is considered in this paper and message drop ratio is 50% for a compromised 

sensor node and 10% for a credible sensor node. Besides, we pay our attention on another two threats, 

i.e., falsifying the local values and falsifying the fusion results. As shown in Table 1, the sensor node 

measurement model is set to be a Gaussian distribution with mean value Mean and standard deviation 

Std. For a credible sensor node, Mean is set to the real environment value and Std is set to 2. For a 

compromised sensor node, to mislead data fusion results, Mean equals to 1.1 times of the real monitoring 

value and Std is set to 4. 

Table 1. Comparisons between credible sensor nodes and compromised sensor nodes. 

Types of Sensor Nodes Message Dropping Ratio Measurement Model Mean Std 

Credible sensor nodes 5% Gaussian distribution The real environment value 2 

Compromised sensor nodes 50% Gaussian distribution 1.1 times of the real environment value 4 

Our reputation and trust system is compared with the system in [4] especially in the aspect of 

convergence time. We randomly choose a credible sensor node and monitor its trust table and present 

the changes of trust values. 
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At last, we simulate the accuracy of data fusion based on our model. The temperature in the terror is 

set to be 25 °C and the relative humidity is 25%. We mainly compared our result directly with data 

fusion result without any protection mechanism. 

Note that, every simulation discussed previously is done for 100 times and lasts for 1000 s,  

i.e., 200 packets are generated for each sensor node. We present the average results of the experiments 

in the next section and a detailed discussion is also described. 

5.2. The Security of Data Fusion Results 

In this section, we demonstrate the security of data fusion results from two aspects, i.e., the probability 

of selecting compromised sensor nodes as cluster heads and the evolution of trust values for credible 

sensor nodes and compromised sensor nodes, respectively. 

When simulating the probability of selecting a compromised sensor node as a cluster head, the ratio 

of compromised sensor nodes, denoted by radio, ranges from 0% to 100% with intervals of 5%. We 

compared our cluster heads election mechanism with trust-based election mechanism (TEM) in [6]. As 

shown in Figure 9, if the cluster heads are randomly selected without any mechanism, the probability of 

choosing compromised sensor nodes linearly increase with the increasing of ratio. Both the TEM and 
our mechanism perform very well especially when radio ≤ 15%. When 15% ≤ radio ≤ 65%, our 

cluster heads election mechanism performs slightly better than TEM and when radio ≥ 75%, TEM 

performs slightly better. This phenomenon can be explained that if compromised sensor nodes are much 

more than the credible sensor nodes, the feedback loop in our model is counterproductive. The 

performance of our mechanism is acceptable because, in most cases, it is impossible that the 

compromised sensor nodes are much more than the credible ones. 

 

Figure 9. Probability of selecting compromised sensor nodes as cluster heads. 

As shown in Figure 10, the trust value for a credible sensor node increases monotonously to an upper 

limit. On the contrary, a compromised sensor node’s trust value decreases monotonously to a lower limit. 

We also compare the performance of our reputation and trust system against BRSN in the aspect of 

convergence time. In initial stage, the trust value of j in i is set to be 0.5 because sensor node i can’t 

detect whether j is credible or not. The trust value updates and becomes stable as time goes on. If j is 

credible and cooperates with i, the trust value becomes stable in about 100 s and our system’s 
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convergence time is shorter. If j is a compromised sensor nodes, its trust value becomes stable in about 

100 s by BRSN. However, in our reputation and trust system, the convergence time is about 35 s which 

is much less than 100 s. Simulation illustrates that our reputation and trust system performs much better 

than BRSN in convergence time especially for a compromised sensor node. 

 

Figure 10. Evolution of j’s trust values in sensor node i. 

5.3. The Accuracy of Data Fusion Results 

This section investigates the accuracy of DCHM-based data fusion algorithm. The comparisons 

between data fusion algorithm without DCHM and using DCHM are presented. As discussed previously, 

the measurement models of sensor nodes are Gaussian distributions and they are shown in Figure 11. 

The mean values of the two measurement models are 25 and 27.5, respectively. Obviously, the 

compromised sensor nodes can significantly mislead the data fusion results. 

 

Figure 11. Measurement models of sensor nodes. 

Data fusion results are affected by time and the ratio of compromised sensor nodes. On one hand, 

when	ratio is a constant value, data fusion results change with time, because the reputation and trust 
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system updates as time goes on; on the other hand, at a constant time, data fusion results are different 

because of different ratios and the higher the ratio is, the worse the data fusion result is. First, we set ratio to 30% and research the change of data fusion results with time. Though the real temperature and 

humidity are assumed to be stable all the time, the data fusion results change as time goes on as shown 

in Figures 12 and 13. When the clusters don’t employ DCHM as shown in Figures 12a and 13a, the data 

fusion results are always higher than the real value. Without DCHM, the errors of data fusion results, 

i.e., the distances between the squares and triangles are random. This phenomenon illustrates that the 

data fusion results are misled by the compromised sensor nodes and as a result, the users of WSNs are 

also misled. On the contrary, when the clusters employ DCHM, the data fusion results are much better 

as shown in Figures 12b and 13b. In the initial stage, data fusion results are higher than the real value, 

because the misleading effects of compromised sensor nodes. However, as time goes on, data fusion 

results becomes close to the real value and about 400 s later, data fusion results are stable and the error 

is very little. 

(a) (b) 

Figure 12. Data fusion results of temperature versus time. (a) Without DCHM; (b) Using DCHM. 

(a) (b) 

Figure 13. Data fusion results of humidity versus time; (a) without DCHM and (b) using DCHM. 

We also research how the rations of compromised sensor nodes affect the data fusion error. In this 

experiment, we set time to the 300-th second and ratio ranges from 0% to 100% with intervals of 10%. 

The results are shown in Figures 14 and 15. 

As shown in Figures 14a and 15a, without DCHM, data fusion results go away from the real value 

with a linear speed. That is to say the data fusion errors are affected by the compromised sensor nodes 

directly. However, when using DCHM, the errors increase in a mild way. The accuracy of data fusion 

results improve significantly when 20% ≤ radio ≤ 70%. When radio ≤ 20%, both of them perform well 

and when radio ≥ 80% data fusion results are meaningless to the users. 
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(a) (b) 

Figure 14. Data fusion results of temperature versus ratio; (a) without DCHM and (b) using DCHM. 
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Figure 15. Data fusion results of humidity versus ratio; (a) without DCHM and (b) using DCHM. 

5.4. Average Energy Consumption and Network Lifetime 

The average energy consumption measures the ratio of total dissipated energy of the whole network 

in a second to the number of all the sensor nodes. As declared in Section 5.1, DCHM updates once every 

five seconds. We first give the simulation result of the average energy consumption over the radio range 

of the sensor nodes and then present the lifetime of the networks with and without DCHM, respectively. 

In order to make the sensor nodes can communication with its neighbors with a constant radio range, 

we need to scale the size of the network and ensure that most of the sensor nodes can communicate with 

three to seven neighbors. Figure 16 presents the simulation result and we can find that the average energy 

consumption of the network with DCHM is always larger than that of the network without DCHM. This 

is reasonable, because in the network with DCHM, some extra data is computed, stored, transmitted and 

received. In conclusion, the average energy consumption in networks with DCHM is about 1.2 to 1.3 

times that in networks without DCHM. As a result, the lifetimes of the networks are also very different. 

Figure 17 shows the number of nodes alive over time in the networks with and without DCHM, 

respectively, when the radio range is 50 m. We can find that in the first 5.5 × 104 s, most of the nodes 

are alive in both networks. However, the number of the sensor nodes alive in the network with DCHM 

begins to decrease significantly after 5.5 × 104 s and that in the network without DCHM begins to 

decrease significantly after 7.5 × 104 s. The nodes in the network without DCHM remain alive for a 

longer time, because a smaller amount of data has been processed in the network without DCHM. In 

conclusion, the DCHM is a tradeoff between security and energy efficiency of the networks. 
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Figure 16. Average energy consumptions versus radio range of a sensor node. 

 

Figure 17. Number of nodes alive over time. 

6. Conclusions 

In this paper, we discussed the problem of secure and accurate data fusion in WSNs. We attempt to 

solve the problem by integrating clustering techniques, reputation and trust systems, and data fusion 

algorithms with each other. To our knowledge, it is the first time to solve the problem by this way.  

We discussed how to avoid selecting the compromised sensor nodes as cluster heads, detect the outliers 

and update the reputation and trust systems. These sub-modules comprise the whole DCHM which can 

defend against the attacks presented in Section 3. Besides the traditional attacks, two new attacks, which 

are designed specially to mislead the data fusion results, are also considered. Meanwhile, the accuracy 

of data fusion results is also improved because the compromised sensor nodes are detected and 

eliminated in the networks. Simulation shows that our model performs well in improving the security 

and accuracy of data fusion. Besides, the convergence time of the reputation and trust system becomes 

much shorter. For future work, we plan to design a more intelligent mechanism to decide the parameters 

which is some difficult for the users to preset. This mechanism would guarantee the versatility of our 

model in any cases. 
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