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Abstract: Sign language is a visual language used by deaf people. One difficulty of sign 

language recognition is that sign instances of vary in both motion and shape in  

three-dimensional (3D) space. In this research, we use 3D depth information from hand 

motions, generated from Microsoft’s Kinect sensor and apply a hierarchical conditional 

random field (CRF) that recognizes hand signs from the hand motions. The proposed method 

uses a hierarchical CRF to detect candidate segments of signs using hand motions, and then 

a BoostMap embedding method to verify the hand shapes of the segmented signs. 

Experiments demonstrated that the proposed method could recognize signs from signed 

sentence data at a rate of 90.4%. 

Keywords: sign language recognition; conditional random field; BoostMap embedding 

 

1. Introduction 

Sign language is a visual language used by deaf people, which consists of two types of action: signs 

and finger spellings. Signs are dynamic gestures characterized by continuous hand motions and hand 

configurations, while finger spellings are static postures discriminated by a combination of continuous 

hand configurations [1–3]. The term “gesture” means that the character is performed with hand motions, 

while “posture” refers to a character that can be described with a static hand configuration [4]. Sign 

language recognition has been researched using various input devices, such as color cameras, stereo 

cameras, data gloves, Microsoft’s Kinect sensor, time of flight (TOF) cameras, etc. [5]. Although the 

data glove-based sign language recognition systems have achieved better performance than other 

systems, data gloves are too expensive and too uncomfortable to use, which limits their popularity.  
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Several approaches to sign language recognition acquire information from range sensors such as TOF 

cameras or the Kinect, which was developed to interact with video games as a means for full-body 

tracking of body movements and gestures [6]. Many researchers have developed applications with 

gesture and sign language recognition systems using these sensors such as interactive displays [7], physical 

rehabilitation [8], robot guidance [9,10], gesture recognition [11], sign language recognition [12,13], hand 

gesture recognition [14], etc. 

Depth information-based sign language recognition has become more widespread because of 

improved interactivity, and user comfort, and the development of consumer-priced depth sensors, such 

as Microsoft’s Kinect [5]. Depth information-based approaches are generally more accurate and can 

recognize a wider vocabulary than color or 2D-based approaches. 

Numerous studies have attempted to use the Microsoft Kinect to identify hand gestures.  

Zafrulla et al. investigated the potential of the Kinect depth-mapping camera for sign language 

recognition [12]. They collected a total of 1000 American Sign Language (ASL) phrases and used a 

hidden Markov model (HMM) to recognize the signed phrases. Ren et al. researched a robust hand 

gesture recognition system using a Kinect [5]. They proposed a modified Finger-Earth Mover’s Distance 

metric (FEMD) in order to distinguish noisy hand shapes obtained from the Kinect sensor. They achieved 

a 93.2% mean accuracy on a 10-gesture dataset.  

Chai et al. proposed a sign language recognition and translation system based on 3D trajectory 

matching algorithms in order to connect the hearing impaired community with non-hearing impaired 

people [13]. They extracted 3D trajectories of hand motions using the Kinect, and collected a total of 

239 Chinese sign language words to validate the performance of the proposed system. They achieved  

rank-1 and rank-5 recognition rates of 83.51% and 96.32%, respectively. Moreira Almeida et al. also 

proposed a sign language recognition system using a RGB-D sensor. They extracted seven  

vision-based features from RGB-D data, and achieved an average recognition rate of 80% [15]. 

In addition to the Kinect, other methods of recognizing hand gestures have also been explored. 

Shotton predicted 3D positions of body joints from a single depth image without using temporal 

information [16]. Palacois et al. proposed a system for hand gesture recognition that combined RGB and 

3D information provided by a vision and depth sensor, the Microsoft Asus Xtion Pro Live [6]. This 

method, using a defined 10-gesture lexicon, used maximums of curvature and convexity defects to  

detect fingertips.  

Additional methods for hand movement recognition include a study by Lahamy and Lichti that used 

a range camera to recognize the ASL alphabet [4]. A heuristic and voxel-based signature was designed 

and a Kalman filter was used to track the hand motions. This method proposed a rotation invariant 3D 

hand posture signature. They achieved a 93.88% recognition rate after testing 14,732 samples of  

12 postures taken from the ASL alphabet. In addition, Yang et al. [1–3] used a threshold model with a 

CRF, which performed an adaptive threshold for distinguishing between in-vocabulary signs and  

out-of-vocabulary non-signs. They proposed augmenting the CRF model by adding one additional label 

to overcome the weaknesses of the fixed threshold method. 

In this paper, we focus on recognizing signs in a signed sentence using 3D information. The difficulty 

of sign language recognition comes from the fact that sign occurrences vary in terms of hand motion, 

shape, and location. The following three problems are considered in this research: (1) signs and non-sign 
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patterns are interspersed within a continuous hand-motion stream; (2) some signs shares patterns; and 

(3) each sign begins and ends with a specific hand shape. 

In order to solve the first and second problems, a hierarchical CRF (H-CRF) is applied [2]. The  

H-CRF can discriminate between signs and non-sign patterns using both hand motions and hand 

locations. The locations of the face and both hands are needed to extract features for sign language 

recognition. The subject’s 3D upper-body skeletal structure can be inferred in real-time using the Kinect. 

Information about body components in 3D allows us to locate various structural feature points on the 

face and hands. The H-CRF can recognize the shared patterns among the signs. An error in the middle 

of a sign implies that the sign has been confused with another sign because of the shared patterns, or an 

improper temporal boundary has been detected.  

In order to solve the third problem, BoostMap embeddings are used to recognize the hand shapes. 

The BoostMap embeddings are robust to various scales, rotations, and sizes of the signer’s hand, which 

makes this method ideal for this application. The main goal of this hand shape verification method is to 

determine whether or not to accept a sign spotted by means of the H-CRF. This helps to disambiguate 

signs that may have similar overall hand motions but different hand shapes. 

Figure 1 shows the framework of our sign language recognition system. We use the Kinect, which 

acquires both a color image and its corresponding depth map. The hand and face locations are robustly 

detected in varying lighting conditions. After detecting the locations of the face and hands, an H-CRF is 

used to detect candidate sign segments using hand motions and locations. Then, the BoostMap embedding 

method is used to verify the hand shapes of the segmented signs. 

 

Figure 1. Overview of the proposed method for recognizing a sign. 
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2. Sign Language Recognition 

2.1. Face and Hand Detection 

The face and hand positions are robustly detected using the hand tracking function in the Kinect 

Windows software development kit. The skeletal model consists of 10 feature points that are 

approximated from the upper body as shown in Figure 2.  

 

Figure 2. Skeleton model: 10 upper body components. 

The hand region is obtained by establishing a threshold from the hand position as shown in Figure 3a. 

The signer wears a black wristband to segment the hand shape [5]. RANdom SAmple Consensus 

(RANSAC) [17] is used to detect the black wristband, as shown in Figure 3c. The detected hand shape 

is normalized. 

 

Figure 3. Hand detection: (a) color image (b) depth image and feature positions (c) and 

detected regions with black wristband. 

2.2. Feature Extraction 

Six and one features are extracted in 3D and 2D space, respectively, using the detected hand and face 

regions as shown in Table 1 [1–3]. 
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Table 1. Seven features for recognizing the signer’s hand. 

Features Meanings 

𝐻𝐹𝐿 Position of the left hand with respect to the signer’s face 

𝐻𝐹𝑅 Position of the right hand with respect to the signer’s face 

𝐻𝐻𝐿 Position of the left hand with respect to the previous left hand 

𝐻𝐻𝑅 Position of the right hand with respect to the previous right hand 

𝐹𝑆𝐿 Position of the left hand with respect to the shoulder center 

𝐹𝑆𝑅 Position of the right hand with respect to the shoulder center 

𝑂𝐻𝐿𝑅 Occlusion of two hands 

The feature, 𝐻𝐹𝐿, represents the location of the left hand with respect to the signer’s face in 3D space. 

The distance between the face and left hand, 𝐷𝐻𝐹𝐿, and the angle from the face to the left hand, 𝜃𝐻𝐹𝐿, is 

measured. In order to extract 3D features, the coordinates of the left hand are projected into the 𝑥, 𝑦 and 

𝑧 axes. The angle between the face and left hand, 𝜃𝐻𝐹𝐿 = {𝜃𝑥, 𝜃𝑦, 𝜃𝑧}, is extracted. Then, the feature 

vector {𝐷𝐻𝐹𝐿 , 𝜃𝐻𝐹𝐿} is clustered into an index using an expectation-maximization (EM)-based Gaussian 

Mixture Model (GMM) [1]. Features, 𝐻𝐻𝐿 , 𝐻𝐹𝑅 , 𝐻𝐻𝑅 , 𝐹𝑆𝐿  and 𝐹𝑆𝑅 , are likewise calculated  

and clustered. 

The hand occlusion, 𝑂𝐻𝐿𝑅, is determined from the ratio of the overlapping regions of the two hands 

in the frontal view: 

𝑂𝐻𝐿𝑅 = {
1,
0,

 
min(

𝑅𝑜

𝐻𝑙
,
𝑅𝑜

𝐻𝑟
)>𝑇𝑜,

otherwise,             

 (1)  

where 𝐻𝑙 is the left hand region, 𝐻𝑟 is the right hand region, 𝑅𝑜 is the overlapping region between the 

two hands, and 𝑇𝑜 is the threshold for hand occlusion (𝑇𝑜 = 0.3, as determined by experimentation). 

2.3. CRF-Based Sign Language Recognition 

A hierarchical CRF framework is used to recognize the sign language [2]. In the first step, a threshold 

model (T-CRF) is used to distinguish between signs and non-sign patterns [1]. In this step, non-sign 

patterns are defined by the label “N-S” and signs are defined by the labels in the vocabulary. When 

constructing the T-CRF, a conventional CRF is constructed first. The conventional CRF includes the 

labels 𝑆𝐶 = {𝑌1, ⋯ , 𝑌𝑙}, where 𝑌1  through 𝑌𝑙  are labels for signs, and 𝑙 is the number of signs in the 

vocabulary [1].  

In a CRF, the probability of a label sequence y, given an observation sequence x, is found using a 

normalized product of potential functions. Each product of potential functions is represented by [1]:  

𝑝𝜃(y|x) =
1

𝑍𝜃(x)
exp (∑ 𝐹𝜃𝑖−1 (𝑦𝑖−1, 𝑦𝑖 , x, 𝑖))  (2) 

where 𝐹𝜃(𝑦𝑖−1, 𝑦𝑖 , x, 𝑖) = ∑ 𝜆𝑣𝑡𝑣𝑣 (𝑦𝑖−1, 𝑦𝑖 , x, 𝑖) + ∑ 𝜇𝑚𝑠𝑚𝑚 (𝑦𝑖 , x, 𝑖) , 𝑡𝑣(𝑦𝑖−1, 𝑦𝑖 , x, 𝑖)  is a transition 

feature function of the observation sequence x at positions 𝑖 and 𝑖 − 1, where 𝑠𝑚(𝑦𝑖 , x, 𝑖) is a state feature 

function of observation sequence x at position 𝑖, 𝑦𝑖−1 and 𝑦𝑖 are the labels of observation sequence x at 

positions 𝑖 and 𝑖 − 1, and 𝜆𝑣 and 𝜇𝑚 are the weights of both the transition and state feature functions, 

respectively. 𝜃 represents the weights of the transition features and state feature functions, and 𝑍𝜃(x) is 

the normalization factor. 
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The feature vector x𝑡, of the observation sequence x, at time 𝑡, is expressed as: 

x𝑡 = {𝐻𝐿𝐿
𝑡 , 𝐻𝑅𝑅

𝑡 , 𝐻𝐻𝐿
𝑡, 𝐻𝐻𝑅

𝑡 , 𝐹𝑆𝐿
𝑡 , 𝐹𝑆𝑅

𝑡 , 𝑂𝐻𝐿𝑅
𝑡 } (3)  

CRF parameter learning is based on the principle of maximum entropy. Maximum likelihood training 

selects parameters that maximize the log-likelihood of the training data [1]. The T-CRF is built using 

weights from the constructed conventional CRF. In addition, the label “N-S” for non-sign patterns is 

added to the conventional CRF. Thus, the T-CRF includes the labels 𝑆𝑇 = {𝑌1, ⋯ , 𝑌𝑙 , 𝑁-𝑆}. The starting 

and ending points of in-vocabulary signs were calculated by back-tracking the Viterbi path, subsequent 

to a forward pass [1]. 

The weights of the transition feature functions from other labels to the non-sign pattern label “N-S” 

and vice versa are assigned by: 

∀𝑘∈{1,⋯,𝑙}𝜆𝑣(𝑌𝑘 , 𝑁-𝑆) =
𝜆𝑣(𝑌𝑘,𝑌𝑘)

𝑙
, 

∀𝑘∈{1,⋯,𝑙}𝜆𝑣(𝑁-𝑆, 𝑌𝑘) =
𝜆𝑣(𝑁-𝑆,𝑁-𝑆)

𝑙
,  

(4)  

where 𝜆𝑣(𝑁-𝑆, 𝑁-𝑆) = argmax
𝑘=1,⋯,𝑙

𝜆𝑣(𝑌𝑘, 𝑌𝑘) + 𝜅, and 𝜅 is the weight of the self-transition feature function 

of the non-sign pattern label “N-S” [1].  

After constructing the T-CRF, i.e., the first layer of the hierarchical CRF, the second layer CRF, 

which models common sign actions, is constructed. The output of the first layer is the input of the second 

layer. It contains the segmented signs, which signs have a higher probability than the non-sign pattern 

label “N-S”. As a result, the second layer CRF only has labels SC = {𝑌1, ⋯ , 𝑌𝑙}. The detailed algorithm 

is described in [1]. 

Finally, the probability of the recognized sign is calculated as: 

𝑃(𝑦𝑖
𝑡) =

∑ 𝑝𝜃(𝑦𝑖
𝑡|x)𝑠𝑒

𝑖=𝑠𝑠

𝑠𝑒 − 𝑠𝑠 + 1
  

 

(5)  

where 𝑝𝜃(𝑦𝑖
𝑡|x) is the marginal probability of the sign 𝑦𝑖 at time 𝑡; 𝑠𝑠 and 𝑠𝑒 are the start and end frames 

of the segmented sign, respectively. 

2.4. Shape-Based Sign Language Verification 

The hierarchical CRF is useful for recognizing hand motions; however, it has difficulty distinguishing 

between different hand shapes. The main goal of the hand shape-based sign verification is to determine 

whether or not a sign spotted through the H-CRF should be accepted as a sign. The shape-based sign 

verification module is performed at the end frame of a recognized sign, when P(𝑦𝑖
𝑡) in Equation (5) is 

lower than a threshold. 

BoostMap embeddings are applied in order to recognize the hand shape. This method accommodates 

various scales, rotations, and sizes of the signer’s hands [2,18]. Synthetic hand images to train the model 

are generated using the Poser 7 animation software. Each sign begins and ends with a specific hand 

shape, and each alphabet has unique hand shapes. Table 2 and Figure 4 show examples of hand shapes 

for sign language recognition. Our system uses a database with 17 hand shapes. For each hand shape, 

864 images are generated.  
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The hand shapes are verified over several frames, and a detected sign is accepted when the voting 

value 𝑉𝑠(𝑦𝑖
𝑡) exceeds threshold 𝑇𝑠. The voting value, 𝑉𝑠(𝑦𝑖

𝑡) is calculated as: 

𝑉𝑠(𝑦𝑖
𝑡) = ∑ 𝐶𝑎(𝑦𝑖

𝑡, 𝐵(𝑗)),
𝑡+𝑡𝑎
𝑗=𝑡−𝑡𝑎

  (6)  

where 𝑦𝑖
𝑡 is the sign detected by the H-CRF at position 𝑡, and 𝑡𝑎 is the window size. 𝐶𝑎(𝑦𝑖

𝑡 , 𝐵(𝑗)) is: 

𝐶𝑎(𝑦𝑖
𝑡 , 𝐵(𝑗)) =

1, 𝑦𝑖
𝑡 = 𝐵(𝑗),

0, otherwise,
 (7)  

where 𝐵(𝑗) is the recognition result of the BoostMap embedding method at time j. 

Table 2. Examples of hand shapes for sign language recognition: Categories of hand shapes 

are described in [1,3]. 

Signs Dominant Hand Shape  Non-Dominant Hand Shape 

Car (T) S S 

Past (O) Open B > Bent B D.C. 

Out (O) Flat C > Flat O D.C. 

O stands for one-handed sign; T stands for two-handed sign; D.C. means don’t care; > Means that the hand 

shapes of start and end frames of the sign are changed. 

 

Figure 4. Examples hand shape used for training the BoostMap embeddings. 

3. Experimental Results and Analysis 

3.1. Experimental Environment 

For training the CRFs and H-CRFs, 10 sequences for each sign in the 24-sign lexicon were collected. 

The signer wore a black wristband during data collection. The start and end points of the ASL signs were 

added manually to the training data and for the ground truth, they were used for testing the performance 

of the proposed method. We captured the video with a Kinect device. Of the 24 signs, seven were  

one-handed signs, and 17 were two-handed signs, as shown in Table 3. Figure 5 shows two examples of 

signs used in the experiments. In general, most sign language recognition tasks face three types of 

errors—substitution errors, insertion errors, and deletion errors. 

  

L1 B O
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Table 3. 24 ASL signs used in the vocabulary. 

One-handed signs And, Know, Man, Out, Past, Tell, Yesterday 

Two-handed signs 
Arrive, Big, Born, Car, Decide, Different, Finish, Here, Many, Maybe, Now, Rain, Read, 

Take-off, Together, What, Wow 

 

Figure 5. Two examples of ASL signs; B and E indicate means beginning and end, respectively. 

An insertion error occurs when the spotter reports a nonexistent sign. A deletion error occurs when 

the spotter fails to spot a sign in an input sequence. A substitution error occurs when an input sign is 

incorrectly classified [1–3]. The sign error rate (SER) and correct recognition rate (R) are calculated by: 

SER(%) =
𝐼 + 𝑆 + 𝐷

𝑁
, 

R(%) =
𝐶

𝑁
, 

(8)  

where N, S, I, D, and C are the numbers of signs, substitutions, insertions, and deletion errors, and 

correctly detected signs, respectively. An H-CRF was implemented and the results of the sign language 

recognition were compared to the performance accuracy in both 2D and 3D feature space. 

3.2. Sign Language Recognition with Continuous Data 

As shown in Table 4, 3D features decrease insertion and substitution errors, while slightly decreasing 

deletion errors, compared to the model with 2D features. As a result, the SER of the H-CRF3D decreases; 

however, the correct recognition rates of the H-CRF3D increases. 

  

Out EOut B Out E

(Depth and skeleton)

Past EPast B Past E

(Depth and skeleton)
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Table 4. ASL recognition results.  

 C S I D SER(%) R(%) 

CRF2D 185 34 25 21 33.3 77.0 

𝑇-CRF2D[1] 197 27 24 16 27.9 82.0 

H-CRF2D[2] 202 23 15 15 22.0 84.1 

H-CRF3D 217 12 9 11 13.3 90.4 

N is 240; 3D means using features extracted in 3D space; 2D means using features extracted in 2D space. 

Figures 6 and 7 show sign recognition results for a sign sequence that contains two in-vocabulary 

signs “OUT” and “PAST” with  H-CRF2D  and H-CRF3D , respectively. The time evolutions of the 

probabilities for in-vocabulary signs and non-sign patterns are illustrated by curves. The probabilities of 

the signs “OUT” and “PAST” fluctuate, while the sign is performed, as shown in Figure 6, because of 

the similar hand motions of these two signs in 2D space. On the other hand, as shown in Figure 7, the 

label for non-sign patterns has the greatest probability during the first 63 frames. Then, it is followed by 

the sign “OUT.” After 63 frames, the probability of the sign “OUT” nearly becomes 0.1, and there is a 

non-sign pattern.  

Figure 8 shows the sign recognition results with H-CRF𝟑𝑫. Hand shape recognition is executed over 

several frames when the probability of the recognized sign is lower than the threshold, as discussed in 

Section 3. As shown in the time evolutions of probabilities, the probabilities of the sign “Different” and 

“Finish” are similar to each other in frames 117 and 129. The probabilities, 𝑃(𝑦𝑖
𝑡) , of the signs 

“Different” and “Finish” are over the threshold in frame 132.  

 

Figure 6. Sign language recognition result for H-CRF𝟐𝑫 using a signed sentence. 
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Figure 7. Sign language recognition result for H-CRF𝟑𝑫 using a signed sentence. 

 

Figure 8. Sign language recognition result for H-CRF𝟑𝑫  using a signed sentence that 

includes the sign “Different”. 
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Figure 9 shows the hand shape verification results with the BoostMap embeddings in the sign segment 

of Figure 8. The frame-wise fingerspelling inference results are presented. The hand appearances of all 

signs over the threshold are verified as described in Equation (6). Then the sign that has the maximum 

𝑉𝑠() is selected, using: 

𝑦𝑖 = argmax
𝑘∈𝐶

(𝑉𝑠(𝑦𝑘
𝑡))   

(9)  

where 𝐶 is the set of signs, in which probability 𝑃(𝑦𝑖
𝑡) is over the threshold. 

The BoostMap embedding method decreases the insertion and substitution errors by verifying the 

hand shape; however, it reduces the correct detection rate because of its own classification errors. 

 

Figure 9. Hand shape recognition results with the signed sentence of Figure 8. 

4. Conclusions and Further Research 

Sign language recognition with depth sensors is becoming more widespread. However, it is difficult 

to detect meaningful signs from a contiguous hand-motion stream because the signs vary in both motion 

and shape in 3D space. In our work, we recognized meaningful sign language from a contiguous  

hand-motion stream using a hierarchical CRF framework. The first layer, a T-CRF, is applied to 

distinguish signs and non-sign patterns. The second layer, a conventional CRF, is applied to distinguish 

between the shared patterns among the signs.  

In this paper, a novel method for recognizing sign language hand gestures was proposed. In order to 

detect 3D locations of the hands and face, depth information generated with Microsoft’s Kinect was 
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used. A hierarchical threshold CRF is also used in order to recognize meaningful sign language gestures 

using continuous hand motions. Then, the segmented sign was verified with the BoostMap embedding 

method. Experiments demonstrated that the proposed method recognized signs from signed sentence 

data at a rate of 90.4%. Near-term future work includes improving the detection accuracy of the upper 

body components. 
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