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Abstract: Vision-based hand gesture interactions are natural and intuitive when interacting
with computers, since we naturally exploit gestures to communicate with other people.
However, it is agreed that users suffer from discomfort and fatigue when using
gesture-controlled interfaces, due to the lack of physical feedback. To solve the problem, we
propose a novel complete solution of a hand gesture control system employing immersive
tactile feedback to the user’s hand. For this goal, we first developed a fast and accurate
hand-tracking algorithm with a Kinect sensor using the proposed MLBP (modified local
binary pattern) that can efficiently analyze 3D shapes in depth images. The superiority of
our tracking method was verified in terms of tracking accuracy and speed by comparing with
existing methods, Natural Interaction Technology for End-user (NITE), 3D Hand Tracker
and CamShift. As the second step, a new tactile feedback technology with a piezoelectric
actuator has been developed and integrated into the developed hand tracking algorithm,
including the DTW (dynamic time warping) gesture recognition algorithm for a complete
solution of an immersive gesture control system. The quantitative and qualitative evaluations
of the integrated system were conducted with human subjects, and the results demonstrate
that our gesture control with tactile feedback is a promising technology compared to a
vision-based gesture control system that has typically no feedback for the user’s gesture
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inputs. Our study provides researchers and designers with informative guidelines to develop
more natural gesture control systems or immersive user interfaces with haptic feedback.

Keywords: 3D hand gesture tracking; 3D gesture control; tactile feedback; depth
camera-based gestures; vision-based hand gesture interface; human computer interaction

1. Introduction

Over the past few years, the demand for hand interactive user scenarios has been greatly increasing
in many applications such as mobile devices, smart TVs, games, virtual reality, medical device controls,
the automobile industry and even in rehabilitation [1–8]. For instance, operating medical images with
gestures in the operating room (OR) is very helpful to surgeons [9], and an in-car gestural interface
minimizes the user’s distraction while driving [10]. There is also strong evidence that human computer
interface technologies are moving towards more natural, intuitive communication between people and
computer devices [11]. Because of this reason, vision-based hand gesture controls have been widely
studied and used for various applications in our daily life. However, vision-based gesture interactions
are facing usability problems, discomfort and fatigue, which are primarily caused by no physical touch
feedback while interacting with virtual objects or with computers with user-defined gestures [12]. Thus,
co-locating touch feedback is imperative for an immersive gesture control that can provide users with
more of a natural interface. From this aspect, developing an efficiently fast and accurate 3D hand tracking
algorithm is extremely important, but challenging, to achieve real-time, mid-air touch feedback.

From a technical point of view, most of the vision-based hand tracking algorithms can largely be
divided into two groups: model-based or appearance-based tracking. The model-based methods use
a 3D hand model whose projection fits the obtained hand images to be tracked. In order to find the
best fit alignment between the hand model and hand shapes in 2D images, optimization methods are
generally used, which tends to be computationally expensive [13–20]. On the contrary, appearance-based
methods make use of a set of image features that represent the hand or fingers without building a hand
model [21–25]. Methods in this group are usually more computationally efficient than model-based
methods, though this depends on how complex feature matching algorithms are used.

In regards to camera sensors used for tracking, there are also two groups: RGB or depth camera
sensor-based methods. Until 2010, when the Kinect was first introduced, RGB camera-based methods
were actively developed in the struggle with the illumination problem. Afterwards, depth sensors were
widely used for hand tracking, due to their strength against illumination variation [26–28]. However,
the previous systems with depth sensors are not sufficiently fast or accurate for the immersive gesture
control that we are aiming to develop. Therefore, we developed a novel hand gesture tracking algorithm
that is suitable to combine with tactile-feedback.

As mentioned earlier, adding haptic feedback to existing mid-air gestural interface technologies is
a way of improving usability towards natural and intuitive interactions. In this regard, the first work
that combined the Kinect-based hand tracking and haptic feedback was introduced a few years ago [29].
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The developed system allows users to touch a virtual object displayed on a PC monitor within a limited
workspace coupled with a pair of grounded haptic devices. Although it was not aimed at mid-air gestures
with bare hands, it showed a feasible direction by showing an example using haptic feedback for hand
tracking with a Kinect sensor. Our haptic feedback technology is in the same direction, but focuses on
an add-in tactile feedback technology optimized for mid-air gesture interactions.

In this paper, our goal is to develop a novel gesture control system that provides users with a new
experience of mid-air gesture interactions by combining vision-based tracking and wearable lightweight
tactile feedback. To achieve the goal, four steps have been taken. First, we developed a new real-time
hand gesture tracking algorithm with a Kinect sensor. The performance of the vision-based hand tracking
system was measured in terms of accuracy and speed, which are the most important to consider in
combination with tactile feedback. Second, a prototype of high definition (HD) tactile feedback was
built with a piezoelectric actuator, so that any audio signals up to 6 KHz can be driven to display HD
tactile feedback with ignorable delay. The prototype was mechanically tuned with a commercial driver
circuit to provide strong tactile feedback to the user’s hand. Third, a complete gesture control system was
developed by integrating the tactile feedback technology into the hand tracking algorithm. Additionally,
DTW (dynamic time warping) [30], the most well-known method in terms of speed and accuracy,
was implemented and integrated for an immersive gesture control with tactile feedback, which is our
goal. Last, the integrated system, the vision-based hand tracking combined with gesture recognition
and tactile feedback, was systematically tested by conducting a user study with cross-modal conditions
(haptic, visual, aural or no feedback condition) for four basic gestures. The evaluation results (accuracy,
efficiency and usability) with the integrated system were analyzed by both quantitative and qualitative
methods to examine the performance compared to the typical gesture interaction system, which is the
case with no feedback.

The remainder of this paper is organized as follows. In Section 2, we describe how we developed a
novel MLBP (modified local binary pattern)-based hand tracking algorithm with a Kinect sensor with
the experimental results. Section 3 presents a new tactile feedback technology with a piezoelectric
actuator that is not only simple to attach to the user’s hand, but that is also integrable with any hand
tacking system, followed by a proposal of a complete gesture control system with tactile feedback. The
evaluation results achieved with the integrated system are reported in Section 4, and conclusions and
future work are provided in Section 5.

2. MLBP-Based Hand Tracking Using a Depth Sensor

Real-time processing and precise hand tracking/recognition are essential for natural gesture controls.
Our goal is therefore to develop a fast and accurate hand tracking algorithm. In this section, we propose
a new hand tracking algorithm by employing MLBP, which is an extended idea from local binary pattern
(LBP). In the following, the theory behind the MLBP method is presented followed by our proposed
MLBP-based hand tracking algorithm with the evaluation results.
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2.1. Modified Local Binary Pattern in Depth Images

LBP is the pattern of features, also called a texture descriptor, intensively used for classification with
gray scale images. The MLBP that we propose is an effective approach to analyze shape information
from depth images compared to the basic LBP methods [31,32]. Although the proposed MLBP is
similar to LBP in that neighbor pixel values are thresholded by a center pixel value, it is specialized
to accurately extract hand shape features from a sequence of depth images by adaptively estimating
radius and threshold values depending on depth levels. MLBP consists of a number of points around
a center pixel, and its radius is decided by the size of the target (hand) in depth images, as shown in
Figure 1. On that account, MLBP can be mathematically represented as:

MLBPI,r(xc, yc) =
I−1∑
t=0

s(gi − gc)2
i

where (xc, yc) is the center position of a local window and gc and gi(i = 0, ..., I − 1) denote the
pixel values of the center point and the i-th neighbor point surrounding the center point, respectively.
r is the radius of the circle, I is the number of patterns, and s(z) represents a thresholded value by 1, z = threshold

0, z < threshold
. Since the pixel values of a depth image represent real distances between

objects and the sensor, different shape features can be extracted from depth images according to different
thresholds. For example, when a distance threshold is 30 cm, all features at a depth of more than 30 cm
from the sensor can be extracted by MLBP.

Figure 1. Modified local binary pattern with different I (the number of patterns) and r (the
circle’s radius) values.

To achieve rotational invariance, each MLBP binary code must be transformed to a reference code
that is generated as the minimum code value by the circularly bit shifting. The transformation can be
written as:

MLBPI,r = min{ROR(MLBPI,r, k)|k = 0.1...., I − 1}

where the function ROR(x, i) performs a circular bitwise right shift i times on the I-th binary number x.
The ROR(x, i) operation is accordingly defined as follows:

ROR(MLBPI,r, K) =
I−1∑
i=k

s(gi − gc)2
i−k +

k−1∑
i=0

s(gi − gc)2
I−k+i
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Figure 2 shows some results of MLBP as binary patterns.

Figure 2. Some results of the modified local binary pattern (MLBP): White and black circles
represent zero and one binary patterns, respectively.

2.2. A Proposed Hand Tracking Algorithm Using MLBP

Since a depth image does not contain texture and color information, it is difficult to detect and trace
an object without such information. Using the proposed MLBP, we can precisely extract the shape of a
target object in depth images in real-time. In this study, we apply the proposed MLBP to detect and track
the position of hands in live depth images. Our proposed hand tracking system can be divided into two
steps; hand detection and hand tracking. In the first step, the initial position of a hand to be tracked is
detected. In the second step, robust hand tracking is performed with the detected hand’s position. From
a technical point of view, the details of the algorithms are provided in the following.

2.2.1. MLBP-Based Hand Detection in Depth Images

To detect the initial position of a hand, we use the arm extension motion with a fist towards the sensor
as an initializing action. For that reason, we need to extract the fist shape in the depth images using the
proposed MLBP, as shown in Figure 3. To extract fist shape features in depth images, we assume that
there is no object detected near the hand within 30 cm when a user stretches forward with his/her hand in
front of the sensor. Therefore, all of the binary values of MLBP with a threshold of 30 cm should be “1’s
which form hands” candidates, as shown in Figure 4. Finally, we search all position of hand candidates
in the depth images and decide the initial position of a hand that is detected continuously at the same
location with the previous five frames.

Figure 3. Arm extension motion to initialize the hand detection process.
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Figure 4. The resulting image of the MLBP with a threshold of 30 cm.

2.2.2. MLBP-Based Hand Tracking in Depth Images

With the initially-detected hand position, hand tracking is performed to estimate and track the hand’s
location rapidly and precisely. The hand tracking can be divided into three steps, as shown in Figure 5:
(1) updating a search range; (2) extracting hand features; and (3) selecting a tracking point. As the
first step, we need to define a decent search range for a fast estimation of hand locations. The search
ranges in x- and y-coordinates are set to six-times bigger than the hand size in depth images based on a
pilot experiment, and an acceptable distance range for the z-coordinate is set to ±15 cm. In the feature
extraction step, hand-feature points are extracted by MLBP within the search range. When the threshold
of MLBP is set to 10 cm, the number of the “0” values in MLBP becomes less than or equal to I/4, where
I is the number of patterns, as shown in Figure 6. The last step is a process to determine a point to be
continuously tracked from the extracted feature points. For this step, the center location of the extracted
points is computed first, and then, the nearest feature point from the center is chosen as the tracking
point. This way, we can avoid the risk of tracking outside the hand region. As long as the hand tracking
is not terminated, Steps 1 through 3 are continuously repeated.

Figure 5. Overview of the proposed hand tracking algorithm.

Figure 6. Example results of hand feature extraction using MLBP with a threshold of 10 cm.
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2.3. Experimental Results

Our proposed MLBP hand tracking offers real-time and accurate hand tracking, which is suitable
for a real-time gesture control system with tactile feedback. In order to verify the hand tracking system,
several experiments have been conducted to measure the performance in terms of computational time and
accuracy. We used a Kinect depth sensor capturing VGA (640 × 480), RGB and depth images at 30 fps.
The data acquisition was implemented in the Open Natural Interaction (OpenNI) platform, while other
modules were implemented using C on a Windows machine with a 3.93-GHz Intel Core i7 870 and 8 GB
RAM. The number of MLBP patterns has been set to 16, since this showed the best performance in terms
of tracking accuracy and processing time by a pilot experiment. It is suggested that the radius of MLBP
be adaptively chosen, because the object size in a depth image varies from distance to distance, as shown
in Figure 7. Based on the measured data, we were able to adaptively choose radius values according to
the distance (see Table 1). Those radius values were used for the following evaluation experiments.

Figure 7. Object size variations measured in a pixel with a rectangular object (20 cm wide)
in depth images at different distances from 60 cm to 750 cm.

Table 1. Radius (r) of the MLBP used for the evaluation to measure the accuracy of hand
detection at different distances.

Distance (m) 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

Radius (r) 125 85 65 55 45 40 35 30 25 25 25 20 20

As the first evaluation experiment, the accuracy of hand detection was tested from 1 m to 7 m at
50-cm intervals. Detection rates were computed by taking the average of 2000 attempts from 100 people.
Figure 8 shows the detection rates over several distances. As clearly observed on the plot, the detection
rate is kept perfect until reaching 4 m and, thereafter, rapidly drops to 6 m, mainly due to deteriorated
depth images. It was also learned that the hand size becomes too small to be recognized when the
distance exceeds 4.5 m. Therefore, we preferably chose a workspace from 1 m to 4 m for our work
(detection and tracking), since this provides most reliable depth images.
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Figure 8. Detection rate according to a distance from 1 to 7 m.

In the second experiment, we focused on verifying our hand tracking algorithm by comparing other
state-of-the-art hand tracking methods listed below:

• PrimeSense’s Natural Interaction Technology for End-user (NITE)
• A color information-based object tracking technique (CamShift) [33]
• 3D hand tracking using the Kalman filter (3D Tracker) [34]

We chose the three methods for the evaluation because: (1) the CamShift algorithm is a well-known
tracking method for color images; and (2) NITE and 3D Tracker are considered the most advanced
tracking technologies for depth images. To verify the robustness of our proposed hand tracking under
different hand movements, we made a dataset based on 100 identities each with four gestures at different
standing distances (1 m, 2 m and 3 m), as shown in Figure 9. For this experiment, the radius values of
the MLBP used in the hand tracking algorithm for evaluation are listed in Table 2.

Figure 9. Four gestures used for the hand tracking evaluation: (a) circle; (b) triangle; (c) up
to down and the reverse; (d) left to right and the reverse.

Table 2. Radius values used for the hand tracking evaluation.

Distance (m) 1 2 3

Radius (r) of MLBP 40 30 20
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The ground truth for the evaluation was manually selected and marked by red, as shown in
Figure 10. For the quantitative analysis, the geometric errors between the ground truth and the tracking
position were measured at different distances (1 m, 2 m and 3 m) five times for each predefined hand
movement with 100 people who voluntarily participated. The right image of Figure 10 shows tracking
trajectories recorded in x,y-coordinates by the four tracking methods regarding a triangle gesture. Three
methods, including our method, but 3D Hand Tracker, draw a clear and stable triangle shape close
to the ground truth. A systematic analysis in terms of accuracy can be done by looking at the data in
Figure 11. It is evident that the tracking trajectory only by our method accurately follows the ground truth
on both the x- and y-axes, though NITE shows good performance, but not as precise as our method (see
the RMS errors). The fact becomes more obvious when analyzing the numerical error data summarized
in Table 3. Our proposed method outperforms the other three methods over all distances. Note that the
averaged errors decrease as the distance becomes larger, because the variations of the hand’s position in
2D images are reduced as the distance increases.

We conducted a further experiment with the predefined four gestures of Figure 9 to investigate the
accuracy on real gestures, since our goal is to integrate our tracking method into a gesture control
system. The numerical results of averaged errors are summarized with the standard deviation in
Table 4 and confirm that our method still provides the best accuracy at tracking the four gestures in
real time. Overall, the CamShift algorithm shows the worst tracking performance, since it relies heavily
on color information, and tracking often fails when the user’s hand moves close to the face, the other
hand or skin-color-like objects. In addition, with the 3D Hand Tracker using the Kalman filter in depth
images, the tracking is not as accurate as our method, because the tracking point is obtained based on the
central point of an ellipse that encloses the hand detected by the initializing process. Our hand tracking
algorithm runs at 28 ms (35 fps), 15 ms (66 fps) and 12 ms (83 fps) at 1 m, 2 m and 3 m, respectively,
with a sequence of VGA input images. These results demonstrate that our proposed tracking method is
the most accurate and sufficiently fast for a real-time haptic-assisted gesture control system, which is our
next step in this study.

Figure 10. Ground truth (red dot) manually selected as one-third of the hand from the top
(Left) and the measured trajectories by four methods for a triangle gesture (Right).
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(a)

(b)

(c)

Figure 11. Comparisons of the tracking accuracy: (a) x-axis; (b) y-axis; and (c) RMS errors
between the ground truth and the tracking position.

Table 3. Averaged errors in the pixel and the standard deviations of our method in
comparison with Natural Interaction Technology for End-user (NITE), 3D Hand Tracker
with depth images and CamShift, at different distances (1 m, 2 m and 3 m).

Distance (m) 1 2 3

Proposed method 13.11 ± 2.37 8.48 ± 1.94 4.37 ± 1.20
NITE 16.59 ± 4.23 10.68 ± 2.64 5.21 ± 1.74

3D Hand Tracker 24.43 ± 9.56 20.26 ± 6.02 15.92 ± 4.27
CamShift 61.50 ± 20.37 45.55 ± 11.37 36.32 ± 8.93
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Table 4. Averaged errors in the pixel of our proposed method in comparison with NITE, 3D
Hand Tracker with depth images and CamShift, for different hand motions (circle, triangle,
up to down and right to left).

Circle Triangle Up to Down Right to Left

Proposed method 7.93 ± 1.91 9.62 ± 2.43 5.73 ± 1.43 5.50 ± 1.52
NITE 9.60 ± 2.67 10.75 ± 3.24 7.35 ± 1.96 6.99 ± 1.93

3D Hand Tracker 19.52 ± 6.19 21.23 ± 9.27 17.87 ± 5.66 20.49 ± 6.98
CamShift 46.27 ± 10.15 52.90 ± 15.04 36.59 ± 9.98 36.16 ± 14.32

We summarize the results in Tables 1 and 2, which show the average RMS error and the standard
deviations. Table 3 shows the results with respect to different distances (1 m, 2 m and 3 m), and Table 4
shows the results with respect to different hand gestures.

3. Development of Hand Gesture Control with Tactile Feedback

In this section, we present a new gesture control system incorporated into tactile feedback towards a
real-time immersive gesture control system.

3.1. Prototyping a Wearable Tactile Feedback Device Using Piezoelectric Actuators

A tactile feedback device was designed with a piezoelectric actuator, which precisely bends when
a differential voltage (e.g., 10 to 200 Vpp, Voltage Peak-Peak, measured from the top to the bottom
of the waveform) is applied across both ends, to provide haptic feedback for gesture control-based
interactions. To develop a high definition (HD) tactile feedback device, a commercial piezoelectric
actuator (Murata Manufacturing Co., Ltd. 25 mm diameter; see Figure 12) that converts an electric
signal into a precise physical displacement was utilized. For our design, the piezoelectric actuator was
affixed to a transparent acrylic square (20 mm long and 2 mm thick), since it plays the roles of an
electrical insulator and a booster, enhancing vibrations on the surface. The thickness of acrylic panel
was determined as 2 mm after a pilot experiment measuring the strength of the tactile feedback versus
the usability of the user’s hand. Our goal was to minimize the thickness, but to maximize the strength
of the haptic feedback, since it was learned that the thickness of the acrylic panel is proportional to the
strength of the vibration. The final design of the haptic feedback actuator (weight, 3.7 g) is shown in
Figure 12. An audio signal amplifier circuit (DRV 8662 EVM, Texas Instrument Inc.) was used for
amplifying tactile signals and driving the designed haptic actuator. In this design, any tactile signal
can be alternatively used for operating the haptic feedback device, as long as its frequency is lower
than 6 KHz. To measure the performance of tactile feedback on the haptic actuator, acceleration was
measured by an accelerometer (KISTLER 8688A50) with input voltage (one cycle of a saw tooth at
500 Hz) varying from 40 to 140 Vpp. As seen in Figure 13, tactile feedback strength linearly increases
as the input voltage gets bigger. In order to decide the optimal strength of tactile feedback, we conducted
a pilot study with a simple psychophysical method, the method of limit, to find a perceptual threshold
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at which a tactile stimulus can be detected 100% of the time by all participants. The found stimulus
intensity on the palm was 3G (gravitational acceleration).

Figure 12. Haptic actuator designed for tactile feedback.

Figure 13. Performance (acceleration) measured with the designed haptic actuator vs. the
input voltage.

3.2. Development of a Mid-Air Gesture Control System with Tactile Feedback

As mentioned before, mid-air gestures suffer from more fatigue and are more error prone than
traditional interfaces (e.g., the remote control and the mouse), due to the lack of physical feedback. Our
goal is therefore to add tactile feedback to a real-time hand gesture tracking and recognition system.
To achieve this, we integrated the developed real-time MLBP-based hand tracking system with a
prototype of the hand-mountable tactile feedback. For gesture recognition, we exploited an existing
algorithm, multidimensional dynamic time warping-based gesture recognition [30], which is well known
as the best in terms of accuracy and speed, since in our application, real-time processing is crucial to
provide simultaneous tactile feedback. The implemented gesture recognition algorithm was even further
customized, so that the speed becomes the max, though results in a tolerable loss of accuracy (e.g.,
average 80%–85% for predefined gestures 18). Block diagrams of our developed system, including
the in-out flow, are drawn in Figure 14. In the block diagrams, the method of incorporating the haptic
feedback can be flexible with the user scenarios, though we focus on the feedback for gesture recognition.
For instance, tactile feedback in our developed system is also synchronizable to hand detection, tracking
and even usage warning by simple modifications with software programming.
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Figure 14. Block diagrams of the proposed mid-air gesture control system with
tactile feedback.

Our developed mid-air gesture control system is efficiently fast (average 35 fps on a PC with a
3.4-GHz Intel Core i7-3770 CPU, RAM 16 GB), including detection, tracking, recognition and tactile
feedback with an RGBD input image (320 × 240 pixels) from a Kinect sensor and provides accurate
gesture recognition, although it varies from gesture to gesture. In regards to tactile feedback, predesigned
tactile signals lower than 6 KHz are stored in local data storage and automatically sent to the feedback
signal controller to drive the haptic actuator in response to a trigger signal controlled by the block of
the gesture control interface. With our gesture control system, any external devices can be operated
more accurately in real time, since it provides in-air touch feedback that will significantly improve
usability in air gesture interactions. The evaluation results with our developed system are presented in the
next section.

4. Evaluation of Hand Gesture Control with Tactile Feedback

A user study has been conducted to evaluate our haptics-assisted hand gesture control system in
comparison with no feedback and the other two modalities (visual and aural feedback). The testing
results were then analyzed by both quantitative and qualitative methods to verify the performance
(accuracy, trajectory and speed), including usability. The testing results were quantitatively analyzed
by ANOVA (analysis of variance). An in-depth qualitative analysis was also processed to inspect any
improvement in the usability. In the following, the method of the user study and the experimental results
are presented.
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4.1. User Study for Evaluation

4.1.1. Participants and Apparatus

Six participants (five males and one female, aged from 26 to 31 years old) took part voluntarily in the
experiment. All participants were right-handed and self-reported no visual nor haptic impairment. Three
of the participants had previous experience with gesture-controlled systems. All but one participant had
no experience with haptic interfaces. In the experiment, a standard PC monitor (“27” LED) and an
earphone were used for visual and aural feedback, respectively. For haptic feedback, a tactile feedback
prototype developed in the section above was used for mid-air gesture interactions. The haptic actuator
was attached to the user’s hand, as seen in Figure 15. The driver of the haptic actuator was connected
to the main PC that runs the developed real-time hand tracking and recognition algorithms. Automatic
triggering for feedback signals was encoded by software programming.

Figure 15. Haptic feedback device setup: a piezoelectric actuator glued on a transparent
plastic panel (Left) and its attachment to the user’s hand with an elastic bandage.

4.1.2. Feedback Stimuli

After a series of pilot experiments in learning feedback locations and perceptual levels of feedback
signals on the sensory modalities, three identifiable feedback signals were chosen for gestures’
beginning/ending, gesture success and gesture failure in recognition. The designed feedback signals
are shown in Figures 16 and 17 for visual, aural and haptic feedback, respectively. Those signals were
pre-stored in the PC and triggered by the developed gesture interface control system.

Figure 16. Three signals for the visual feedback: blue, gesture begin/end; green, success of
recognizing a gesture; red, fail to recognize a gesture.
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Figure 17. Three signals for the aural feedback (Left) and haptic feedback (Right). The unit
of magnitude is dB.

4.1.3. Conditions

There were four experimental conditions: no feedback (NF), visual feedback (VF), haptic feedback
(HF) and aural feedback (AF). For each condition, four hand gestures (right to left, up to down, half
circle, push; see Figure 18) were tested to investigate the effect of feedback for mid-air hand gestures.
We chose the four gestures, since those are commonly used for operating smart devices and are a basic
set that can form more complex gestures. Each gesture per condition was repeated fifty times. The order
of conditions with gesture types was randomized to avoid the learning effect.

Figure 18. Four basic gestures designed for our study: The green arrows present the
instructed motions to begin and end each gesture.

4.1.4. Procedure

Prior to beginning the experiment, all participants took a training session until becoming familiar
with the experimental procedure, which took about an average of 30 min, varying from person to person.
In the main experiment, the participants were comfortably seated in front of a computer monitor, as
shown in Figure 19. They wore ear phones to block noises for the visual and haptic feedback conditions
or to hear audio sound for the aural feedback condition. Noise blocking was achieved by playing a
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white noise sound signal for the visual and haptic conditions. For the haptic condition, the developed
haptic actuator was attached to the participant’s hand by an elastic bandage, as shown in Figure 15.
Each subject followed a randomized sequence of the four gestures per condition. For each condition,
50 trials (repetitions) for a gesture, split into five blocks, were collected for the quantitative data analysis.
This resulted in 800 trials in total for each subject. To reduce learning effects, the order in which the
runs are presented was also randomized and unknown to the participant. On each trial, one of the
four gesture types (see Figure 18) was graphically displayed on top of the screen for the participant to
easily follow a given gesture task in his/her most natural way. During the experiment, recognition rates,
gesture trajectories and the elapsed times were recorded to measure the control system’s performance
and usability. After finishing the experiment, all participants were asked to fill out a standard NASA
Task Load Index (TLX) questionnaire and a preference interview form for the qualitative data analysis.
The participants were required to visit twice to complete all of the trials. It took an average of two and
half hours for each participant to complete the whole experiment.

Figure 19. The experimental setup.

4.1.5. Data Analysis

For the quantitative evaluation with/without feedback, we developed three indexes: recognition rates,
trajectories and the speed that can represent performance. Accuracy is measured by computing gesture
recognition rates as the equation below for each gesture per condition. For example, in the experiment,
recognition rates were computed every 10 trials and repeated five times for the statistical analysis. This
metric involves investigating the effect of the provided feedback on the gesture recognition system. The
other two indexes defined for our study are trajectories and speed, which may be correlated to usability.
As illustrated in Figure 20, total trajectory (TT), gesture trajectory (GT) and dummy trajectory (DT,
pre-gesture trajectory) are defined and used for inspecting how efficient hand gesture movements are
with/without feedback. Note that users tend to move their hands more with the no feedback condition
due to the unknown and invisible gesture tracks, which is a cause of fatigue. The longer trajectory
is regarded as having lower efficiency in our evaluation. Gesture speed is also measured and was
statistically analyzed to see the correlation with feedback. All metrics are defined by the equations
below, and the results were statistically analyzed by ANOVA. Additionally, qualitative data from both a
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standard NASA TLX questionnaire and a preference rating form were also analyzed in comparison with
the quantitative data.

Recognition rate =
# of successful recognition

# of trials

TT =
k∑

i=1

{Pi(x, y, z)− Pi−1(x, y, z)}

DT =
l∑

i=1

{Pt(x, y, z)− Pt−1(x, y, z)}

where Pi is a point at the t image frame and k means the total number of frames for gesture recognition.
l is the number of frames, which is determined by predefined gradients values.

Speed =
TT

Time for each gesture

Figure 20. An example of gesture trajectories with the feedback locations in the right to
left gesture.

4.2. Experimental Results

In this section, the experimental results of the evaluation with our gesture control system are reported.
The three indexes (recognition rate, trajectories, speed) measured through the experiment are shown as
quantitative results. Participants’ responses to the NASA TLX questionnaire and the preference rating
form are summarized as qualitative results.

4.2.1. Quantitative Evaluation

We ran a one-way ANOVA to analyze the three indexes, recognition rate, trajectory and speed,
with three feedback conditions, and the results are shown in Figure 21. In regards to recognition rate
(accuracy), all gesture types, but the up to down gesture (F3,1192 = 2.53, p < 0.0604), showed significant
differences with all feedback in right to left (F3,1192 = 9.07, p < 0.0001), with visual feedback in
half circle (H-circle) (F3,1192 = 3.31, p = 0.0227) and with haptic feedback in push (F3,1192 = 3.92,
p = 0.0104). The results clearly show that recognition rates with the no feedback condition were all lower
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than those with the other feedback conditions, and haptic feedback positively influenced the accuracy.
A post hoc Tukey test revealed that in the right to left gesture, the recognition rates of all feedback
conditions were significantly larger than those with the no feedback condition (NF vs. VF, p = 0.0064;
NF vs. AF, p = 0.0006; NF vs. HF, p < 0.0001), while no difference was found among the feedback
conditions with the up to down gesture (NF vs. VF, p = 0.5165; NF vs. AF, p = 0.0524; NF vs. HF,
p = 0.9462).

Figure 21. Quantitative evaluation results of the four hand gestures across four feedback
conditions. The bar represents the average values of each metric obtained from the
experiment, and the error bar shows the standard error. In all but the recognition rates,
lower values are better. In the plots, NF, VF, AF and HF stand for no feedback, visual
feedback, aural feedback and haptic feedback, respectively, and R2L, U2D, H-circle, and
push represent right to left, up to down, half circle and push gestures, respectively.

Similarly, an ANOVA on the feedback conditions did show significant results on speed (right to left,
F3,11926 = 120.66, p < 0.0001; up to down, F3,1192 = 2.53, p = 0.0604; half circle, F3,1192 = 3.31,
p = 0.0227; push, F3,1192 = 3.92, p = 0.0104). Interestingly, the highest speed was achieved with the
no feedback condition over all gesture types. A pairwise Tukey test did show significant differences in
the right to left gesture for all feedback conditions (NF vs. VF, p < 0.0001; NF vs. AF, p < 0.0001;
NF vs. HF, p < 0.0001) and in the half circle gesture for the no feedback and the haptic feedback
conditions (p = 0.0023).

Regarding total trajectory (TT), the ANOVA test did show significant results across all gestures
(right to left, F3,1192 = 120.66, p < 0.0001; up to down, F3,1192 = 34.76, p < 0.0001; half circle,
F3,1192 = 21.50, p < 0.0001; push, F3,1192 = 18.74, p < 0.0001). Average values with the no feedback
condition were all higher than those with the other conditions for all gestures. A Tukey test confirmed
that all feedback conditions are significantly different, except the up to down gesture. We also observed
significant results on the dummy trajectory (DT) on all feedback conditions (right to left, F3,1192 = 13.85,
p < 0.0001; up to down, F3,1192 = 21.86, p < 0.0001; half circle, F3,1192 = 3.86, p < 0.0001; push,
F3,1192 = 18.49, p < 0.0001). A Tukey test confirmed that the no feedback condition was significantly
different from the other feedback conditions for the right to left gesture (NF vs. VF, p = 0.0093;
NF vs. AF, p = 0.0005; NF vs. HF, p < 0.0001), the Up to Down (NF vs. VF, p = 0.0025; NF vs.
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HF, p < 0.0001; VF vs. HF, p = 0.0284; AF vs. HF, p < 0.0001) and the half circle (NF vs. AF,
p = 0.0062). One clear pattern is that the longest trajectory is formed with the no feedback condition.

These results, the higher speeds and the longer trajectories with the no feedback condition indicate that
users had to move their hands faster and longer than the other feedback conditions. Those behaviors are
caused by no spacial cue for the gesture recognition, in comparison with the other feedback conditions,
which actually help users virtually draw and memorize the spacial trajectories of gestures. In addition,
the more accurate recognition rates were also achieved with the feedback conditions, because trajectory
guidance feedback can provide users with a learning effect on the better gesture recognition.

4.2.2. Qualitative Evaluation

After finishing the experiment, participants filled in the NASA Task Load Index (NASA-TLX)
questionnaire in regards to their feelings about the experiment. The NASA-TLX questionnaire has six
rating categories about feelings (mental demand, physical demand, temporal demand, performance,
effort and frustration). Each scale of the TLX is divided into 20 equal intervals. We conducted this
evaluation, because the quantitative results can be well interpreted as a user experience perspective,
which will eventually show a correlation between feedback and fatigue. The results are shown
in Figure 22. As expected, there are apparent differences between two groups (no feedback vs.
feedback). The gap between the two groups is consistent over gesture types and workload categories. It
corroborates that: (1) haptic is an effective way to reduce workload and to improve gesture performance;
and (2) the no feedback condition causes relatively more fatigue no matter what the type of gestures
for the mid-air interactions. The evidence is still valid even with more complicated gestures, like half
circle, whose rates were the highest in the mental, temporal and physical demand categories. Based
on this finding with the quantitative results, it is shown that the no feedback condition, resulting in the
lower recognition rate, the faster speed and the longer trajectory, increases fatigue for mid-air gesture
interactions, though we do not prove it by taking a physiological and biomechanical view, which will be
conducted in the near future.

Figure 22. The participants’ responses to the NASA-Task Load Index (TLX) questionnaire.
In all but performance, a lower value is better.
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We additionally collected user’s preference data on the feedback conditions. All participants answered
the following questions: (1) In which feedback condition did you feel most pleasant? (2) In which
feedback condition did you feel most comfortable? (3) Which feedback condition did you feel was most
physically demanding? (4) In which feedback condition did you feel most frustrated?

Figure 23 shows participants’ preferences on feedback conditions. Overall, most of the participants
said “a gesture interface without feedback is uncomfortable”. More than half selected audio feedback as
the most pleasant feedback, while haptic feedback was chosen by about one third of the participants. All
subjects said that audio feedback was most comfortable for the given gestures.

Figure 23. Participants’ preferences about feedback conditions.

5. Conclusions

As introduced in [11], technologies of vision-based gesture interactions are being rapidly developed
towards being more intuitive and natural, resembling human-to-human communications. This implies
that better usability must be guaranteed when a new gesture control system is proposed and developed. In
this aspect, we developed a new immersive hand gesture control system that employs both a novel hand
tracking algorithm using a Kinect sensor and a high definition tactile feedback technology designed
with a piezoelectric actuator for realistic mid-air gesture interactions. The developed 3D hand tracking
algorithm is very accurate, robust against illumination changes and efficiently fast (maximum 12 ms)
for being integrated with other independent modules, like gesture recognition and multimodal feedback.
The evaluation results show that our vision-based tracking method outperforms other existing tracking
methods. The average speed measured with the integrated system, including recognition and tactile
feedback, was about 35 fps with an RGBD input image (320 × 240 pixels). Our developed system can
also be used for many other applications, such as teleoperation, gesture-controlled immersive games,
in-car driver interface, human machine interface, rehabilitation to monitor or train patients’ motor skills,
and so on.
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Although there are many ways to provide tactile feedback to a user’s hand, using a piezoelectric
actuator is the most advanced technology, since it offers several benefits, such as high resolution temporal
feedback, a fast response, light weight (thin) and strong vibration feedback. The prototype that we
have developed with a thin (2 mm thick) piezoelectric actuator can be easily extended to other similar
applications by minimizing the extra work in terms of software programming and modifying the haptic
device. For instance, the prototype can be redesigned to drive multi-channel tactile feedback to the user’s
fingertips at the same time, which seems more realistic, as touching virtual objects displayed through a
floating image display device. To the best of our knowledge, this is the first work that shows how to
integrate tactile feedback into a vision-based hand gesture control system.

Our developed gesture control system efficiently works well in dynamic environments. To examine
the performance of our system, a user study has been conducted with four basic gestures that can
form any complex gestures. For the evaluation experiment, an existing gesture recognition algorithm,
DTW-based gesture recognition [30], was implemented and combined with our gesture control system.
The experimental results analyzed by a quantitative method, as seen in Figure 21, demonstrate that our
gesture control system with tactile feedback is a promising technology for improving accuracy (higher
recognition rates) and efficiency (shorter gesture trajectories) compared with the no feedback condition.

From a user experience perspective (usability), gesture speed and trajectory are considered major
factors causing fatigue and discomfort, since it is clearly observed that: (1) from the quantitative
experiment, tactile feedback or other feedback in gesture controls significantly affected the reduction
of speed and trajectory compared to the no feedback condition; and (2) the analysis with the NASA TLX
shows that all of the workloads were higher when users performed hand gestures with the no feedback
condition. By closely investigating the results of the two experiments, it is found that speed and trajectory
are closely related to the workload, because the data show that longer and the faster movements increase
fatigue and discomfort. From this perspective, our study demonstrated that feedback can reduce fatigue
and discomfort, which can eventually improve usability. One of the interesting findings is that haptic
feedback can be a good solution to improve the mid-air gesture interactions in terms of performance and
usability, although it is sometimes not the best.

One may argue why we focus on more haptic feedback than other feedback conditions that show
similar or even better results. The answer would be that we focus on nonintrusive feedback that does
not interfere with the purpose of the original content display. Additional visual and aural feedback
may affect the original content display when operated by gesture controls. We therefore focus on
analyzing the effect of tactile feedback while users control an external device with gestures. However,
we were interested in comparing the system performance with all other feedback conditions to draw
comprehensive and meaningful conclusions. For instance, Figure 23 suggests that aural feedback is the
best option to improve comfort and pleasure. Our understanding for this result is that the prototype for
the haptic feedback is not yet perfected to provide a comfortable interface as much as headphones do.
This can be improved by redesigning the haptic device to be deformable for a better fit on the hand or by
developing a bare hand touch feedback device, which is our ongoing research project.

We believe that the developed gesture interaction system must be a further step towards a natural
user interface, though it has three limitations. One limitation is that our hand tracking algorithm works
with two assumptions: no object exists within 10 cm of the user’s hand and an acceptable moving
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distance (±15 cm) along the z-axis. In this study, the assumptions were made by testing with even
more complex gestures. As the next step, we need to put more effort into developing an assumption-free
algorithm. Another limitation is to use an elastic bandage to attach the tactile feedback device to the
user’s hand, which feels cumbersome to the user. This results from the flat surface design, which needs
high pressure to have good contact with the user’s palm surface. We can resolve this issue by redesigning
the haptic device to have a deformable surface, so that users can change its shape for better attachment.
We will work on this issue in the near future. The other limitation is the need to wear the device.
Our haptic device is sufficiently light; however, wearing a device is still a burden for a natural user
interface with bare hands. This problem can be solved by developing a non-wearable tactile feedback
device, which is our ongoing research project. As the last future work, multimodal feedback effects on
more complex gestures will be investigated by designing psychophysical experiments to understand the
sensory dominance for mid-air gesture interactions.
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