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Abstract: This paper describes a new method based on a voltammetric electronic tongue 

(ET) for the recognition of distinctive features in coffee samples. An ET was directly applied to 

different samples from the main Mexican coffee regions without any pretreatment before the 

analysis. The resulting electrochemical information was modeled with two different 

mathematical tools, namely Linear Discriminant Analysis (LDA) and Support Vector 

Machines (SVM). Growing conditions (i.e., organic or non-organic practices and altitude of 

crops) were considered for a first classification. LDA results showed an average 

discrimination rate of 88% ± 6.53% while SVM successfully accomplished an overall 

accuracy of 96.4% ± 3.50% for the same task. A second classification based on geographical 

origin of samples was carried out. Results showed an overall accuracy of 87.5% ± 7.79% for 

LDA and a superior performance of 97.5% ± 3.22% for SVM. Given the complexity of 

coffee samples, the high accuracy percentages achieved by ET coupled with SVM in both 

classification problems suggested a potential applicability of ET in the assessment of 

selected coffee features with a simpler and faster methodology along with a null sample 

pretreatment. In addition, the proposed method can be applied to authentication assessment 

while improving cost, time and accuracy of the general procedure. 
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1. Introduction 

According to the International Coffee Organization (ICO), in the 2012 productive year, Mexico 

occupied the eighth position among the world coffee producers [1]. Mexican production is supported by 

approximately 15 regions of coffee growing, distinguished by geographical location, local microclimate 

and the particular cultivation procedures followed in each zone. To ensure coffee quality for final 

consumers, the Mexican government established different regulations for evaluation in accordance to 

international standards. In this sense, and given the importance of geographical location, Veracruz and 

Chiapas own a protected designation of origin (DO) [2,3]. Current regulation classifies as high grown 

coffee (HGC) to crops growing from 900 to 1200 m above sea level (m.a.s.l.) and as prime washed 

coffee (PW) to crops growing from 600 to 800 m.a.s.l. [4].  

To ensure high standards in the coffee industry, extensive research to study key qualities in coffee 

has been lead. A considerable number of studies have been conducted to characterize the flavor [5], 

aroma [6,7], as well as to identify the chemical composition of coffee beans [8] and authenticity [9]. 

There are over 1000 different chemicals in coffee, including caffeine, sugars, polyphenols, chlorogenic 

acids, carbohydrates, amino acids and proteins, along with other chemical descriptors such as metals and 

minerals [10,11]. 

Different authors have used one or more of these elements as descriptors to determine specific 

features such as coffee authenticity, geographical origin, botanical variety and some characteristics 

related to growing and environmental conditions of crops [12–17]. Usually, the measuring is carried out 

by analytical methods, such as near-infrared spectroscopy (NIRS), liquid and gas chromatography 

(LC/GC), atomic absorption and emission spectrometry (AAS/AES), instrumental neutron activation 

analysis (INAA) and inductively coupled plasma optical emission spectrometry (ICP-OES) [18]. 

Commonly, the resulting information is processed by some chemometric methods in order to find 

patterns or features for samples discrimination. Principal component analysis (PCA), hierarchical cluster 

analysis (HCA), artificial neural networks (ANN) and self-organizing maps (SOM) are among the most 

applied methods [19,20]. 

However, in the present decade, artificial senses have been applied as alternative tools for traditional 

methodologies in food analysis [21]. These biomimetic systems, known as Electronic Tongues (ETs) 

and Electronic Noses (ENs), involve the use of a non-specific sensor array coupled with an appropriate 

chemometric tool for data processing [22,23]. ETs, in particular, have the ability to distinguish liquids 

of unknown composition without using any preliminary qualitative or quantitative information about the 

sample. Taking advantage of this peculiarity, different authors have used either potentiometric or 

voltammetric ETs for the identification and classification of beverages and foodstuffs [24]. However, 

the application of ETs in the analysis of coffee has been barely reported and only few articles have 

described the use of ETs for the identification or classification of a small set of different brands of ground 

roasted coffee [25,26].  

The aim of this work is the development of a simpler, cheaper and faster methodology based on a 

voltammetric ET for the analysis of some features found in Mexican coffee beans. In general, this paper 

promotes an emerging methodology for the classification of coffee by type. It is important to note that 

this is a preliminary study. Today, in our laboratories, we are deepening the optimization of the electronic 

tongue presented in this paper, considering a vast array of samples, in order to extend the application of 
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ET in the coffee industry. Even though Mexican coffee was taken as a model, the overall procedure can 

be extended for identification and authentication purposes of coffee samples from around the world. 

2. Experimental Section 

2.1. Coffees under Study 

A total of 42 samples of ground roasted coffee (Arabica type) from some of the principal Mexican 

coffee regions were purchased from local producers. Thirty-four samples were selected from the two 

existing DO regions in Mexico (Veracruz and Chiapas). The remaining samples were chosen from a 

smaller coffee region without DO. In addition to geographic origin, features such as crops altitude and 

cultivation practices (i.e., organic or non-organic production) were included in the selected samples. 

According to crop altitude, 35 samples of the total set were identified as High Grown Coffee (HGC) 

while the last seven remaining samples were Prime Washed (PW) coffees. In relation to the cultivation 

practices, all PW samples and nine HGC samples were from organic crops. Therefore, to distinguish 

these samples, they were named as Organic Prime Washed coffee (OPW) and Organic Coffee (OC) 

respectively. In Table 1, characteristics for all samples are summarized. HGC refers to high grown 

coffee, OC depicts high grown coffee from organic crops and OPW represents organic coffee crops 

cultivated at lower altitudes. 

Table 1. Characteristics for the 42 coffee samples data set. 

Geographical Region Brand Growing Conditions 

 
 
 
 
 
 
 
 
 
 

Veracruz 

Café Xico HGC 

Los Portales HGC 

Avelino Tueste Reserva HGC 

Texolo HGC 

D’La Finca HGC 

Blasón Coatepec HGC 

Bordi HGC 

Baxtla HGC 

Avelino Tueste Exprés HGC 

Café Junco HGC 

Café Córdoba HGC 

Avelino Tueste Exprés 
Punta de Oro 

La Onza Gourmet 
Moretto 

HGC 
HGC 
HGC 
HGC 

La Misión 
Buena Ventura Premium 

OC 
OC 

Buena Ventura Gourmet OC 

Abaxomol OC 

Sierra de los Tuxtlas 
Etrusca Coatepec 

Don Pepe 

OPW 
OPW 
OPW 
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Table 1. Cont. 

Geographical Region Brand Growing Conditions 

 
 
 
 
 

Chiapas 

Soconusco HGC 
Blasón Jaltenango 

Nacional Café David 
Caracol 

Prensado Francés 
Mamá José 

HGC 
HGC 
HGC 
HGC 
HGC 

Morteador OC 
Oro Maya OC 
Mulantic OC 
BioStricto 

Etrusca Soconusco 
Yajalón 

OC 
OPW 
OPW 

 
 
 

Others 

Blasón Pluma 
Gila Gourmet 

Gourmet Urrios 
Sierra de Oaxaca 

Tres Oros 
Blasón artesanal 

Uciri 
Rincón de Ixtlán 

HGC 
HGC 
HGC 
HGC 
HGC 
OC 

OPW 
OPW 

2.2. Sensor Array 

An array of six graphite-epoxy voltammetric sensors, made with different modifiers added to the bulk 

mixture, was selected according to previous studies with foodstuffs [27–29]. For the standard  

graphite-epoxy voltammetric sensor, a bulk mixture of 20 μm particle size graphite powder (Sigma 

Aldrich) and Epotek H77 resin and hardener (both from Epoxy Technology, Billerica, MA, USA) was 

used. For the five remaining voltammetric sensors, different modifiers such as platinum and gold 

nanoparticles (Sigma-Aldrich, St. Louis, MI, USA), cobalt II phthalocyanine (Sigma-Aldrich,  

St. Louis, MI, USA) and conducting polymers as polyaniline (Sigma-Aldrich, St. Louis, MI, USA) and 

polypirrole (Sigma-Aldrich, St. Louis, MI, USA) were added to the bulk mixture. Afterwards, each 

composite was manually homogenized for 60 min before filling a PVC body (see Figure 1). Then, the 

sensors were allowed to harden for 7 days at 40 °C. Finally, each sensor surface was polished with 

different sandpapers of decreasing grain size, in order to obtain a homogeneous working electrode area 

of 28 mm2. The measurement cell was formed by the six voltammetric sensor array, a reference double 

junction Ag/AgCl electrode (Thermo Orion 900200) and a commercial platinum counter electrode 

(Model 52–67, Crison Instruments).  
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Figure 1. Graphite-epoxy composite electrodes construction scheme. (A) Copper disk 

soldered to the electrical connector; (B) Electrical section assembled into the PVC tube;  

(C) Body sensor ready to be filled with the composite paste; (D) Final appearance after 

hardening and polishing. 

 
(A)        (B)                             (C)                                          (D) 

2.3. Sample Preparation 

Standard procedure for sample preparation was based on current Mexican DO norms and local 

producer specifications [2–4]. Briefly, 8 g of ground roasted coffee were collected from a newly open 

packet. Meanwhile, bottled water (Bonafont S.A. de C.V, Mexico) was heated until boiling point. Coffee 

ground was placed in a coffee machine filter while 50 mL of boiled water were added. Finally, the 

resulting infusion was stored until room temperature (25 °C) was achieved.  

2.4. Electrochemical Technique and Procedure 

Before performing the measurements with coffee samples, the built electrodes were cycled for  

3–5 times in distilled water until they reached a stable response. Cyclic voltammetry measurements were 

made using a 6-channel AUTOLAB/PGSTAT20 (Ecochemie, The Netherlands). All measurements 

were carried out at room temperature (25 °C) under quiescent condition and without any sample 

pretreatment. For measurements, scan rate was fixed at 0.1 V·s−1 with a step potential of 9 mV. Potential 

sweep was set in the range of −1.7–1.5 V vs. Ag/AgCl. All prepared infusions were measured according 

to these set up parameters. In addition, with the purpose of normalizing all registers, a blank register 

(only bottled water) was recorded before each sample measurement. All experiments were carried out 

without performing any physical surface regeneration of the working electrodes. In order to prevent the 

accumulative effect of impurities on the working electrode surfaces, an electrochemical cleaning stage 

was performed between each measurement applying a conditioning potential of +1.8 V for 40 s after 

each experiment, in a cell containing 10 mL of distilled water.  

2.5. Data Processing 

Data processing and modelling was done by specific routines written by the authors in MATLAB 

2012b (MathWorks, Natick, MA, USA), based on already preprogrammed standard functions using 

Statistics Toolbox (v8.1) and the free software LibSVM 3.18 [30]. From the five scans performed  

in each coffee sample determination, only the last one was used as input data. The whole cyclic 

voltammograms from the six sensor array were included in the different data processing stages. 
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Firstly, the available raw voltammetric data was preprocessed considering a blank correction, 

centering and standardization (i.e., standard deviation = 1 and mean = 0) in order to build a preliminary 

recognition model using Principal Component Analysis (PCA). Secondly, the same raw data was blank 

corrected and normalized prior to be modeled with two classification methods namely Linear 

Discriminant Analysis (LDA) and Support Vector Machines (SVM). For training convenience, the 

preprocessed voltammetric was randomly split into two subsets, 70% of the total information was taken 

for training and the rest for testing. Given that those are supervised methods, the classification success 

(was evaluated using a k-fold (k = 3) cross-validation technique selecting the test set each time at random 

from the total set of samples. A total of 10 replicates were considered to calculate the average accuracy, 

sensitivity and specificity of the models. 

Besides comparing LDA and SVM models the goal was to identify the effect of using mathematical 

models of linear and nonlinear characteristics. As is well known, LDA is one of the most widely used 

classification procedures, which has proven success in many applications. This method maximizes 

between class variability relative to within-class variability. For LDA modeling, the data set is projected 

onto a new dimensional space based on a target vector of class labels. Unlike PCA, where dimensionality 

reduction is only based on maximum data variance, LDA seeks for dimensionality reduction but keeps 

the class discriminatory information provided by class label vector. On the new projected space, each 

sample was assigned to its corresponding group according to Euclidean distance from centroid class [31]. 

Once trained, LDA model was validated against a test group, where Euclidean distance was calculated as 

well to assign new samples with the predicted group. 

In counterpart, SVM modeling represent a new approach to pattern classification that has  

attracted a lot of attention in many real-world applications ranging from data mining, chemistry and 

biotechnology [32,33]. Its principle comes from the framework of the statistical learning theory, which 

is appropriate for approaching classification and regression problems [34,35]. Probably, the major 

advantage of SVM is related to their global and unique solution avoiding the multiple local minima 

problem of models such as artificial neural networks. In addition, the final complexity of SVM models 

does not depend on the dimensionality of the input space. SVM models are also less susceptible to the 

well-known problem of overfitting, since they operate on the induction principle of structural risk 

minimization (which minimizes an upper bound on the generalization error). In this work, SVM 

discrimination based on linear and radial basis function (RBF) kernels was studied. Before validation, 

the parameters in both kernels were optimized with a training data set.  

3. Results and Discussion 

3.1. Exploratory Data Analysis 

Figure 2 shows the measured voltammograms with distinctive signals for each sensor. Catalytic 

oxidative signals seem to be originated from the metal nanopaticle modified sensors, which may be due 

to a catalytic oxidation of saccharides and/or polyphenols on the sensor surface. Similarly, sensors 

modified with conducting polymers and phthalocyanines bring new information with completely 

different waveforms and distinct redox peaks.  
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Figure 2. Recorded voltammograms from Graphite Epoxy (GE), Platinum nanoparticle (Pt), 

Cobalt II phthalocyanine (CoPht), Gold nanoparticle (Au), Polypirrole (Pyr) and Polyaniline 

(Pol) sensors for three different coffee samples. Voltammograms for growing conditions are 

shown in (a) and voltammograms for geographical origin can be observed in (b). 

 

(a) 

 
(b) 
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Similarly, the reader is referred to the information presented in the supplementary material to 

visualize a blank signal of each sensor. Different Figures S1–S6 show the significance of the 

voltammograms in front of the blank. It may be noted that the measured voltammograms exhibit 

variations not only in current intensities, but also in shape.  

Given the clear response variability of sensors, the first processing stage was done using PCA  

in order to find some sort of pattern in sensor data. For this stage, a preprocessing stage covering blank 

correction, centering and standardization was applied to the whole voltammetric data. Multidimensional 

information coming from the sensor array was then arranged into a matricized array of dimension  

42 × 4272 (samples × stacked measurements from the six sensors). Considering the differences in 

geographical origin and growing conditions, a grouping trend, according to some of these two features, 

was expected. However, even though the cumulated total variance was 95.27%, PCA analysis did not 

show any significant pattern in data. Moreover, a strong scattering trend was observed for all the coffee 

samples as can be observed in Figure 3. 

Figure 3. Coffee data representation by its three first principal components. Red dots 

represent HGC, blue squares represent samples OC coffee and green triangles represent 

samples OPW coffee.  

 

Despite the high cumulated variance, the low discrimination achieved by PCA analysis can be 

explained by the nonlinear nature of sensor data. Also, dimensionality reduction based exclusively on 

variance can dismiss some minor features found in voltammograms, which can potentially contribute to 

the cross sensitivities required for an ET approach. Since no trend was observed with PCA, a supervised 

approach based on LDA and SVM was pursued instead. In this sense, data was arranged according to 

two major characteristics: growing conditions and geographical origin.  
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3.2. Growing Classification of Coffee Samples 

Voltammetric data was analyzed for a classification based exclusively on coffee growing conditions 

(i.e., cultivation procedure and altitude of crops). Growing conditions from Table 1 described a set of 

three different classes namely HGC, OC and OPW coffee samples. To preserve the richness of the 

analytical signals, the whole records were used without feature extraction or previous dimensionality 

reduction. Only blank correction plus normalization were applied for preprocessing data in each model. 

The supervised methods LDA and SVM were used to attempt to correlate the overall voltammetric signals 

with one of the three described classes; each model showed distinctive performance according with their 

operational characteristics. From the available information, different classifiers were built using LDA 

and SVM, in order to compare their classification performance.  

Figure 4 shows the discrimination achieved for all samples with the new bidimensional space of two 

discriminant functions.  

Figure 4. LDA classification according to growing conditions. 

 

As mentioned earlier, SVM discrimination was based on linear and radial basis function (RBF) 

kernels. Before the validation stage, the parameters in both kernels were optimized. For linear kernel, 

the cost parameter c was evaluated in the range of 0–3000. After training, results from test set showed a 

maximum accuracy of 83.3% in the range of 100–500. Values outside this range exhibited strong 

overfitting trend, which can be observed in Figure 5a. For RBF kernel the cost parameter c and the kernel 

coefficient γ, were studied in the range of 2 × 103 to 2 × 1015 for c and 2 × 10−1 to 2 × 10−7 for γ. It was 

observed that γ values in the upper and lower limits of this range resulted in overfitting, while middle 

values tend to be more accurate. Figure 5b shows the surface obtained for the different c and γ values. 

A maximum percentage of accuracy for RBF kernel was observed with c equal to 2 × 107 and γ equal to 

2 × 10−5, which was chosen over the linear kernel. 
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Figure 5. (a) Cost parameter evaluation for linear kernel; (b) RBF kernel surface response 

for cost parameter and kernel coefficient. 

 
(a) 

 
(b) 

The results of accuracy (classification rate) for LDA and SVM models after ten replications of  

k-fold cross validation are shown in Figure 6. As can be observed, LDA models displayed inconsistent 

accuracy results, ranging from 80% in the worst case to 96% in the best case. However, for the same 

data SVM models showed a constant trend with high accuracy percentage ranging from 93.75% in the 

worst case and 100% in the best case. For growing classification the average percentage of accuracy for 

LDA was 88% ± 6.53% and 96.4% ± 3.50% for SVM. From both results, accuracy percentage and total 

deviation, a superior SVM performance as compared to LDA can be noted. 

In addition to accuracy, sensitivity (rate of correctly classified objects for each class) and specificity 

(rate of correctly rejected objects for each class) of the two classifiers were calculated. The average 

results for each class after 10 replicates are presented in Table 2 along with the calculated deviations and 

the overall results. 
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Figure 6. Final results obtained for growing conditions classification after k-fold  

cross-validation data using LDA and SVM models. 

 

Table 2. Sensitivity and specificity for growing conditions classification after cross-validation data. 

Class 
LDA SVM 

Sensitivity (%) Specificity (%) Sensitivity (%) Specificity (%) 

HGC 85 ± 10.29 96.66 ± 7.5 97.5 ± 6.03 98.88 ± 3.51 
OC 88 ± 13.98 96.26 ± 6.6 90 ± 10.5 98 ± 4.38 

OPW 100 ± 0 90.99 ± 7.1 100 ± 0 98.09 ± 2.46 
Overall 91 ± 8.09 94.63 ± 7.06 95.83 ± 5.51 98.32 ± 3.45 

From Table 2, some results can be highlighted. The high obtained rates in sensitivity and specificity 

percentages exhibited by LDA and SVM in the third class established a clear distinction between coffee 

samples cultivated at high altitudes (HGC and OC classes) and those cultivated at sea level  

(i.e., OPW). This attribute identified by the ET could be associated with the quality of Mexican coffee; 

nevertheless this fact should be confirmed in further studies. HGC and OC classes were cultivated on 

high altitude crops; however, a high discrimination rate between samples cultivated with organic 

practices and those cultivated with standard practices was successfully achieved by SVM and with a 

minor success by LDA. The sensitivity and specificity showed by SVM in HGC class suggested that 

almost all samples from this group were correctly classified and no OC or OPW samples were 

misclassified as HGC. All the OC class members were correctly classified and only a minor percentage 

of total set was misclassified as a member of this group. However, although both classifiers adequately 

distinguish different classes, only SVM models allowed the maximal accuracy.  

Even a similar discrimination between organic and non-organic samples was previously reported, the 

resulted achieved by voltammetric ET is remarkable because of the easier instrumental method, null 

sample pretreatment, the inclusion of samples from different geographical regions and the high accurate 

accomplished results [14].  
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3.3. Geographical Classification of Ground Roasted Coffee 

Beyond the discrimination of the growing procedure of coffee samples, the other objective was to 

evaluate ET capability to perform a geographical classification of ground roasted samples. Since the 

coffee samples identified as HGC constitute the largest class, only the geographical origin classification for 

these samples was considered. To ensure coffee origin, HGC samples were purchased from local producers 

in each Mexican region. First considered classes were Veracruz and Chiapas because of their protected 

DO for coffee. In a third class, samples from Oaxaca (without DO) were grouped together. 

Recorded voltammograms from the 26 available coffee samples were processed with LDA and SVM 

using the same optimization procedure described in Section 3.2. Final SVM values of c equal to  

2 × 107 and γ equal to 2 × 10−1 were chosen. The two models were tested k-fold cross validation and  

10 replicates. Average accuracy, sensibility and sensitivity were calculated for each model. In Figure 7, 

the class distribution in the two dimensional space obtained by LDA is showed. As in growing conditions’ 

classification, Euclidean distance was used to predict the selected group for a given sample. 

Figure 7. Class distribution achieved by LDA for geographical origin of samples. 

 

Finally, Figure 8 shows the accuracy achieved by LDA and SVM for cross validation data after  

10 replicates.  

Average accuracy achieved by LDA was 87.5% ± 7.79%, while SVM showed a superior performance 

of 97.5% ± 3.22%. The higher deviation of ±7.79% for LDA can be noted on the inconsistent trend 

showed by Figure 8. Sensitivities and specificities for each class along with the overall performance are 

shown in Table 3. 
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Figure 8. Final results obtained for geographical origin classification after k-fold  

cross-validation data using LDA and SVM models. 

 

Table 3. Sensitivity and specificity for geographical origin classification for cross-validation data. 

Class 
LDA SVM 

Sensitivity (%) Specificity (%) Sensitivity (%) Specificity (%) 

Veracruz 81.10 ± 12.88 95.71 ± 6.90 94.44 ± 7.86 100 ± 0 
Chiapas 100 ± 0 91.43 ± 8.79 100 ± 0 97.49 ± 4.02 
Others 89.99 ± 16.10 94.55 ± 9.64 100 ± 0 98.46 ± 4.86 
Overall 90.36 ± 9.66 93.89 ± 8.44 98.14 ± 2.62 98.65 ± 2.96 

Because of the existing DO for Veracruz and Chiapas, the results obtained by SVM are remarkable 

for the geographical origin classification problem. Firstly, voltammetric ET and SVM clearly established 

a distinction between coffee samples from different geographical regions. From the three classes, 

discrimination was expected for Veracruz and Chiapas groups because of the existing DO for coffee 

samples. Even legislation established a quality control based on sophisticated instrumental methods, the 

proposed voltammetric ET plus SVM lead to results higher than 98% of accuracy for this data set. 

Specificities accomplished by SVM also shown that Veracruz samples reached an outstanding 

performance of 100%, while for Chiapas and the outlier region there was a minor misclassification. Even 

some early studies approached the geographical origin classification of coffee samples based on 

chemical profile, mineral content or metabolic markers with promising results, this is the first time 

geographical origin of coffee samples is successfully classified by a voltammetric sensor array and a 

chemometric tool. As compared with other studies, the results presented in this work showed an 

improvement in accuracy, plus the advantage of an easier, inexpensive and fast methodology [36]. 

Moreover, even results covered samples from at least three different Mexican regions, the methodology can 

be potentially extended to a higher number of worldwide regions.  

4. Conclusions 

An instrumental method based on voltammetric ET and SVM for the analysis of distinctive coffee 

qualities was presented.  For classification, samples from the principal Mexican coffee regions and 
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samples with DO were included in the data set. Discriminatory capability based on key features such as 

growing conditions and geographical origin was performed. Two mathematical models, namely  

LDA and SVM were applied for classification of voltammetric data. After optimization, best results  

for the two proposed classifications were achieved with SVM using a RBF kernel. Successful 

discrimination between samples cultivated with different conditions (i.e., altitude, organic and  

non-organic coffee practices) was achieved with an overall accuracy of 96.4% ± 3.50%, while for 

geographical origin the accomplished accuracy was 97.5% ± 3.22%. Data modeling showed the 

importance of inclusion of several pattern recognition methods based on linear and nonlinear trends for 

the analysis of complex data coming from sensor arrays. The inclusion of nonlinear modeling allowed 

the discrimination of coffee samples cultivated at different altitudes, the distinction between organic and 

non-organic coffee, as well as the recognition of samples from principal Mexican coffee regions. All 

these are considered important features to assess coffee quality. The presented results pointed out the 

potential of application of an ET as an easy, fast and inexpensive method for coffee analysis or 

authentication assessment in the quality control industry.  
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