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Abstract: Currently, driver drowsiness detectors using video based technology is being 
widely studied. Eyelid closure degree (ECD) is the main measure of the video-based 
methods, however, drawbacks such as brightness limitations and practical hurdles such as 
distraction of the drivers limits its success. This study presents a way to compute the ECD 
using EEG sensors instead of video-based methods. The premise is that the ECD exhibits a 
linear relationship with changes of the occipital EEG. A total of 30 subjects are included in 
this study: ten of them participated in a simple proof-of-concept experiment to verify the 
linear relationship between ECD and EEG, and then twenty participated in a monotonous 
highway driving experiment in a driving simulator environment to test the robustness of 
the linear relationship in real-life applications. Taking the video-based method as a 
reference, the Alpha power percentage from the O2 channel is found to be the best input 
feature for linear regression estimation of the ECD. The best overall squared correlation 
coefficient (SCC, denoted by r2) and mean squared error (MSE) validated by linear support 
vector regression model and leave one subject out method is r2 = 0.930 and MSE = 0.013. 
The proposed linear EEG-ECD model can achieve 87.5% and 70.0% accuracy for male 
and female subjects, respectively, for a driver drowsiness application, percentage eyelid 
closure over the pupil over time (PERCLOS). This new ECD estimation method not only 
addresses the video-based method drawbacks, but also makes ECD estimation more 
computationally efficient and easier to implement in EEG sensors in a real time way. 
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1. Introduction 

Driver drowsiness is one of the major causes of mortality in traffic accidents worldwide. Among the 
members of Organization for Economic Co-operation and Development (OECD), South Korea has the 
highest car accident mortality rate [1]. From 2010 to 2013, 1223 people died in highway traffic 
accidents in Korea, and 31% of them died in accidents related to driver drowsiness [2,3]. Driver 
drowsiness is mainly caused by long duration monotonous driving, and is characterized by remarkable 
behavioral changes, including variation in the pupil size, blinking of the eyes and various body 
movements [4]. One of the milestones in the monitoring of driver drowsiness is the usage of 
percentage eyelid closure over the pupil over time (PERCLOS) to give a warning if driving whilst 
drowsy is determined. It has previously been verified that PERCLOS is the most reliable and valid  
in-vehicle drowsiness detection technology [5]. PERCLOS is a video-based driver drowsiness 
monitoring technology. It assesses drowsiness by measuring slow eyelid closure and estimating the 
proportion of time for which the eyes are closed over specified time intervals. According to the 
documents published by the US Federal Highway Administration (FHWA) [6,7], the measurement of 
high sensitive PERCLOS is given by Equation (1), where ECD refers to Eyelid Closure Degree: 
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Conventionally, the calculation of the ECD is based on image processing, which requires proper 
brightness and a stable face-to-camera distance. There are however some limitations, for example, the 
ECD cannot be properly determined when drivers work during the night or when drivers wear glasses 
in the daytime. In addition to this, video based systems need to overcome practical hurdles, such as 
causing distraction of the driver. This point can be indirectly verified by the growing number of traffic 
accidents caused by the use of in-vehicle Digital Multimedia Broadcasting (DMB) and smartphones in 
Korea [1], where drivers who read, text and watch the DMB or smartphone are driving whilst 
distracted. Also, the high-computational load is another disadvantage of the video-based method. For 
example, in previous study [8], we developed a video-based PERCLOS system using an Android 
smartphone’s built-in camera (Galaxy SIII, Samsung, Korea). The minimum preview size for its  
built-in camera is 320 × 240, which needs at least 150 KB buffer size. Such a high computational load 
is not suitable for the low-power requirement in field application. Thus, the success of traditional 
video- based measurement is very limited. 

EEG is a non-invasive brain activity measurement method. Based on different frequencies, EEG 
signals can be categorized into five specific bands: Delta (δ, below 4 Hz), Theta (θ, 4–7 Hz), Alpha (α, 
8–12 Hz), Beta (β, 13–30 Hz) and Gamma (γ, above 30 Hz). The occipital EEG has a direct 
relationship to ECD since the visual cortex, which is responsible for processing visual information, is 
located in the occipital region of the brain. The well-known sleep recording standard today, the 
American Academy of Sleep Medicine’s (AASM, 2007 [9]), just determines Stage W (wake) using 
following occipital eye closure (EC)/open (EO) related EEG features: In stage W, the majority of 
individuals with eyes closed will demonstrate an α rhythm, whilst the EEG pattern when the eyes are 
open consists of low amplitude activity without the rhythmicity of an α rhythm. Other studies about the 
EEG and ECD are more interesting. For example, Mulholland and Evans [10] showed that people were 
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able to decrease the α wave ‘at will’ by visually fixating, and increase it by blurring the image.  
Craig et al. [11] developed an algorithm for the disabled to control electrical devices using the  
EC-related increase and EO-related decrease in amplitude of α wave. Also, Ianov et al. [12] tested 
subjects in a dark room with a lamp in front of them. Strong α signals could be obtained when the light 
was turned off, whereas a weak signal was recorded when the light was on.  

These discoveries demonstrate the interesting interactions between EEG and ECD, however most of 
them mainly focused on the EC/EO applications and did not quantify the ECD changes and thus could 
not accurately determine on the nature of the relationship between EEG and ECD. This study firstly 
quantified the ECD changes using a self-developed device and did a proof-of-concept experiment to 
assess whether there is a linear relationship between occipital EEG and ECD. Then, a monotonous 
driving simulation experiment was carried out to assess the robustness of the relationship in a real-life 
application. Experimental results indicate that a linear relationship between EEG and ECD does exist. 
Therefore, a linear support vector regression model (SVR) is further proposed to predict the driver’s 
ECD using EEG power spectrum features and compared with two non-linear SVR models: (1) SVR 
with radial basis function (RBF) kernel and (2) SVR with polynomial kernel. This new ECD 
estimation method not only addresses the video-based drawbacks, but also lays the foundation for the 
development of a driver drowsiness detector which uses EEG alone but is characterized by  
multi-channel data fusion methods: occipital EEG for estimating ECD, frontal and central EEG for 
measuring the conventional fatigue features (e.g., θ/β, θ/(α+β),(θ+α)/β and (θ+α)/(α+β) [13]). 

2. A Proof-of-Concept Experiment 

A proof-of-concept experiment is firstly carried out to assess whether there is a linear  
relationship between occipital EEG and ECD.  The linear relationship is quantified using a simple 
linear regression model. 

2.1. Subjects and Data Collection 

In order to ensure the good contact quality of electrodes and scalp, ten male subjects (age  
26.1 ± 1.97 years) who had shorter hair participated in the pilot experiment. None of the subjects 
reported any ocular impairment and did not drink tea or anything containing caffeine before the 
experiment. During the experimental procedure, each subject was instructed to do eyelid movements as 
follows: full open (FO), slight closure (SC), half closure (HC), almost closure (AC) and full closure 
(FC), in order to obtain linearly growing ECD values. Initially, we intended to quantify the eyelid 
movement using fixed values, such as 20% ECD for SC, 50% for HC and 80% for AC, however, this 
was too ideal to have them performed by the subjects. Thus, in this study, the five eyelid movements 
were controlled by the subjects themselves as long as each ECD would correctly fall into the five  
pre-defined groups, as shown in Table 1, following this the ECD was increasing, but not exactly in a 
linear increase. 

According to common sense, 10 s is an accepted longer duration for subjects to maintain a certain 
ECD group without any eye blinks. Therefore, in this study, each ECD group was maintained for 10 s 
duration without any eye blinks. Subjects were asked to implement the ECD groups orderly from FO 
to FC. During each ECD group, subjects were required to remain as still as possible, in order to reduce 
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muscular artifacts. The five ECD groups correspond to one trial. Each subject was asked to repeat the 
trial five times, in order to avoid accidental EEG signals. The structure of each trial is shown in Figure 1. 
EEG recordings were conducted using the Emotiv EPOC 14-channel EEG wireless recording headset 
(Emotiv Systems, Inc., Hong Kong). The electrodes were placed according to the international 10–20 
system and included active electrodes at occipital region: P7, O1, O2 and P8 (Figure 2a,b, red circles 
with dotted line).  

Table 1. Summary of the ECD groups’ detailed information. 

Group The Range of ECD Values (%) 
FO ECD ＜ 20 
SC 20 ≤ ECD ＜ 40 
HC 40 ≤ ECD ＜ 60 
AC 60 ≤ ECD ＜ 80 
FC 80 ≤ ECD 

Figure 1. Trial structure adopted in the experimental protocol. 

 

Figure 2. (a) EEG headset and occipital electrode positions, according to the 10–20 
systems, of the Emotiv EPOC device used for EEG acquisition. (b) The contact quality of 
electrodes and scalp is good (green color). (c) Experimental configuration: quantitatively 
measure the ECD using a video-based method meanwhile testing the EEG. 

   
(a) (b) (c) 
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The contact quality of electrodes and scalp is color coded in the software that pairs with the 
commercialized EEG device (Black: no signal; Red: very poor signal; Orange: poor signal; Yellow: 
fair signal; Green: good signal). EEG data is band-pass filtered in the range of 0.2–45 Hz using 
hardware filters. Two digital notch filters at 50 and 60 Hz are further applied, and the output data are 
sampled at 128 Hz. The portability and easy-to-wear characteristics of the recording device and high 
resolution (16-bit ADC) are the reasons for its use in this study. For reference, the video-based ECD 
values were obtained at the same time with EEG recordings as shown in Figure 2c. The video-based 
device was developed by our previous work [14], which is a smartphone application using the built-in 
camera to recognize the face first and then perform ECD calculations. The ECD sampling rate was 7 Hz. 
All subjects sat comfortably on a chair in a laboratory environment under daylight lamp conditions.  

2.2. Power Spectrum Analysis 

In order to reduce the individual differences, EEG power percentages (θ, α and β power 
percentages) instead of the absolute EEG power values are calculated from the EEG raw data. EEG 
power is calculated as the sum of the squared FFT magnitude of the EEG signal using a 10 s Hamming 
window. Then, The power percentage (Per) is calculated as the result of dividing the FFT power of one 
EEG band by the sum of the FFT power of all three EEG bands (Equation (2), where, zi = {θ, α, β}). 
The FFT analysis was implemented using the Complexity software (Ver. 2.82, Laxtha, Daejeon, 
Korea). Before power spectrum analysis, all EEG signals are filtered using basic FIR filter with  
4–30 Hz bandwidth in order to filter out delta and gamma wave. Delta wave (0–4 Hz) and Gamma 
wave (30–100 Hz) are mainly related to deep sleep and arousal effects, respectively [9,15], which is 
beyond our study topic.  
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2.3. Simple Linear Regression Model 

Assuming that the ECD and the extracted EEG feature f has a linear relationship, a simple linear 
regression model can be described by iii fECD εβα ++= * , where iε is assumed to be the random 
zero mean noise, α is the intercept and β  is the slope of the line which specifies how much the if
contributes to the ECDi. Since iε  is a random factor, we cannot directly determine ECDi. Therefore, in 
order to estimate the ECD (eECD) for a given if , α̂  and β̂  are needed to be estimated by using the 

least squares prediction equation ii feECD *ˆˆ βα += . Given n observation pairs, {( ii fECD , )}, where  
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where, Cov(f , ECD) is the covariance of feature f and observed ECD and, Var (f) is the variance of 
feature f. 
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2.4. Results 

The typical ECD plots and occipital EEG recordings (at electrode O2) for one trial (from a 
representative subject) are shown in Figures 3 and 4. Visually, the difference in the EEG signals 
among the five ECD groups indicates a linearly growing low-frequency component. FFT analysis 
shows that this component is located in EEG α band (red color in Figure 5). 

Figure 3. The typical signals for one trial ECD plots. 

 

Figure 4. The typical signals for one trial EEG signals. 

 

The averaged ECD values for each ECD group in Figure 3 and extracted EEG α power percentage 
in Figure 5 are further summarized in Table 2. Based on these results, a simple linear regression model 
is used to quantify the linear relationship between this representative subject’s ECD and EEG (as 
shown in Figure 6) with slope β̂  (= 1.878), intercept α̂  (= −67.84) and R2 = 0.917. R2 is a measure of 
how goodness of linear fit. If R2 = 1.00, that means perfect linear relationship. 
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Table 2. Collected observed ECD and Alpha power percentage from one subject. 

ECD Group Alpha Power (%) ECD (%) 

FO 40.4 0 
SC 49.1 19 
HC 52.1 47 
AC 84.7 80 
FC 85.2 100 

Figure 5. The typical changes of power percentage for one trial EEG signals as the 
increase of ECD. 

 

Figure 6. The simple linear regression model used to quantify the linear relationship 
between ECD and EEG. 
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The averaged θ, α and β power percentages over the four occipital channels over the 10 subjects 
were used to assess whether these EEG features show linear relationship with ECD. As can be seen in 
Figure 7, α wave presents a positive and linear trend with the growth of ECD, while β wave shows a 
linear relationship with negative trend. However, θ wave does not show linear trend. The θ wave 
increases from 27% at FO to 30% at SC and maintains about the same value at HC, and then has a 
significant decrease at AC until to 20% at FC stage. These results show that occipital EEG, particularly 
the α wave, indeed exhibits a linear relationship with ECD when subjects did not experience much 
cognitive loads. 

Figure 7. The EEG power spectrum features with the growth of ECD. 

 

3. Driving Simulation Experiment 

In order to assess the robustness of this linear relationship in a real-life application, a 2 h 
monotonous driving experiment, which involved the participants driving on a highway, was 
implemented in a driving simulation environment. During the two hours, subjects experienced various 
cognitive loads in a monotonous driving level, such as keeping or changing lanes for avoiding car 
collisions. Also, subjects experienced different daylight conditions in this driving game, such as 
driving during the daytime or at nighttime.  

3.1. Experimental Setup 

According to our previous experiences [8,14,16,17] and related studies [18,19], 1 h monotonous 
driving after lunch (usually 1:00 pm~2:30 pm) could make most of subjects feel drowsy. In this study, 
in order to make subjects tired enough and get FC data as much as possible, we extended the 
experiment to two hours. Figure 8 shows the driving simulation environment, which consists of a 
commercial truck driving game (Euro Truck Simulator 2), a Logitech® steering wheel, accelerator and 
brake pedals. The smartphone, which is responsible for monitoring subjects’ ECD values, is placed 
behind the steering wheel. 
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Figure 8. Example of the experimental setup for monotonous driving. 

 

3.2. Subjects and Data Collection 

A total of twenty subjects (age 25.6 ± 2.17 years) who already had a driving license participated in 
this driving experiment. Half of them (five males (subjects #1~5) and five females (subject #11~15)) 
participated in the daytime driving experiments. The remainder did the nighttime driving experiments. 
None of them reported any ocular impairment. On the day of experiment, all subjects were not allowed 
to drink tea or anything containing caffeine. Also, no soporific medicine, such as medicines for 
treating a cold, was allowed. Before the experiment, each subject was given 10 min to become familiar 
with the operation of the driving simulator. The EEG and ECD collection procedure were slightly 
different than in the aforementioned proof-of-concept experiment. Here, we projected the smartphone 
screen onto a PC using the Mobizen software (Mobizen. Inc, Bucheon, Korea) and then recorded the 
smartphone screen and real time EEG waveform in the PC using the Bandicam software 
(Bandicam.Inc, Seoul, Korea), in order to record the timing of artifacts and later extract target 
segments of interest. 

3.3. Pre-Processing 

Firstly, we directly rejected artifacts including chin EMG, yawn, and body movements according to 
the recorded video evidence. Then, we filtered eye blinks in the EEG data using the Independent 
Component Analysis (ICA) in the EEGLAB Toolbox (Ver. 7.1.3.13b) which is developed by the 
Swartz Center for Computational Neuroscience, (University of California San Diego) [20], while the 
removal of eye blinks in ECD was by a self-developed algorithm whose main idea is to find the 
threshold ECD values of eye blinks (90%–100%) within 400 ms (the average duration of a single eye 
blink is less than 400 ms, according to the Harvard University database of useful biological  
numbers [21]) and then replace the high ECD values with their previous ECD values.  
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After artifacts were removed, we extracted the EEG datasets which correspond to the five ECD 
groups (FO~FC). However, unlike the same ECD durations (10 s) in the previous proof-of-concept 
study, each ECD group, in this 2 h real-life application, did not appear continuously but rather 
consisted of several discrete segments with different durations. For example, one subject may 
experience several FO segments at different times in the 2 h experiment and these discrete FO 
segments form the FO group. Most of the subjects easily maintained the FO segments for a few 
minutes; however, most of them could only maintain the FC segments for few seconds, in order to 
drive continuously. Therefore, it is not reasonable at this time to select each ECD group and 
corresponding EEG datasets with the same 10 s window. We selected five segments with the longest 
durations in their own groups as the representatives of the five ECD groups. Then, we extracted the 
EEG datasets which correspond to the five representative ECD segments. If the duration is longer than 
10 s, we only selected the first 10 s. Finally, all EEG segments in the four occipital channels (P7, O1, 
O2 and P8) are filtered using basic FIR filter with 4–30 Hz bandwidth for further study. 

3.4. Extracted EEG Features 

For a more comprehensive analysis, two time features, Root mean square (RMS) and Shannon 
entropy (SE), were newly added at this time. Traditionally, a time domain EEG analysis can be 
accomplished by examining how the voltage changes over time, for example, by examining the mean 
and variance of the sampled waveform. Since the EEG can be considered a zero mean Gaussian 
random process (the voltage of which is positive as often as it is negative) [22], the RMS, which 
utilizes absolute values, is an appropriate method to calculate the mean EEG amplitude. The use of 
RMS values is not uncommon in the analysis of physiological signals. For example, an EMG also has 
a mean voltage of zero over time and uses the RMS to compute its mean amplitude [23,24]. SE was 
first introduced by Shannon [25], and can be viewed as a measure of the amount of information [22], 
particularly as a measure of the transient or time varying changes [26,27]. Thus, in order to get 
information on how much the EEG differs with the transient ECD changes, the SE was also studied 
here. A brief description of the time features is as follows:  

3.4.1. RMS 

The RMS is given by Equation (5), where is  (i = 1,…,n) is the sampled EEG data (digitalized 
amplitude value) and n is the number of sample data points: 

n
s

RMS
n
i i∑ == 1

2

 (5) 

3.4.2. SE 

The SE is defined as in Equation (6), where is  (i = 1,…,n) is the sampled EEG data (digitalized 
amplitude value), n is the number of sample data points and )( ixp is the probability that the amplitude 
value is occurs anywhere in the signal. The )( isp  is estimated by a histogram method where the 
amplitude range of the EEG signal is linearly divided into k bins. In this study, b is chosen as 10 and 
built-in Matlab function hist() is used to get the histogram of EEG samples, where the k = 10 (default): 
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Therefore, a set of five features including time- and frequency domain features were extracted from 
the EEG signals. The summary of the features used is given in Table 3. The RMS, SH and FFT (Power 
percentage, Per) are computed based on each ECD group and four occipital channels. Therefore, 
twenty feature values were obtained from each subject. Each feature (f) can be denoted as f = u(x,y,z), 
where f ∈  {RMS, SH, Per}, x denotes the ECD type ∈  {FO, SC, HC, AC, FC}, y denotes the EEG 
channel ∈  {P7, O1, O2, P8} and z denotes the EEG band ∈  {θ, α, β}. 

Table 3. Summary of methods used in feature extraction. 

 RMS SH FFT 

Domain Time Time Frequency 

Measures Mean amplitude The amount of information 
Power percentage 
θ α β 

Computational complexity Low Low High 

3.5. Experimental Results 

3.5.1. Overview 

All subjects experienced drowsy driving symptoms (e.g., yawns), according to our recorded video. 
Fifteen out of them experienced all ECD groups (FO~FC). As mentioned in Section 3.3  
Pre-processing, we selected a total of 90 ECD segments from the 20 subjects. More information can be 
found in Table 4. The typical EEG recordings that are from subject #1’s O2 position and the EEG 
power spectra that vary with the five ECD segments are illustrated in Figure 9, where we can see 
clearly that the β power which is in the range of 12~30 Hz is gradually decayed as the ECD increases, 
while the α power, which is in the 8–12 Hz range, is increasing as the ECD increases.  

Figure. 9. The typical EEG recordings and their time-frequency analysis that vary with the 
five ECD groups. (a) FO group (b) SC group (c) HC group (d) AC group (e) FC group. 

  
(a) (b) 
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Figure 9. Cont. 

  
(c) (d) 

 
(e) 

 
All the collected 90 ECD and EEG (α power percentage at O2 channel) data pairs from the  

20 subjects are plotted in Figure 10, where we can see clearly that this occipital EEG feature exhibits a 
positive linear relationship with the ECD. As shown in Figure 11, a simple linear regression model 
quantifies this linear relationship with the squared correlation coefficient R2 = 0.904. 

Table 4. Summary of the extracted ECD segments. 

No. Sex 
Group Info 

Duration (Secs); Average ECD Values(%) 
FO SC HC AC FC 

1 

M 

10 ; 0 10 ; 20 2 ; 50 2 ; 70 1 ; 100 
2 10 ; 1 10 ; 19 2 ; 40 10 ; 69 5 ; 100 
3 10 ; 0 8 ; 20 4 ; 42 9 ; 70 2 ; 100 
4 10 ; 0 10 ; 20 × × × 
5 10 ; 0 10 ; 20 3 ; 42 3; 69 1 ; 100 
6 10 ; 0 10 ; 20 1 ; 40 2 ; 60 5 ; 100 
7 10 ; 2 10 ; 30 × × × 
8 10 ; 0 10 ; 20 5 ; 43 2 ; 70 1 ; 90 
9 3 ; 0 10 ; 21 10 ; 46 6 ; 70 2 ; 100 
10 10 ; 0 10 ; 20 4 ; 42 10 ; 70 2 ; 100 
11 

F 

10 ; 0 10 ; 20 10 ; 55 × 1 ; 100 
12 10 ; 0 10 ; 20 10 ; 45 4 ; 68 1 ; 100 
13 10 ; 0 4 ; 20 1 ; 50 × 1 ; 90 
14 10 ; 0 10 ; 20 5 ; 53 2 ; 70 3 ; 90 
15 10 ; 0 × 0.5 ; 40 × 1 ; 100 
16 2 ; 1 10 ; 30 10 ; 43 2 ; 60 1 ; 100 
17 10 ; 0 10 ; 20 3 ; 40 2 ; 70 3 ; 90 
18 10 ; 0 10 ; 21 10 ; 49 1 ; 70 7 ; 100 
19 10 ; 0 10 ; 20 10 ; 55 2 ; 60 1 ; 100 
20 10 ; 0 10 ; 20 6 ; 42 2 ; 60 1 ; 100 
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Figure 10. The linear relationship between ECD and a representative EEG feature which 
were collected from 20 subjects from a real-life experiment environment (monotonous 
driving experiment). 

 

Figure 11. The simple linear regression model with slope β̂  (= 1.560) and intercept  
α̂  (= −31.370) from a representative subject (R2 = 0.904). 

 

3.5.2. Relationship of EEG Features with ECD 

The averaged RMS, Shannon entropy, theta, α and β power percentages over the four channels for 
the 20 subjects were used to assess whether these EEG features exhibit a linear relationship with the 
ECD. The overall results are shown in Figure 12, where we can see clearly that with an increase of the 
ECD, the α power percentages and the fluctuations of the RMS values exhibit a tendency to increase, 
whilst the β power percentages show a decreasing trend (except for the slight increase at the FC stage). 
Shannon entropy exhibits a “U” shape tendency, whilst theta power percentages show an 
approximately inverted U-shaped tendency. The θ wave increases from 12% at FO to 18% at SC and 
maintains about the same value at HC, and then has a decrease at AC until to another slight increase at 
FC stage (14%).The authors are unable to provide a full physiological reasoning behind the Shannon 
entropy and theta activity at this time; however the other results are reasonable and what would be 
expected because they can be thought of as the interaction between the EEG and visual cortex. More 
details about the EEG and visual cortex can be found in Section 6.1. 
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Figure 12. The time- (a,b) and frequency-domain (c) EEG features with a growth of  
the ECD. 

  
(a) (b) 

 
(c) 

Figure 13. The bar graphs show the number of subjects that show positive linear 
relationship between ECD and α power percentage in each occipital channel. The  
arrow indicates the best occipital channel. The Y-axis indicates the EEG features 
(Alpha_P7—Per = u(x, P7, α)). The X-axis indicates the number of subjects that exhibit an 
increasing α power percentage as the ECD increases. 

 

3.5.3. Feature Selection for Building ECD Prediction Model 

Based on the results shown in Figure 12, we found that α power percentage outperforms other EEG 
features. To further select the best occipital channel,  the number of subjects that show positive linear 
relationship between ECD and α power percentage was investigated for each occipital channel (as 
shown in Figure 13). The single-best EEG feature is found to be the α power percentage from the O2 
channel (Per = u(x, O2, α)), which of 18 out of 20 subjects (nine males and nine females) exhibit an 
increasing α power percentage as the increase of ECD. The poorest channel is found to be P7 channel 
(Per = u(x, P7, α)) because no subject shows increasing α power percentage there as the ECD increases. 
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4. ECD Prediction Model 

Based on the experimental results of proof-of-concept study and the driving simulation study, the 
linear relationship between ECD and occipital EEG, particularly the α power percentage at O2 
channel, are proved. To further estimate the ECD using the best EEG feature (Per = u(x, O2, α)), three 
regression models are adopted in this paper: (1) linear SVR, (2) non-linear SVR with RBF kernel,  
(3) non-linear SVR with Poly kernel. For evaluating the regression models using the 20 subjects in the 
real-life application (driving experiment), leave one subject out mean squared error (LOO-MSE), 
squared correlation coefficient (LOO-SCC) and estimation accuracy are calculated. Both MSE and 
SCC are popular and useful indexes for assessing the performance of the regression model [18,28]. 
The construction of SVR models was implemented by MATLAB® version of well-known LibSVM®  
(Ver. 3.17) [29].  

4.1. SVR 

The support vector regression (SVR) is a popular approach for estimating real-valued functions by 
constructing a decision surface that lies close to as many of the datasets as possible. It is the extension 
of standard support vector machine classifier that was originally designed to estimate just integer 
labels. With the success of LibSVM, SVR is already coding and packaged in Java, C and MATLAB 
language. Therefore, SVR can be easily implemented on multiple platforms, such as wearable and mobile 
device (e.g., Android wear device), microprocessor-based device and PC. These are the reasons for its use 
in this study.  

SVR can be categorized into linear SVR (LSVR) and non-linear SVR (NLSVR) depending on the 
kernel types. A LSVR model that uses the ε-insensitive loss function can be formulated as 
minimization of Equation (7) as the following: 
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where, the w
 is a vector perpendicular to the decision surface, b is a scalar (decision surface bias), *, ii ξξ

are two slack variables for measuring the cost of errors and C is a user-defined parameter that denotes 
trade-off between the minimization problem and subjected conditions. Similarly, a NLSVR model that 
uses the ε-intensive loss function can be formulated as minimization of Equation (8) as follows: 
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where, )( ifΦ is the mapping function which is used to map each input dataset from the linearly  
non-separable input space nℜ to linearly separable feature space H. By using kernel functions (e.g., 
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radial basis function (RBF) and polynomial kernel function (Poly)), SVR is able to do this mapping 
work and accomplish the non-linear regression without the need to know explicitly what the mapping 
function )( ifΦ is. 

4.2. Performance Estimation 

Leave one subject out approach is a cross-validation approach, where each subject serves as a test 
sample. The specific steps are as follows: (1) omit one subject from the training dataset pairs;  
(2) train the regression models using the remaining subjects; (3) test the omitted subject using the 
trained model in step (2) and calculate the performance indicators (MSE and SCC); (4) repeat the steps 
that are listed above until each subject has been omitted and tested once; (5) calculate the overall MSE 
and SCC. The MSE and SCC (denoted by r2) in each step are given by Equations (9) and (10): 

∑
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In addition, considering the final purpose of this study is to apply this linear relationship between 
EEG and ECD to the application of driver drowsiness detection (e.g., PERCLOS), the estimated 
accuracy on each ECD group were investigated, where the estimated accuracy (denoted by Acc) is 
given by Equation (11): 

%100
____
____

×=
groupECDofNumberTotal
groupECDTrueofNumberAcc  (11) 

5. Prediction Results 

5.1. ECD Estimation Using Regression Model 

The best feature Per = u(x, O2, α) serves as a single input to estimate the ECD using three 
regression models. For evaluating the regression models using 20 subjects, the LOO-MSE and  
LOO-r2are summarized in Table 5, where the parameter “C”, RBF parameter “g” and Poly parameter 
“d” are already optimized using a simple grid search procedure with C = {0.01~500} with step of 0.01, 
g = {0.01~1} with step of 0.01 and d = {1~10} with step of 1. For parameter “ε”, 0.01, 0.03 and 0.05 
were tested before setting with a specific ε = 0.01. 

Table 5. The optimized leave one subject out cross-validation results using linear and  
non-linear regression models. 

Model r2 (SCC) MSE 
LSVR C = 16.59 0.930 0.013 

NLSVR 
(kernel = RBF) 

C = 46.62 0.930 0.014 g = 0.01 
NLSVR 

(kernel = Poly) 
C = 16.59 0.930 0.013 d = 1 
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As can be seen from Table 5, there is not much difference between the linear and non-linear model. 
The optimized estimation results obtained by using linear model of C = 16.59, non-linear RBF model 
of C = 46.62, g = 0.01 and Poly model of C = 16.59, d = 1 are almost the same with the same  
LOO-r2 = 0.930. As we know, any linear model is a special case of non-linear model. Therefore, these 
results in Table 5 further prove that ECD and occipital α power percentage indeed exhibits a linear 
relationship. According to the principles of structural risk minimization [30], we choose the simplest 
model (the linear model) here for further study. 

Table 6 shows the full ECD estimation results of the 20 subjects using the optimized LSVR model, 
where we can see that the best estimation results was obtained by a female subject (subject #12) with 
the LOO-r2 = 0.987 and LOO-MSE = 0.005. Figure 14 illustrates the ECD estimations on the testing 
data (from subject #12) with constructed leave-subject #12-out LSVR model. The poorest  
estimation results was also obtained by a female subject (subject #19) with the LOO-r2 = 0.78 and 
LOO-MSE = 0.030. Both the best and poorest estimation results are highlighted with a shaded area in 
Table 6.  

Table 6. The full ECD estimation results using optimized linear and non-linear model. 

Subject Sex Driving Mode r2 MSE 
1 

M 

Daytime 

0.947 0.007 
2 0.978 0.009 
3 0.931 0.010 
4 1.000 0.001 
5 0.894 0.015 
6 

Nighttime 

0.888 0.022 
7 1.000 0.001 
8 0.874 0.017 
9 0.967 0.005 

10 0.942 0.007 
11 

F 

Daytime 

0.902 0.019 
12 0.987 0.005 
13 0.937 0.029 
14 0.932 0.026 
15 0.975 0.017 
16 

Nighttime 

0.868 0.018 
17 0.918 0.010 
18 0.905 0.016 
19 0.784 0.030 
20 0.966 0.004 

Overall 0.930 ± 0.053 0.013 ± 0.009 
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The subjects #4, 7, 11, 13 and 15, whose results are highlighted using a bold and italic font, did not 
experience all five ECD groups; therefore their results are not considered for comparison with other 
subjects who did experience all five ECD groups. For example, we only collected two ECD segments 
from each of subjects #4 and #7. There is absolutely a regression line passing through the two points 
comprising the two EEG and ECD pairs. Thus, the outstanding r2 = 1 for subjects #4 and #7 does not 
make any sense. 

Figure 14. Five observed (EEG,ECD) points from subject #12 and corresponding 
estimated (EEG,eECD) points by using LSVR. 

 
 
The Bland-Altman plot is the preferred method for assessing whether an established and a new 

measurement technique agree [31]. It shows the paired difference between the two measurements on 
each subject against the mean of these two measurements. Thus, the Bland-Altman plot (Figure 15) 
was made for the 20 subjects. The upper and lower limits of agreement are calculated as 0.226 and 
−0.247, respectively. As can be seen in Figure 15, the estimated ECD values were unbiased (mean  
bias = 0.011) within 2SD limit (95% limits of agreement), which indicates that the estimated ECD and 
observed ECD values agree. 

Figure 15. Bland-Altman plot for the relationship of the difference between the observed 
ECD versus estimated ECD versus their average values. Mean bias (—), +2SD, and −2SD 
lines are shown. SD = standard deviation. 
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5.2. ECD Estimation on Different Sex 

To investigate the sex difference, the mean LOO-r2and LOO-MSE values obtained by using LSVR 
are calculated. They are 0.928 ± 0.038 and 0.012 ± 0.006 for male subjects (except for subjects #4 and 
#7), and 0.909 ± 0.067 and 0.016 ± 0.004 for female subjects (except for subjects #11, #13 and #15). 
These results mean that male subjects have a better estimation result than female subjects. However, 
the independent t-test (α = 0.05) failed to reveal a reliable statistical difference in terms of the LOO-r2  

(p-value = 0.505) and LOO-MSE (p-value = 0.347) between the male and female subjects. 

5.3. ECD Estimation on Different Daylight Condition 

Drivers, particularly long-distance lorry or truck drivers, always drive in different daylight 
conditions, such as daytime driving and nighttime driving. Therefore, as mentioned in Section 3.2, we 
divided the 20 subjects into two groups comprising 10 subjects in each group for participating in 
daytime and nighttime driving experiments, respectively, in order to test the performance of ECD 
estimation in different light conditions. Experimental results show that the mean LOO-r2 and  
LOO-MSE are 0.948 ± 0.036 and 0.014 ± 0.009 respectively for daytime driving, which are better than 
the mean LOO-r2 (0.911 ± 0.062) and LOO-MSE (0.013 ± 0.009) for nighttime driving. However, the 
independent t-test (α = 0.05) failed to reveal a reliable statistical difference in terms of the LOO-r2  

(p-value = 0.120) and LOO-MSE (p-value = 0.847) between daytime driving and nighttime driving. 

6. Discussion 

6.1. ECD and Visual Cortex 

The visual cortex is located in the occipital region of the brain and there is an increase in the 
amplitude of α wave if the visual input is reduced [11]. The β wave is associated with alertness and 
concentration, a good summary of its application in driver drowsiness can be found in [13]. In brief, 
there is a power decrease in β wave if the driver’s alertness and concentration is decreased and there is 
a power increase in β wave if the driver’s alertness and concentration is increased. In this study, with 
an increase of the ECD, the subjects experienced decreasing visual input and blurred the image which 
they could see, and as a result it is believed that their alertness and concentration were also decreased. 
These facts can be thought of as the reasons for the increase of RMS and α power and the decrease of β 
power in this study.  

The fundamental difference between the previous studies and the present study is that here ECD 
and EEG changes are quantified. Therefore, the nature of the linear relationship between ECD and 
EEG can be determined. Also, previous studies did not manage to find the best occipital channel which 
can effectively indicate the interaction between ECD and α waves. In present study, a further analysis 
of the α power percentage from the four occipital channels (P7, O1, O2, P8) was done and channel O2 
is found to be the best one. Amongst the four channels, the O1 and O2 channels are closer to the 
location of the visual cortex and are therefore more the widely used two positions to extract EEG 
features related to visual changes [32]. In addition, a previous study mentioned that the processing of 
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visual stimuli may show right hemisphere superiority [33]. These facts can be thought of as the reason 
for O2’s success at this time. 

6.2. Linear EEG-ECD Relationship in Driver Drowsiness Application 

PERCLOS is a video-based driver drowsiness monitoring technology. It has previously been 
verified that PERCLOS is the most reliable and valid in-vehicle drowsiness detection technology [5]. 
In order to assess whether the proposed method could be applied to compute PERCLOS, the 
estimation accuracy on the FC group (ECD ≥ 80%) were further investigated and compared with other 
four ECD groups as shown in Table 7, where we can see that FO and SC have the best two accuracies 
of 100% and 94.74%, followed by the FC group with an accuracy of 87.5% for male subjects and 
70.0% for female subjects, while the HC group gets the lowest (38.89%). This result confirms that the 
proposed method is feasible for measuring PERCLOS instead of video-based method. Based on this 
result, the Equation (1) could be re-written as follows: 

%100
min1

))),2,(((
×

==
=

FCOxuPerLSVRTimePERCLOS α
 (12) 

For practical implementation, the low detection accuracy of female subjects can be easily overcome 
because it is common sense that most of the long-distance lorry or trunk drivers are men. This point 
can be indirectly verified by an Australian study [34], where the researchers recruited 1047  
long-distance drivers of commercial vehicles without any special sex requirements, however almost all 
recruited subjects were men (99%, n = 1039). Also, it is worth to mention that the 1 s long FC duration 
was dominant in this study (see Table 4). Therefore, the time window is reasonably set as 1 s for 
extracting EEG features. In addition, according to [7], the high sensitive PERCLOS threshold is set as 
8% (4.8 s) for initial advisory tone and 12% (7.2 s) for full warning, respectively. In order to get more 
clean EEG data, a band-pass filter with cutoff frequency from 4 Hz to 30 Hz can be used to filter out 
the main frequency components of eye blinks artifacts (0.5 Hz~2 Hz [9]) and dominant energy of 
EMG artifacts (50 Hz~150 Hz [35]). Thus, combining these facts, the new EEG-based PERCLOS 
algorithm for driver drowsiness detection can be written as Figure 16. The new ECD estimation 
method can be accomplished by a band-pass filter and well-trained regression model. Thus, it would be 
easier to implement in real time. This advance not only makes ECD and PERCLOS measurement 
available in nighttime driving, but it is also more computationally efficient.  

Conventionally, the face and detection of its features are the foremost steps to extract video-based 
ECDs. Many researchers have presented methods to detect or track the facial features [36–41]. 
However, these methods cannot be practiced with fast response times for real-time applications. In our 
previous studies [8,14], two simplified methods that can be built based on smartphones were proposed 
and compared. Finally, a color-based method proved to be the most suitable one to be implemented in 
a smartphone device. Despite this being a major advance in in-vehicle driver drowsiness detection 
technology, the computational complexity is still high. To explain this further, the flowchart in  
Figure 17 compares the computational load of video-based and EEG-based PERCLOS methods.  
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Table 7. Results of Estimation accuracy for each ECD group. 

Subject Sex 
ECD Group 

FO SC HC AC FC 
1 

M 

○ ○ × ○ ○ 
2 ○ ○ ○ × ○ 
3 ○ ○ × ○ ○ 
4 ○ ○ - - - 
5 ○ ○ ○ ○ × 
6 ○ ○ ○ × ○ 
7 ○ ○ - - - 
8 ○ ○ × ○ ○ 
9 ○ ○ × ○ ○ 

10 ○ ○ × × ○ 
11 

F 

○ ○ × - ○ 
12 ○ ○ ○ ○ ○ 
13 ○ ○ ○ - × 
14 ○ ○ ○ × ○ 
15 ○ - ○ - × 
16 ○ ○ × ○ × 
17 ○ ○ × ○ ○ 
18 ○ × × ○ ○ 
19 ○ ○ × × ○ 
20 ○ ○ × ○ ○ 

Overall 100% 94.74% 38.89% 66.67% 77.78% 
“○”– True ECD group; “×”–False ECD group. 

Figure 16. AnovelEEG-based PERCLOS algorithm. 
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Figure 17. Computational load comparison between video-based (upper) and EEG-based 
PERCLOS (bottom). 

 
 
In the Android smartphone platform, assuming the camera preview size and frame rate are 

configured as the minimum values (320 × 240 and 8 frames/s, respectively), the image data buffer is 
112.5 KB for the initially default YUV format. In order to differentiate skin regions, the YUV format 
is then required to be encoded into the HSV color space. This needs a 150 KB memory buffer. Finally, 
a 3~4 KB memory buffer is needed before converting an HSV image to a binary image (known as a 
black and white image) for further recognizing eyes and eye features. In contrast, an EEG-based 
method needs just 0.25 KB initial buffer for 1 s EEG samples (sampling rate = 128 Hz with a 16-bit 
ADC resolution) and twice the buffer size when running a FFT. Then the extracted FFT feature is 
input into the well-trained regression model for estimating ECD. 

7. Conclusions and Future Work 

In this paper, a prominent linear relationship between the ECD and the frequency domain features 
of the occipital EEG is found when there is not much cognitive load and when subjects are 
monotonously driving on a highway using a few road simulations. Following this finding, a new 
method using EEG sensors and linear regression is proposed for estimating the ECD instead of using  
video-based methods. We have shown that it is feasible to apply the proposed linear EEG-ECD model 
to a driver drowsiness application, PERCLOS measurement. The model-based PERCLOS not only 
makes PERCLOS measurements available in nighttime, but is also more computationally efficient and 
easier to implement in EEG sensors in a real time way.  

This paper has been primarily focused on the study of the linear EEG-ECD relationship with an aim 
to make ECD measurement available without any brightness limitation and reducing the overall 
computation complexity in a long-distance monotonous driving environment where fatal drowsy 
driving events often happen. There are three open issues in ECD estimation using EEG which need to 
be further studied, such as age differences, sex differences and daylight differences. Clearly, the work 
presented here is not yet readily applicable to the general population of drivers and more complex 
driving environments. 



Sensors 2014, 14 17513 
 

 

Acknowledgments 

This research was supported by Basic Science Research Program through the National Research 
Foundation of Korea (NRF) funded by the Ministry of Education, Science, and Technology 
(2012R1A1B3004140). 

Author Contributions 

Gang Li conducted this research under the supervision of the co-author Wan-Young Chung who 
provided research idea and valuable guidance for experiment design and carefully proofread this paper. 

Conflicts of Interest 

The authors declare no conflict of interest. 

References  

1. Kim, I.S. The risk of accidents using DMB and smartphone when driving. Traffic 2012, 172, 32–36.  
2. Korean Expressway Corporation. 24% Decrease in Death in Highway Traffic Accidents Last 

Year. Yearly Report, 2014. Available online: http://www.ex.co.kr/portal/cus/public_relations/ 
press_release/1197307_3960.jsp?clickParentNum=3&clickNum=40&pageRow=10&startRow=5
&pageURL=/portal/cus/public_relations/press_release/bodo_list (accessed on 18 August 2014). 

3. Korean Expressway Corporation. Significant Decrease in Death in Highway Traffic Accidents. 
Yearly Report, 2012. Available online: http://www.ex.co.kr/portal/cus/public_relations/ 
press_release/1194829_3960.jsp?clickParentNum=3&clickNum=40&pageRow=10&startRow=21
&pageURL=/portal/cus/public_relations/press_release/bodo_list (accessed on 18 August 2014). 

4. Swarnkar, V.; Abeyratne, U.; Hukins, C. The objective measure of sleepiness and sleep latency 
via bispectrum analysis of EEG. Med. Biol. Eng. Comput. 2010, 48, 1203–1213. 

5. Dinges, D.F.; Grace, R. PERCLOS: A Valid Psychophysiological Measure of Alertness as 
Assessed by Psychomotor Vigilance; Technical Report; US Department of Transportation, Federal 
Highway Admin: Washington, DC, USA, 1998; pp. 1–4. 

6. Dinges, D.F.; Grace, R. Research on Vehicle-Based Driver Status/Performance Monitoring; 
Development, Validation, and Refinement of Algorithms for Detection of Driver Drowsiness; 
Technical Report; US Department of Transportation, National Highway Traffic Safety Admin.: 
Washington, DC, USA, 1996.  

7. Hanowski, R.J.; Blanco, M.; Nakata, A.; Hickman, J.S.; Schaudt, W.A.; Fumero, M.C.;  
Olson, R.L.; Jermeland, J.; Greening, M.; Holbrook, G.T.; et al. The Drowsy Driver Warning 
System Field Operational Test: Data Collection Methods; Final Report; US Department of 
Transportation, National Highway Traffic Safety Admin.: Washington, DC, USA, 2008. 

8. Lee, B.G.; Chung, W.Y. A smartphone-based driver safety monitoring system using data fusion. 
Sensors 2012, 12, 17536–17552. 

9. Iber, C.; Sonia, A.I.; Andrew, L.; Chesson, J.; Quan, S.F. The AASM Manual for the Scoring of 
Sleep and Associated Events. Available online: http://www.aasmnet.org/scoringmanual/ (accessed 
on 18 August 2014). 



Sensors 2014, 14 17514 
 

 

10. Muholland, T.; Evans, C.R. Oculomotor function and the alpha activation cycle. Nature 1966, 
211, 1278–1279. 

11. Craig, A.; Tran, Y.; McIsaac, P.; Moses, P.; Kirkup, L.; Searle, A. The effectiveness of activating 
electrical devices using alpha wave synchronization contingent with eye closure. Appl. Ergon. 
2000, 31, 377–378. 

12. Ianov, A.I.; Kawamoto, H.; Sankai, Y. Wearable parallel processing based high-resolution  
high-speed electroencephalogram monitoring integrated system. In Proceedings of IEEE 
International Conference on System Integration, Fukuoka, Japan, 16–18 December 2012;  
pp. 186–191. 

13. Jap, B.T.; Lal, S.; Fischer, P. Comparing combinations of EEG activity in train drivers during 
monotonous driving. Expert Syst. Appl. 2011, 38, 996–1003. 

14. Lee, B.G.; Chung, W.Y. Driver alertness monitoring using fusion of facial features and  
bio-signals. IEEE Sens. J. 2012, 12, 2416–2422. 

15. Balconi, M.; Lucchiari, C. Consciousness and arousal effects on emotional face processing as 
revealed by brain oscillations. A gamma band analysis. Psychophysiology 2008, 67, 41–46. 

16. Li, G.; Chung, W.Y. Detection of driver drowsiness using wavelet analysis of heart rate 
variability and a support vector machine classifier. Sensors 2013, 13, 16494–16511. 

17. Jung, S.J.; Shin, H.S.; Chung, W.Y. Driver fatigue and drowsiness monitoring system with 
embedded electrocardiogram sensor on steering wheel. IET. Intell. Transp. Syst. 2014, 8, 43–50. 

18. Lin, F.C.; Ko, L.W.; Chuang, C.H.; Su, T.P.; Lin, C.T. Generalized EEG-based drowsiness 
prediction system by using a self-organizing neural fuzzy system. IEEE Trans. Circuits Syst. 
2012, 59, 2044–2055. 

19. Ueno, H.; Kaneda, M.; Tsukino, M. Development of drowsiness detection system. In Proceedings 
of Vehicle Navigation and Information Systems Conference, Yokohama, Japan, 31 August–2 
September 1994; pp. 15–20. 

20. Delorme, A.; Makeig, S. EEGLAB: An open source toolbox for analysis of single-trial EEG 
dynamics including Independent Component Analysis. J. Neurosci. Meth. 2004, 134, 9–12.  

21. The Database of Useful Biological Numbers. Average duration of a single eye blink,  
2008. Available Online: http://bionumbers.hms.harvard.edu/bionumber.aspx?&id=100706&ver=0 
(accessed on 18 August 2014). 

22. Tong, S.B.; Thakor, N.V. Time-Domain EEG Algorithms. In Quantitative EEG Analysis Methods 
and Clinical Applications, 1st ed.; Artech House: Boston, MA, USA, 2009; pp. 233–239. 

23. Li, G.; Chen, H.F.; Lee, J.T. A prediction method of muscle force using sEMG. In Proceedings of 
International Association of Computer Science and Information Technology, Spring Conference, 
Singapore, 17–20 April 2009; pp. 501–505. 

24. Li, G.; Chen, H.F.; Gil, Y.J.; Wu, W.Q.; Lee, J.T. sEMG-based upper trapezius-specific emotional 
assessment system: Design and implementation. Biomed. Eng. Res. 2009, 30, 362–372. 

25. Shannon, C.E. A mathematical theory of communication. Bell. Syst. Tech. 1948, 27, 379–423. 
26. Bezerianos, A.; Tong, S.B.; Thakor, N. Time-dependent entropy estimation of EEG rhythm 

changes following brain ischemia. Ann. Biomed. Eng. 2003, 31, 221–232. 
27. Tong, S.B.; Bezerianos, A.; Malhotra, A.; Zhu, Y.S.; Thakor, N. Parameterized entropy analysis 

of EEG following hypoxic-ischemic brain injury. Phys. Lett. 2003, 314, 354–361. 



Sensors 2014, 14 17515 
 

 

28. Gu, A.; Zakhor, A. Optical proximity correction with linear regression. IEEE Trans. Semicond. 
Manuf. 2008, 21, 263–271. 

29. Chang, C.C.; Lin, C.J. LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. 
Technol. 2011, 2, 27:1–27:27. 

30. Alexander, S.; Constantin, F.A.; Douglas, P.H.; Isabelle, G. Model Selection for SVMs. In A 
Gentle Introduction to Support Vector Machines in Biomedicine, 1st ed.; World Scientific Press: 
Singapore, 2011; pp. 73–90. 

31. Bland, J.M.; Altman, D.G. Statistical methods for assessing agreement between two methods of 
clinical measurement. Lancet 1986, 1, 307–310. 

32. Corballis, P.M. Visuospatial processing and the right-hemisphere interpreter. Brain Cognit. 2003, 
53, 171–176. 

33. Kim, K.N.; Ramakrishna, R.S. Vision-based eye-gaze tracking for human computer interface. In 
Proceedings of IEEE International Conference on Systems, Man, Cybernetics, Tokyo, Japan,  
12–15 October 1999; pp. 324–329. 

34. Sharwood, L.N.; Elkington, J.; Meuleners, L.; Ivers, R.; Boufous, S.; Stevenson, M. Use of 
caffeinated substances and risk of crashes in long distance drivers of commercial vehicles:  
Case-control study. BMJ 2013, 346, 1–7.  

35. Li, G. Design and Implementation of the SEMG-Based Emotion Assessment System. M.Sc. Thesis, 
Computer Engineering Department, Pusan National University, Busan, Korea, 2010. 

36. Hamzah, A.; Fauzan, A.; Noraisyah, M.S. Face localization for facial features extraction using 
symmetrical filter and linear Hough transform. Artif. Life Robot. 2008, 12, 157–160. 

37. Kumar, K.S.C.; Bhowmick, B. An Application for Driver Drowsiness Identification Based on 
Pupil Detection Using IR Camera. In Proceedings of International Conference on Intelligent 
Human Computer Interaction, Allahabad, India, 20–23 January 2009; pp. 73–82. 

38. Lee, J.D.; Li, J.D.; Liu, L.C.; Chen, C.M. A novel driving pattern recognition and status 
monitoring system. In Advances in Image and Video Technology, 1st ed.; Springer: 
Berlin/Heidelberg, Germany, 2006; pp. 504–512. 

39. Lee, Y.S.; Chung, W.Y. Video sensor based eye tracking and blink detection to automated drowsy 
driving warning system using image processing. In Proceedings of International Conference on 
Chemical Sensors, Perth, Australia, 11–14 July 2010. 

40. Zhao, S.F.; Xu, G.H.; Tao, T.F. Detecting driver’s drowsiness using multiwavelet packet energy 
spectrum. In Proceedings of International Conference on Image and Signal Processing, Tianjin, 
China, 17–19 October 2009; pp. 1–5. 

41. Damousis, I.G.; Tzovaras, D. Fuzzy fusion of eyelid activity indicators for hypovigilance-related 
accident prediction. IEEE Trans. Intell. Transp. Syst. 2008, 9, 491–500. 

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 
distributed under the terms and conditions of the Creative Commons Attribution license 
(http://creativecommons.org/licenses/by/3.0/). 


	1. Introduction
	2.2. Power Spectrum Analysis
	2.3. Simple Linear Regression Model
	2.4. Results

	3. Driving Simulation Experiment
	3.1. Experimental Setup
	3.2. Subjects and Data Collection
	3.3. Pre-Processing
	3.4. Extracted EEG Features
	3.4.1. RMS
	3.4.2. SE

	3.5. Experimental Results
	3.5.1. Overview
	3.5.2. Relationship of EEG Features with ECD
	3.5.3. Feature Selection for Building ECD Prediction Model


	4. ECD Prediction Model
	4.1. SVR
	4.2. Performance Estimation

	5. Prediction Results
	5.1. ECD Estimation Using Regression Model
	5.2. ECD Estimation on Different Sex
	5.3. ECD Estimation on Different Daylight Condition

	6. Discussion
	6.1. ECD and Visual Cortex
	6.2. Linear EEG-ECD Relationship in Driver Drowsiness Application

	7. Conclusions and Future Work
	Acknowledgments
	Conflicts of Interest
	References

