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Abstract: Gait identification is a valuable approach to identify humans at a distance. In this
paper, gait characteristics are analyzed based on an iPhone’s accelerometer and gyrometer,
and a new approach is proposed for gait identification. Specifically, gait datasets are collected
by the triaxial accelerometer and gyrometer embedded in an iPhone. Then, the datasets are
processed to extract gait characteristic parameters which include gait frequency, symmetry
coefficient, dynamic range and similarity coefficient of characteristic curves. Finally, a
weighted voting scheme dependent upon the gait characteristic parameters is proposed for
gait identification. Four experiments are implemented to validate the proposed scheme. The
attitude and acceleration solutions are verified by simulation. Then the gait characteristics
are analyzed by comparing two sets of actual data, and the performance of the weighted
voting identification scheme is verified by 40 datasets of 10 subjects.
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1. Introduction

Gait refers to an idiosyncratic feature of a person, that is determined by an individual’s weight, limb
length, posture combined with characteristic motion [1] and so on. Also gait may reflect the health
condition of humans [2,3], such as symptoms of Cerebral Palsy and Parkinson’s disease. Hence, gait
can be used as a biometric measure to recognize known persons and classify unknown subjects [1]. Gait
identification allows a nonintrusive way of data collection from a distance. This procedure can provide
supplemental information for the traditional approaches (e.g., fingerprint, iris, face, voice) in security
and usability applications, thereby enhancing or complimenting them.

At present, gait analysis can be classified according to two different approaches: non-wearable sensors
(NWS) based and wearable sensors (WS) based [4]. NWS systems usually require optical sensors [5–8]
or pressure sensors on the floor [9]. Gait features are extracted by processing image or video data. In
the security surveillance field, this approach can effectively narrow the range of subjects in gait database
and plays an important role. WS systems are based on motion-recording sensors which are attached
to moving subjects [10–16]. Motion-record sensors (e.g., accelerometers, gyrometers, force sensors,
bend sensors, and so on) are usually attached to various parts of the body such as the ankle, hip and
waist [12,16]. Then, gait signatures are extracted by analyzing the recorded signals in both time and
frequency domains. With the application of a Microelectromechanical System (MEMS), a device such
as an Inertial Measurement Unit (IMU) is easily inserted to shoes, gloves, watches and other wearable
attire. The prospect of applying wearable sensors to gait analysis is discussed in [12–15].

Smart mobile phones, nowadays widely equipped with MEMS accelerometers and gyrometers to
determine device orientation, provide developers and users with a rich and easily accessible platform for
exploration. Plenty of application programs are developed based on smartphone sensors. An iPhone is
used as a wireless accelerometer sensor for Parkinson’s disease tremor analysis in [17]. The feasibility
of gait identification using an iPhone’s accelerometer is discussed in [18]. However, current study of
gait analysis based on fixed smartphone sensors mostly use data including gravitational acceleration
without considering the effects of attitude change. Our goal is mainly to analyze gait characteristics
and identification with an unfixed iPhone in pant pockets instead of professional sensors and laboratory
conditions. Under this case, attitude of the iPhone should be considered to minimize the effects of
attitude change and gravitational acceleration. After extracting some gait information, a voting scheme
is investigated for gait identification.

This paper is organized as follows. In Section 2, pre-processing methods for iPhone inertial sensor
data are introduced. In Section 3, gait characteristics are analyzed and methods are studied to extract
gait parameters from accelerometer and gyrometer data. In Section 4, a weighted voting scheme based
on gait signatures is proposed for gait identification. In Section 5, validating experiments are conducted
for gait analysis and identification using both simulated data and actually collected data.

2. Pre-Processing of iPhone Measurement Data

Several kinds of sensors are integrated in an iPhone like a GPS sensor, accelerometer, gyrometer,
magnetometer, and so on. Theoretically, the motion of an iPhone (including its acceleration, velocity,
and position) can be solved based on the sensor data. However, according to experiments, the precision
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of iPhone sensors [19] can hardly support accurate solutions of device velocity and position, especially
for short-distance measurements. According to the operating principles of iPhone accelerometers, the
collected data is in its own inertial coordinate system, and has gravitational acceleration included. During
the collection of an individual’s gait data, the attitude of an iPhone is changing so it is not an accurate
method to directly process the measured acceleration data. In this section, a pre-processing approach
is studied to get the linear acceleration, in which the gravitational acceleration is not included. This
is achieved by defining a reference coordinate system with its Z-axis corresponding to the opposite
direction of gravity.

2.1. Inertial Data Calibration

Although the inertial sensors are calibrated by the manufacturers, there are still some systematic errors
for applications. Figure 1 illustrates the direct outputs of the triaxial accelerometer and gyrometer, which
are collected when the iPhone is placed on a horizontal surface for 120 s. It is obvious that the values of
z-axis acceleration deviate from the theoretical value−1.0∗g0, where g0 = 9.81 m/s2 is the gravitational
acceleration constant. A similar situation occurs for the gyrometer. So the calibration of inertial data
is needed.

Figure 1. The direct outputs of triaxial (a) accelerometer and (b) gyrometer.

(a) (b)

2.1.1. Static State Judgement

To determine the initial attitude of an iPhone, an approximate static state is required. If the variance
of the complex acceleration amplitude is below a threshold in a short period (e.g., 1 s), the iPhone can
be regarded as static or at uniform motion in a straight line. Due to ups and downs during walking,
uniform motion is almost impossible. In a static state, the measured acceleration data corresponds to the
gravity only.

2.1.2. Acceleration Bias

There may be systematic errors in accelerometers because of device differences, device aging, or even
occasional damage to the device. The systematic error is coupled with motion error and gravitational
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acceleration, and leads to the acceleration bias in measurements. The acceleration bias can be estimated
by recording triaxial accelerations under static state and calculating their mean values. Thus in the
processing of gait data, acceleration bias can be eliminated by directly subtracting the estimated bias
from triaxial acceleration data. In Figure 1a, the main bias comes from z-axis, which is about−0.05∗g0.

2.1.3. Gyrometer Bias and Drift

The theoretical outputs of triaxial gyrometer should be zeros in a static state. We also calculate their
mean values to be the systematic biases and subtract these biases from triaxial gyrometer data. Usually
the biggest problem for a gyrometer is its drift during long time measurement. However, according to
Figure 1b we can see the drift in 120 s is almost zero. Therefore in a short time period the drift can be
neglected in gait measurement, which is usually sampled in less than 20 s intervals.

2.2. Attitude during Motion

To study the attitude of the iPhone sensor during motion, a reference coordinate system is defined
based on gravity and the initial attitude of the iPhone sensor. In this paper, attitude is described by
quaternion, which can be calculated via the combination of acceleration and gyrometer data. Then the
coordinate transformation matrix is solved. The specific process is as follows:

(1) To define the reference coordinate system:

The iPhone sensor has its own inertial coordinate system [O,Xi, Yi, Zi], as shown in Figure 2. Define
Z-axis of the reference coordinate system opposite to the gravity vector, ω as the angle between the
Zi-axis and Z-axis, and a unit vector C = (c1, c2, c3) which is vertical to both Zi- and Z-axis as the
rotation axis. For the initial attitude of iPhone sensor, the triaxial accelerations are A0 = (ax0, ay0, az0)

T

in iPhone inertial coordinate system, and the gravitational acceleration is B0 = (0, 0,−g0)T in reference
coordinate system, then ω and C can be obtained as ω = acos

(
A0·B0

|A0|·|B0|

)
, C = A0×B0

|A0×B0| . After a rotation
around C by an angle of ω, the Zi-axis is rotated to Z-axis, and the Xi-axis and Yi-axis are rotated to
the horizontal plane, in which they are now defined as X-axis and Y -axis. [O,X, Y, Z] is the reference
coordinate system for further analysis.

According to the quaternion as rotations [20,21], the initial quaternion Q0 = [w0, x0, y0, z0]
T is

solved as:

w0 = cos
(arccosω

2

)
(1)

x0 = c1 sinω (2)

y0 = c2 sinω (3)

z0 = c3 sinω (4)

It means one time rotating around unit vector C=(c1, c2, c3) by ω transforms the iPhone inertial
coordinate to the defined reference coordinate.
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Figure 2. iPhone inertial coordinate system and reference coordinate system.

In a further step, the three Euler angles of the iPhone can be solved based on quaternion. However, the
values of Euler angles depend on their definition and rotations [22]. In this paper, quaternion is adopted
for iPhone solution of attitude.

(2) Update quaternion:

To update quaternion Qi = [wi, xi, yi, zi]
T with combined acceleration data Ai =

(
aix, a

i
y, a

i
z

)T and
gyrometer data gi =

(
gix, g

i
y, g

i
z

)T using the Fourth-order Runge-Kutta Algorithm [23], the specific
process is as follows:

Qi+1 = Qi +
T

6
(K1 + 2K2 + 2K3 + K4) (5)

K1 =
1

2
Qi ? gi (6)

K2 =
1

2

[
Qi +

K1

2
T

]
? gi+ 1

2
(7)

K3 =
1

2

[
Qi +

K2

2
T

]
? gi+ 1

2
(8)

K4 =
1

2
[Qi + K3T ] ? gi+1 (9)

where Qi ? gi refers to quaternion product,

Qi ? gi =


−xi −yi −zi

ωi −zi yi

zi ωi −xi

−yi xi ωi


 gix

giy
giz

 (10)
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and gi+ 1
2
=1
2

(gi + gi+1).

(3) Calculate coordinate transformation matrix:

To find the coordinate transformation matrix T i
om for t = i, according to real-time quaternion

Qi = [wi, xi, yi, zi]
T . The coordinate transformation matrix [22] is

T i
om =

 1− 2 (y2i + z2i ) 2 (xiyi − ωizi) 2 (xizi + ωiyi)

2 (xiyi + ωizi) 1− 2 (x2
i + z2i ) 2 (yizi − ωixi)

2 (xizi − ωiyi) 2 (yizi + ωixi) 1− 2 (x2
i + y2i )

 (11)

2.3. Linear Acceleration Solution

Gravitational acceleration can be eliminated to get the linear acceleration
(
lix, l

i
y, l

i
z

)Tusing the
coordinate transformation matrix, described as follows lix

liy
liz

 = T i
om

 aix
aiy
aiz

−
 0

0

−g0

 (12)

The first term of the right side of Equation (12) is the total acceleration in reference coordinate system.
After subtracting the gravitational acceleration in the same reference coordinate system, we can get the
linear acceleration. Since the two components lix and liy correspond to the horizon direction of motion,
the following gait characteristic analysis is based mainly on the component of linear acceleration liz.

3. Gait Characteristic Analysis

In this section, we discuss four gait characteristic parameters: gait frequency, symmetry coefficient,
dynamic range and similarity degree between characteristic curves. The location-related parameters are
not considered because the integration of acceleration will generate accumulation error.

3.1. Gait Frequency

Gait frequency is the most basic and important parameter in gait characteristics analysis. Due
to the quasi-periodic characteristic of paces during walking, gait frequency can be extracted by the
characteristic of the acceleration signal in the frequency domain. After FFT of the acceleration signal, the
maximum frequency, excluding DC component, is not always the gait frequency. An improved method
is presented in this paper. The autocorrelation of the acceleration signal is calculated and converted to
frequency domain. Then the maximum frequency, excluding zero frequency component, equals to gait
frequency. Figure 3 shows the spectrum of acceleration signals and their autocorrelation. Interpolation
processing can greatly improve the accuracy of gait frequency while calculating correlation coefficient.

According to the Figure 3, the spectrum lines of the autocorrelation function are more focused than
those of the acceleration. Thus the autocorrelation function of acceleration is usually less affected by
harmonic components and easier to extract gait frequency.
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Figure 3. Acceleration spectrum: (a) FFT of autocorrelation; (b) FFT of acceleration.

(a) (b)

3.2. Symmetry Coefficient

Some literature has defined the gait symmetry corresponding their own dataset [24]. In this paper, we
define the symmetry coefficient Si of gait according to autocorrelation of acceleration signal, shown in
Figure 4.

Si =
1

2

(
Cl

Cmax

+
Cr

Cmax

)
(13)

where Cmax is the maximum of the autocorrelation of acceleration, Cl and Cr are the maximum values
of the points located on the left and right of the peak position half gait period away, respectively.

Figure 4. Schematic definition of gait symmetry. The blue line is the autocorrelation curve
of acceleration.

Two possible causes may lead to asymmetry of the acceleration signal: (1) inconsistent gait, such as
the gait of patients with unilateral actions and other obstacles; (2) sensors are not strictly centered placed.
The first case is not considered in this paper, and all subsequent tests are based on almost symmetrical
gait. We will discuss the effect of sensor’s positions in Section 5.
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3.3. Dynamic Range

The dynamic range of acceleration can reflect a gait characteristic in some aspects. In this paper, the
difference between the maximum and minimum values of Z-linear acceleration is defined as dynamic
range estimation.

D = max
(
liz
)
−min

(
liz
)

(14)

Usually, a few aspects including the speed of walking, pace length, noise and so on will affect the
dynamic range. It is reasonable that dynamic range should has less contribution during gait identification.

3.4. Similarity Degree between Characteristic Curves

For typical gait acceleration, the characteristic curve can be extracted according to its fluctuation
characteristics, that is the time-amplitude sequence. This sequence can be used as an important basis
for the subsequent gait matching and identification. By comparing the characteristic curve with each
characteristic curve in database, a high similarity degree indicates the two curves correspond to the same
people with a high probability, and it is helpful in gait identification.

To accurately estimate the similarity degree between two characteristic curves, scale transformation
and panning of the curves have to be taken into consideration. Even for the same subject, walking speed
and magnitude may have subtle variations under different test conditions. The discrete acceleration data
cannot be directly used for similarity comparison. Although a one-dimensional invariant matrix method
can be used theoretically, the experimental performance is not ideal. In this paper, the similarity degree
between characteristic curves is calculated as follows:

1. apply interpolation processing, according to the gait frequencies, to eliminate the effects of
scale differences.

2. find the peak positions of two curves as reference, and make a rough alignment of the vectors. The
aligned acceleration characteristic curves are signed as l1, l2.

3. calculate the similarity coefficient, which is used to describe similarity degree, based on the
normalized dot product of two vectors. Moreover, to eliminate noise affect in characteristic curves,
we translate one vector within one pace period, which corresponds to N samples, then calculate
the normalized dot product of the vectors, and finally select the maximum normal product as the
similarity coefficient C.

C = max
0≤m<N

N

Σ
i=1

[l1 (i + m) · l2 (i)]√
N

Σ
i=1

l21 (i + m) ·
N

Σ
i=1

l22 (i)

(15)

4. Gait Identification

In the previous section, several gait characteristic parameters including gait frequency, symmetry
coefficient, dynamic range and similarity coefficient are discussed. Based on these typical parameters, a
weighted voting scheme is proposed for gait identification. The specific scheme is as follows:
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1. calculate gait frequency Fi, symmetry coefficient Si, dynamic range Di for all the characteristic
curves in the database one by one. Suppose the number of the curves in database is M ,
i = 1, 2, . . . ,M .

2. calculate gait frequency F , symmetry coefficient S, dynamic range D of the linear acceleration
from the measured data.

3. calculate the similarity coefficient Ci between the characteristic curves of linear acceleration and
samples in the database.

4. the weighted voting process is as follows:

(a) sort the absolute error between F and Fi in increasing order. We vote the first term 1, the
second term 2, and so on. The number of votes of gait frequency is denoted as V 1

i .
(b) sort the absolute error between S and Si in increasing order. We vote the first term 1, the

second term 2, and so on. The number of votes of symmetry coefficient is denoted as V 2
i .

(c) sort the absolute error between D and Di in increasing order. We vote the first term 1, the
second term 2, and so on. The number of votes of dynamic range is denoted as V 3

i .
(d) sort Ci in decreasing order. We vote the first term 1, the second term 2, and so on. The

number of votes of similarity coefficient is denoted as V 4
i .

(e) sum the weighted number of votes for each sample in the database.

Vi = w1V
1
i + w2V

2
i + w3V

3
i + w4V

4
i , i = 1, 2, . . . ,M (16)

where W = [w1, w2, w3, w4] is the weighted coefficient vector.
(f) vote judgment. The sample in the database that has the minimum weighted vote summation

matches the current measured data, and we can accomplish gait identification within the
given database.

The weighted coefficient can be chosen by further experimental data. The similarity coefficient of
characteristic curves is of the most importance for gait identification, followed by gait frequency. The
symmetry coefficient has a close relationship with the iPhone’s placement. The dynamic range is greatly
affected by noise. Therefore, the weighted coefficients are set as W = [2, 2, 1, w4] in this paper, where

w4 =


8

4

2

1

Cmax ∈ [0.9, 1]

Cmax ∈ [0.8, 0.9)

Cmax ∈ [0.7, 0.8)

Cmax ∈ [0, 0.7)

, Cmax = max
i∈[1,M ]

{Ci} (17)

5. Experiments

Four experiments are conducted to validate the methods proposed in this paper: (1) simulation
experiment to verify the solutions of attitude and linear acceleration; (2) comparison experiment of the
same subject walking on cement pavement and on grass; (3) comparison experiment of three different
placements of iPhones; (4) gait identification experiment with 10 subjects and 40 sets of data.

In the first experiment, the sinusoidal linear acceleration and attitude data are simulated. The attitude
angles (yaw, pitch and roll) are defined by Tait-Bryan angles formalism with rotation sequence z-y-x [25].
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Then the triaxial accelerometer and gyrometer data in iPhone’s inertial coordinate system is generated
as the input of the proposed method in Section 2. After calculation and comparison, the inversion linear
acceleration and attitude data, and the errors are shown in Figure 5.

According to simulation results, the inversion errors of attitude are less than 1◦, and the inversion
errors of acceleration are less than 0.1 m/s2.

In the second experiment, the subject walked on cement pavement and grass, respectively, with the
same iPhone placed in the right pant pocket. The characteristic curves of recorded acceleration data are
shown in Figure 6.

At least two differences between the two datasets can be seen in Figure 6.

1. The data recorded on cement pavement is nearly 10 cycles, while the data recorded on grass is less
than 9 cycles, both recorded in 10 s. They are consistent with the gait periods calculated by gait
frequency analysis, which are 1.070 s and 1.174 s, respectively. This is due to the fact that it’s
more difficult to walk on soft surfaces like grass than on cement pavement.

2. The dynamic range of linear acceleration recorded while walking on cement pavement is a little
larger than that on grass, and it can be explained by the buffer caused by grass.

In the third experiment, three iPhones are placed in three different positions: the left pant pocket, the
right pant pocket and the center of the back waist area of the subject. The calculated linear accelerations
and autocorrelation curves are shown in Figure 7.

According to Figure 7a,c,e, the linear acceleration signal reflects preferable quasi-periodicity.
Moreover, the curves in Figure 7a,c are very similar and differ mainly in half gait period in time.
The third data shows good symmetry among each single step, and the frequency is twice of the above
two curves. According to Figure 7b,d, the accelerations corresponding to the left and right pace are
asymmetrical, obviously due to the off-center displacement. Furthermore, the symmetry coefficients are
only about 0.4. Figure 7f describes the third case, when the iPhone was placed in the center of the back
waist. The left and right paces cause similar linear accelerations, and the symmetry coefficient is more
than 0.9. The definition of symmetry coefficient is also validated. Moreover, the dynamic ranges of
Figure 7a,b are greater than that in Figure 7c as a result of the up and down leg motion versus the body
motion within the same pace period.

In the fourth experiment, a single iPhone is used to record 4 sets of gait data for each of the 10 tested
subjects. The phone is placed in their left and right pant pockets twice, respectively. Then one set of data
is selected for each subject in order to make the gait database by calculating characteristic parameters
and extracting characteristic curves, shown in Table 1 and Figure 8.

Table 1. Indices for the database. D1∼D10 represent the 10 samples in the database. The
units of gait frequency and dynamic range are Hz and m/s2, respectively.

Indices D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

Gait Frequency 1.036 1.041 0.957 1.009 0.939 0.845 1.002 0.945 0.987 1.019
Symmetry Coef. 0.534 0.563 0.571 0.404 0.669 0.525 0.623 0.597 0.576 0.914
Dynamic Range 26.480 29.301 25.300 22.379 24.891 25.618 27.051 20.674 21.567 14.736



Sensors 2014, 14 17047

Figure 5. Inversion results of simulated data. The top, middle and bottom curves in (a) are
the input data, inversion data and errors of the roll, pitch and roll attitudes, respectively. The
top, middle and bottom curves in (b) are the input data, inversion data and errors of the x-,
y- and z- linear accelerations, respectively.

(a)

(b)
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Figure 6. Comparison experiment with different ground conditions. (a) Test conditions and
the two test paths. (b) Linear acceleration data of walking on cement pavement along path 1.
(c) Linear acceleration data of walking on grass along path 2.

(a)

(b)

(c)
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Figure 7. Linear acceleration and autocorrelation curves. (a) and (b) correspond to the data
collected by the iPhone in left pant pocket. (c) and (d) correspond to the data collected by
the iPhone in right pant pocket. (e) and (f) correspond to the data collected by the iPhone in
the center of the back waist area.

(a) (b)

(c) (d)

(e) (f)
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Figure 8. Characteristics curves of ten tested persons as the database.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)

The remaining 30 sets of recorded data are used as measured data to compare with 10 samples
in the database. The voting results of 10 groups of measured data is listed in Table 2. We
calculate the weighted votes for measured data M1∼M10 according to the method described in
Section 4. For example, data M1 yields gait frequency Fi = 1.039 Hz, symmetry coefficient
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S1 = 0.554, and dynamic range D1 = 25.87 m/s2. The similarity coefficients between M1 and
D1∼D10 are [C1, C2, C3, C4, C5, C6, C7, C8, C9, C10]=[0.876, 0.773, 0.667, 0.762, 0.793, 0.498, 0.614,
0.735, 0.794, 0.575]. After comparing the above parameters with Table 1 and sorting the absolute
errors in increasing order and similarity coefficients in decreasing order, we can get the votes of
gait frequency [V 1

1 , V
1
2 , V

1
3 , V

1
4 , V

1
5 , V

1
6 , V

1
7 , V

1
8 , V

1
9 , V

1
10]=[2, 1, 7, 4, 9, 10, 5, 8, 6, 3], the votes of

symmetry coefficient [V 2
1 , V

2
2 , V

2
3 , V

2
4 , V

2
5 , V

2
6 , V

2
7 , V

2
8 , V

2
9 , V

2
10]=[3, 1, 2, 9, 8, 5, 7, 6, 4, 10], the votes of

dynamic range [V 3
1 , V

3
2 , V

3
3 , V

3
4 , V

3
5 , V

3
6 , V

3
7 , V

3
8 , V

3
9 , V

3
10]=[3, 6, 2, 7, 4, 1, 5, 9, 8, 10], and the votes of

similarity coefficient [V 4
1 , V

4
2 , V

4
3 , V

4
4 , V

4
5 , V

4
6 , V

4
7 , V

4
8 , V

4
9 , V

4
10]=[1, 4, 7, 5, 3, 10, 8, 6, 2, 9]. Following

multiplication by W = [2, 2, 1, ω4], where ω4 = 4 is calculated using Equation (17), the summation
votes, using Equation (16), equal to [17, 26, 48, 53, 50, 71, 61, 61, 36, 72] and are displayed in the first
row in Table 2. The minimum of this row is 17, which corresponds to data D1. Because datasets D1 and
M1 are collected from the same person in different time, the identification is true.

Table 2. Voting results for 10 measured data. M1∼M10 represent the 10 measured data.
D1∼D10 represent the 10 samples in the database. The number in the frame is the minimum
number in each row. True/False represents the current identification is true or false.

Data Name D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 True/False

M1 17 26 48 53 50 71 61 61 36 72 True
M2 28 17 29 47 52 48 39 45 30 50 True
M3 50 65 27 71 45 68 55 31 45 93 True
M4 40 66 50 16 73 72 45 52 54 82 True
M5 51 70 54 57 17 77 46 39 43 96 True
M6 45 46 29 49 51 12 48 43 41 76 True
M7 51 58 65 44 65 87 22 50 36 72 True
M8 46 58 24 73 68 76 46 20 45 94 True
M9 48 45 53 45 79 72 69 48 22 69 True

M10 76 61 48 62 53 90 66 44 28 22 True

According to Table 2, the weighted voting scheme has a good performance in identification
experiments. And all the remaining 20 sets of recorded data are tested and correctly identified.

As a further step, the weighted coefficient vectors are set to W = [0, 0, 0, 1], W = [1, 1, 1, 1],
W = [1, 1, 1, 2], W = [2, 3, 1, w4] and W = [2, 2, 1, w4], respectively. Then the numbers of successfully
recognized datasets are 23, 26, 27, 27 and 30, respectively. It is known that the weighted coefficients have
great effects on identification performances. Among the weighted coefficients, the similarity degree of
characteristic curves has the highest effect, but the identification cannot depend on this coefficient alone.
For experiments conducted in this paper, the weighted coefficient vector W = [2, 2, 1, w4] was adopted
and resulted in an excellent identification performances, while the error of identification is zero.

6. Conclusions

The accelerometer and gyrometer integrated in smartphones provide users with a convenient platform
for gait analysis. In this paper, a new method for gait analysis is proposed based on an iPhone. The
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Fourth-order Runge-Kutta algorithm and quaternion are applied to combine inertial data so as to solve
linear acceleration and eliminate the errors caused by attitude change and gravitational acceleration. The
gait characteristic parameters and characteristic curves are analyzed, then a weighted voting scheme is
adopted for gait identification. Simulation and experiment results demonstrate good performance of the
proposed scheme. In future study, the gait database will be improved to support gait identification under
different scenarios, e.g., different motion status of tested subjects.
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