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Abstract: The purpose of this study was to improve the accuracy of real-time ego-motion 

tracking through inertial sensor and vision sensor fusion. Due to low sampling rates 

supported by web-based vision sensor and accumulation of errors in inertial sensors,  

ego-motion tracking with vision sensors is commonly afflicted by slow updating rates, 

while motion tracking with inertial sensor suffers from rapid deterioration in accuracy with 

time. This paper starts with a discussion of developed algorithms for calibrating two 

relative rotations of the system using only one reference image. Next, stochastic noises 

associated with the inertial sensor are identified using Allan Variance analysis, and 

modeled according to their characteristics. Finally, the proposed models are incorporated 

into an extended Kalman filter for inertial sensor and vision sensor fusion. Compared with 

results from conventional sensor fusion models, we have shown that ego-motion tracking 

can be greatly enhanced using the proposed error correction model. 

Keywords: MEMS-based motion tracking; vision-based motion tracking; inertial sensor 

calibration; stochastic error modeling; sensors fusion; human motion tracking 
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1. Introduction 

Motion tracking technologies which aim at translating human motion into computer-understandable 

instructions have drawn much attention in the past decade. Potential applications in human-to-machine 

interface technologies include controlling mobile and flying robots, and navigation and control in 

augmented reality environments. In general, current motion tracking technologies derive pose 

estimates from electrical signals received from mechanical, magnetic, acoustic, inertial, optical, radio 

or microwave sensors [1–3]. When applied to gesture recognition, most of these technologies can be 

used alone with good results, but when it comes to ego-motion tracking (3D motion tracking within an 

environment using a camera), none of these technologies is good enough on its own owing to 

limitations in volume, mobility, accuracy, latency, or tracking range. 

For example, microelectromechanical systems (MEMS)-based inertial sensors are lightweight, and 

good for fast motion tracking, but they lack long term stability due to the problem of severe zero drift [4]. 

Vision sensors may be more accurate in tracking the motion with little accumulation of errors [5], but 

due to motion blur their ability to resolve fast movements is poor. They also suffer from line-of-sight 

limitations, and have problems in distinguishing between rotational and translational motion [6]. To 

overcome the inherent shortcomings of a single sensor, we present results from our custom-built 

system integrating a MEMS-based inertial sensor (consisting of accelerometers and gyroscopes, and is 

sometimes refer to as a “µIMU”) and a web-based camera (i.e., a vision sensor) for motion tracking. 

For convenience of reference, we will call this µIMU + Camera system the “µIC system” from here 

on. The MEMS inertial sensor which consists of a 3-axis accelerometer and three single axis 

gyroscopes is able to measure the acceleration and angular rate, while the vision sensor is able to 

estimate its pose (position and orientation) relative to a checkerboard (used as a visual landmark).  

By fusing these two sensors, the drift problem of inertial sensor can be corrected when visual 

measurements are available. In the interval between two visual measurements, or when the images are 

blurred or lost due to fast movements, the poses are estimated by inertial measurement. Based on this 

sensor fusion concept, we have demonstrated a more accurate and reliable motion tracking system, 

which is described in detail in this paper. 

Although significant work has been done in the past few years on inertial sensors as well as vision 

sensors, the majority of the reported work has focused on one or more of the following aspects:  

(1) relative pose calibration between inertial sensor and vision sensor [7,8]; (2) deterministic errors 

calibration of inertial sensor [9,10]; (3) stochastic errors identification [11–15], and modeling of 
inertial sensor (the majority of these work seek to model the stochastic errors in gyroscopes [12,16]); 

and (4) algorithms of inertial sensor and vision sensor fusion [17–20]. There are relatively few papers 

addressing the systematic calibration of a μIC system, which incorporates the orientation calibration of 

checkerboard and gravitational force as well as the relative calibration of inertial sensor and vision 

sensor. There are also only a few papers discussing how to combine stochastic error identification and 

modeling with inertial sensor and vision sensor fusion. This paper covers the following aspects:  

(1) systematic calibration for a µIC system; (2) deterministic and stochastic error identification and 

error modeling; (3) real-time pose estimation and correction; and (4) temporal information retrieval by 

using dynamic time warping (DTW). 
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The remainder of the paper is organized as follows: Section 2 presents the system setup, sensors and 

system calibrations, stochastic errors analysis by using Allan variance, and error modeling of the 

stochastic errors. The experimental results are discussed in Section 3. Finally, the conclusions are 

presented in Section 4. 

2. Methodologies of Motion Tracking with µIC System 

2.1. System Setup 

As shown in Figure 1, the experimental setup consists of a 3 × 4 checkerboard pattern, and a 

custom-built µIC system. The µIC system contains three single axis MEMS gyroscopes (LISY300AL 

gyroscope, STMicroelectronics, Geneva, Switzerland), a tri-axial MEMS accelerometer (MMA7260 

accelerometer, Freescale, Austin, TX, USA), and a web-based vision sensor (Logitech QuickCam Pro 

9000, Logitech, Inc., Fremont, CA, USA). With the accelerometers and gyroscope, the accelerations 

and angular rates of the devices can be measured, which can then be integrated into position and 

orientation. The checkerboard here is used by vision sensor for positioning. Knowing world 

coordinates of the corners on the checkerboard and their corresponding image coordinates, it is able to 

estimate the relative position of camera w.r.t. the world coordinate system. Consequently, the 

measurements from these two sensors can be fused together. 

Figure 1. (a) Coordinate frame alignment; (b) Real experimental setup; (c) Inside structure 

of µIC system. 
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The maximum sampling rate of the vision sensor is 30 fps, but only about 5 fps has been utilized in 

this work. The µIMU and vision sensor are fixed in a box, so their relative position will not be changed 

during the experiments. A pen is attached to one side of the µIC system (Figure 1b), so the trajectory 

of the movement can be recorded on a normal white paper. 

2.2. Inertial Sensor Calibration 

Different from motion recognition, the accuracy of motion tracking is highly dependent on the 

accuracy of the exact angular rates and accelerations. Given the initial orientation and position of the 

device, the relative positions of the inertial sensor can be obtained in two steps. First, the orientation is 

updated using the angular rates measured by gyroscope. Second, the accelerations are rotated to the 

world coordinate frame by using the updated orientation. After the gravitational acceleration, g, is 

compensated for, the positions can be determined by double integrating the resultant accelerations. 

However, since the MEMS sensors inherently suffer from high random noise and time varying bias, 

the performance of the tracking system may degrade if the variants in accelerometer and gyroscope 

noises are not modeled and compensated properly [12]. This means that the inertial sensor needs to be 

calibrated carefully. There are two types of error sources in an inertial sensor [21]: deterministic errors, 

and stochastic errors. Deterministic errors include constant biases, scale factors and non-orthogonalities. 

These can be directly removed from measurements. Stochastic errors include angle/velocity walk, bias 

instability, rate random walk, rate ramp, and so on [11], which cannot be directly removed from the 

measurements, and should be modeled as stochastic process. 

2.2.1. Deterministic Error Determination 

The mathematical model describing the accelerometer measurements and calibrated accelerations can 

be expressed as follows [10]: 

൥ܽ௫ܽ௬ܽ௭ ൩ = ൥݉௫௫ ݉௫௬ ݉௫௭݉௫௬ ݉௬௬ ݉௬௭݉௫௭ ݉௬௭ ݉௭௭ ൩ ቎ܽ௫ᇱ − ܾ௫ܽ௬ᇱ − ܾ௬ܽ௭ᇱ − ܾ௭ ቏ (1)

where ܾ௫, ܾ௬, and ܾ௭  represent constant biases along each axis; ܽ௫ᇱ , ܽ௬ᇱ  ܽ݊݀ ܽ௭ᇱ  represent measured 

accelerations by accelerometer when it is in static condition; the diagonal elements of m matrix 

represent scale factors, and the off-diagonal elements represent non-orthogonalities. The basic 

principle for estimating the m matrix and the bias vector is that the modulus of modeled accelerations 

equals gravitational acceleration when the device is in a static condition. Defining the calibration error (࢞)ݎ is defined as the difference between the squared sum of modeled accelerations and the squared 

gravitational acceleration, (࢞)ݎ = ܽ௫ଶ + ܽ௬ଶ + ܽ௭ଶ − ݃ଶ (2)

where ࢞ = (݉௫௫, ݉௫௬, … , ܾ௭)் . The inertial sensor calibration reduces to finding the vector x that 

could minimize the calibration error. Since there are nine unknowns in Equation (2), nine sets of 

measurements are required to solve this nonlinear problem. These nine sets are collected by making 

the accelerometer statically point towards nine different directions. 
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There are many algorithms that could be used to find the solution to the nonlinear least square 

problem. For example, Newton’s method, secant method, Gauss-Newton’s method and so on.  

Among them, Newton’s method requires the calculation of second order derivatives. Considering there 

are 9 unknowns in r(x), 45 s order derivatives should be calculated, which is a huge task. Besides, 

Newton’s method may converge to maximum or saddle point as well as minimum. Though secant 

method does not require derivative calculation, its convergence rate is slower than Newton’s method. 

If there is a point where the first derivative equals zero on the interval between initial point and 

optimal point, the algorithm may not converge at all. Compared with them, Gauss-Newton’s method 

only requires first order derivative calculation, and it is much easy to implement. So Gauss-Newton’s 

method [10] is applied to iteratively optimize the estimation in the direction: ݀௞ = ((ݎ−)்ܬ)ଵି(ܬ்ܬ) (3)

where r represents the calibration error vector; J represents the Jacobian of calibration error, which is 

calculated by: 

(ݔ)ܬ = ݔ߲ݎ߲ = ێێۏ
ۍێ ଵ߲݉௫௫ݎ߲ ⋯ ⋮ଵ߲ܾ௭ݎ߲ ⋱ ଽ߲݉௫௫ݎ߲⋮ ⋯ ۑۑےଽ߲ܾ௭ݎ߲

(4) ېۑ

Next, the solution to the least square problem is updated as: ݔ௞ାଵ = ௞ݔ + ௞݀௞ߙ (5) 

where ߙ௞ is the damping factor that controls the converging speed of the algorithm. If the damping 

factor is big, the algorithm will converge very fast. Otherwise, it may converge slowly. The total time 

cost w.r.t. different damping factors is plotted in Figure 2a. From this figure, we find the total time 

required for calibration drops sharply with the increase if damping factor. 

Gauss-Newton’s method is also very sensitive to initial approximation. If the initial approximate 

solution is near to the correct one, the algorithm will converge to the correct solution very fast. However, 

if the current solution is far from the correct one or the linear system is ill-conditioned, the algorithm 

will converge very slowly or even fail to converge [22]. Hence, the initial guess needs to be set 

carefully. If the accelerometer had been fabricated perfectly, the scale factors should be one and the 

non-orthogonalities should be zero, so the initial guess of m matrix is assumed to be an identity matrix. 

For initial bias estimation, due to the existence of gravitational acceleration, it is not trivial to get  

an estimation that is close to being true from a single measurement. We adopted the six-position 

method [23]. The method requires the inertial sensor to be placed on a level surface with the sensitive 

axis pointing alternatively up and down, so the estimated bias of the sensitive axis is: ܾ௜ = ܽ௜௨௣ + ܽ௜ௗ௢௪௡2 (6)

where ܽ௜௨௣ and ܽ௜ௗ௢௪௡ represent the measurements of the sensitive axis when it is pointing upwards or 

downwards. Next starting with this initial estimation of the parameters, the Gauss-Newton’s algorithm 

refines the estimates until the maximum iteration value is reached, or the criterion for stopping the 

iteration is satisfied: 



Sensors 2014, 14 15646 

 

 

,݉)ݎ| ܾ)| < ߝ (7)

where ߝ is a threshold, and is set to 1.00 mmଶ/sସ after several calibrations. The calibration error and 

the time cost in each step by using the Gauss-Newton’s method are plotted in Figure 2b. We can see 

from the figure that the calibration error is decreasing with the increase of running steps. After running 

about 22 steps, the required precision has been reached. 

Figure 2. (a) Total computational time cost w.r.t. damping factor by using the  

Gaussian-Newton’s method; (b) Calibration error and time cost of each iteration versus 

iteration step when damping factor is 0.6. 

 

2.2.2. Stochastic Error Determination 

Several approaches are available for stochastic error identification of an inertial sensor, e.g.:  

(1) Autocorrelation function approach [13], which is not practical for real data analysis because a very 

long test time is required [12]; (2) ARMA model approach [24] that is model sensitive; (3) PSD 

approach [25], which can help to identify error parameters but the accuracy of the spectral density 

estimation has to be considered [26]; and (4) Allan variance approach [27]. In this paper, Allan 

variance (AVAR) is preferred since it is a time domain analysis technique designed for characterizing 

noise and stability in clock systems, which can be used to extract the intrinsic noise in the system as a 

function of the averaging time by analyzing a time sequence [28]. The algorithm and explanation of 

Allan deviation can be found in [11]. In this paper, twelve hours of static data were collected from  

the µIMU at room temperature with a sampling frequency of 100 Hz. The outputs were transformed to 

acceleration in mm/sଶ  and angular rates in °/ݏ. The Allan variance plot of the accelerometer and 

gyroscopes are shown in Figure 3.  

According to the theory of Allan variance, different error sources appear on the log-log plot of 

Allan deviation with different slopes [15]. As for the five stochastic errors in inertial sensor: 

quantization error, angle/velocity random walk (ARW/VRW), bias instability, rate random walk and 

rate ramp noise, they appear on the log-log plot of Allan deviation with slopes of −1, −0.5, 0, +0.5 and 

+1 respectively [29]. By fitting straight lines with the corresponding slopes, the noise sources can be 

identified, and their magnitudes determined. The red solid straight lines with slope −0.5 in Figure 3a,b 
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are used to estimate the velocity/angle random walk. By examining these two figures it can be concluded 

that the velocity/angle random walk is dominant at smaller averaging times. When the averaging time 

increases, the bias instability becomes dominant, which is the minimum point on the curve. When the 

averaging time increases further, the slope of the curve is not the typical +0.5 or +1, so the rate random 

walk and rate ramp cannot be extracted directly from the curve. Besides, their influences on pose 

estimation are not as big as ARW/VRW and bias instability, so we focus on modeling the latter two in 

this paper. The estimated ARW/VRW walk and bias instability magnitudes are listed in Tables 1 and 2. 

Figure 3. (a) Allan deviation plot for the accelerometer; (b) Allan deviation plot for  

the gyroscope. 

 

Table 1. Bias instability and velocity random walk of the accelerometer. 

Bias Instability Velocity Random Walk 

X axis 9.086 ± 0.201 mm/sଶ (at 10.24 s) 18.946 ± 0.419 mm/sଶ/√ݏ 
Y axis 8.540 ± 0.189 mm/sଶ (at 10.24 s) 18.154 ± 0.401 mm/sଶ/√ݏ 
Z axis 5.560 ± 0.174 mm/sଶ (at 20.48 s) 17.520 ± 0.548 mm/sଶ/√ݏ 

Table 2. Bias instability and angle random walk magnitudes associated with the gyroscopes. 

Bias Instability Angle Random Walk 

X axis 0.03287 ± 0.000073 °/s (at 10.24 s) 0.058479 ±  ݏ√/° 0.001293
Y axis 0.021762 ± 0.005816 °/s (at 1310.72 s) 0.066069  ݏ√/° 0.017658 ±
Z axis 0.032553 ± 0.001018 °/s (at 20.48 s) 0.064275  ݏ√/° 0.002011 ±

As for bias instability, it is modeled as a first-order Gauss-Markov process [11]. Because Gauss-Markov 

models fits a large number of physical processes with reasonable accuracy, and it has a relatively 

simple mathematical description. As for velocity/angle random walk, it can be modeled as white noise. 

Knowing the characteristics of these errors, we need to build a model that is able to predict how these 

errors vary with time, and apply the model to correct tracking accuracy. Error modeling of these errors 

will be introduced in Section 2.4. 
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2.3. Rotation Calibration between the Model Coordinate Frame and the World Coordinate Frame 

The vision sensor is only capable of estimating its position and orientation (pose) relative to the 

model coordinate frame. If the model coordinate frame is not aligned accurately with the world 

coordinate frame, the accelerations could get projected onto the world axes incorrectly. This will 

induce two problems. Firstly is that the accelerations will be integrated in wrong directions. Secondly 

acceleration due to gravity cannot be removed correctly. Hence, the relative rotation between model 

coordinate frame and world coordinate frame should also be calibrated. There are three preconditions 

for this calibration: (1) the inertial sensor should have been calibrated precisely; (2) the vision sensor 

should have been calibrated precisely; and (3) the relative rotation ( ூ஼ݍ ) between the inertial sensor and 

the vision sensor should also have been calibrated. The matter of inertial sensor calibration has been 

discussed in Section 2.2. As for camera calibration, we utilize the Camera Calibration Toolbox for 

Matlab [30] by taking 15 images with a 9 × 6 checkerboard. And as for the relative rotation ( ூ஼ݍ ) 

calibration between inertial sensor frame and camera frame, the algorithm described in [7] is adopted, 

which seeks to solve the problem by finding the quaternion that maximizes: ෍( ூ௖ݍ ⊗ ܽ௜ூ ⊗ ூ௖ݍ ∗) ∙ ௜௖௡ݒ
௜ୀଵ  (8)

where ܽ௜ூ = (0, ,௜ூݔ ,௜ூݕ ௜௖ݒ  ;௜ூ)் represents the measurements of vertical (g) by inertial sensorݖ = (0, ,௜௖ݔ ,௜௖ݕ  ௜௖)் represents a measurement of vertical derived from a selection of verticalݖ

vanishing points by vision sensor. These are both represented in quaternion form. Rearranging 

Equation (8):  ( ூ௖ݍ )்(෍( ௜ܸூ)் ௜ܸ௖)௡
௜ୀଵ ூ௖ݍ  (9)

where ܸூ and ܸ஼ represent measurements by the vertical inertial sensor and the vision sensor. These 

can be expressed in matrix form as: ܰ = ෍ ( ௜ܸூ)் ௜ܸ௖௡௜ୀଵ  (10)

The solution to the problem lies in the vector corresponding to the largest eigenvalue of N [31].  

The acquisition of vertical vanishing points is illustrated in Figure 4. The two vertical lines appear 

parallel in the figure but, actually, they are intersecting at some point outside of the figure. This is the 

vanishing point we are looking for. Meanwhile, the orientation of vision sensor relative to model frame 

( ௠௖ݍ ) can also be obtained using the same configuration.  
Suppose I

I a  is the gravitational acceleration measured by the accelerometer expressed in 

quaternion from. Knowing the relative rotation ݍூ௖  between inertial sensor body frame and camera 

frame, we may derive its corresponding value in the camera coordinate frame of reference by using the 

following equation 
*qaqa C

II
IC

II
C ⊗⊗=  (11)
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The gravitational acceleration can be further rotated to model coordinate frame by using the 
orientation quaternion qC

m : 

qqaqqqaqa C
m

C
II

IC
I

C
m

C
mI

CC
mI

m ⊗⊗⊗⊗=⊗⊗= ***  (12)

where qC
m  represents the relative rotation from the model frame to the camera frame, as measured by 

vision sensor by taking the advantage of corner features (see Figure 4). 

Figure 4. Aligning the world coordinate frame with the model coordinate frame. 

 

The true gravitational acceleration in world coordinate frame can be expressed in quaternion form as: 

T
g

W g )0,,0,0( −=a  (13)

Let ࢗ = (ܽ, ܾ, ܿ, ݀)்௠௪  be a unit quaternion that rotates measurements from the model coordinate 

frame to the world coordinate frame. The gravitational acceleration can be rotated to model coordinate 

frame by using the following equation: 

qaqa W
mg

WW
mg

m ⊗⊗= *  (14)

Since the accelerometer has been calibrated accurately, the measured accelerations should be equal 

to the real gravitational acceleration, that is, g
m

I
m aa = . From Equations (12) and (14), the following 

equation can be obtained: 

qaqa w
mg

ww
mI

m ⊗⊗= *

 (15)

Substituting the values into Equation (15), four nonlinear equations can be obtained: 

I
mg

cdab

dcba

bcad

bd

a=



















−
+−+−

−−

22

22

2

2222  (16)

Solving the nonlinear equations in Equation (16), the four elements in ࢗ ௠௪ can be determined. 
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2.4. Error Modeling of a μIC System 

2.4.1. Measurement Model 

Following the Allan variance analysis, it was found that the inertial measurements in our experiments 

were corrupted with ARW/VRW and bias instability. Therefore the inertial measurements were 

modeled as: ෥߱ூ(ݐ) = ߱ூ(ݐ) + ܾ௚(ݐ) + ௚(t)ݓ (17)෤ܽூ(ݐ) = ܽூ(ݐ) + ܾ௔(ݐ) + (ݐ)௔ݓ (18) 

where ߱ூ(ݐ) and ܽூ(ݐ) represent true angular rates and accelerations; ݓ௚(ݐ) and ݓ௔(ݐ) represent white 

Gaussian noises ((ݓ)ܧ = 0, (்ݓݓ)ܧ = σଶ), which contribute to angle/velocity random walk [32]; and ܾ௚(ݐ) and ܾ௔ represent the bias instabilities in the gyroscope and the accelerometer respectively that 

can be modeled as first-order Gauss-Markov processes:  ሶܾ௚(t) = −diag(1./ ௚ܶ௖)ܾ௚(t) + ௚௕(t)ݓ (19)ሶܾ௔(ݐ) = −݀݅ܽ݃(1./ ௔ܶ௖)ܾ௔(ݐ) + (ݐ)௔௕ݓ (20) 

where ௚ܶ௖ and ௔ܶ௖ represent the vectors composed of correlation times of the signals (see Tables 1 and 2); ݓ௚௕(t) and ݓ௔௕ represent white Gaussian noises [12]. 

2.4.2. State Space Formulation 

From Equations (17) and (18), measurement errors in the angular rates and accelerations can be 

expressed as follows: δ߱ூ(t) = ߱ூ(ݐ) − ෥߱(ݐ) = −ܾ௚(ݐ) − (ݐ)௚ݓ (21) δܽூ(t) = ܽூ(ݐ) − ෤ܽ௕(ݐ) = −ܾ௔(ݐ) − (ݐ)௔ݓ (22) 

The error equations for velocity in world coordinate frame are obtained by perturbing the velocity 

equation [16]: ݒߜሶ௪(t) = ܽ௪(t) − ෤ܽ௪(t) = ூ௪ܾ௔(t)ܥ− − ௔(t)ݓ (23) 

Next the position derivative error ar obtained from the well-known equation: ݌ߜሶ௪ = ௪ݒ − ෤௪ݒ = δݒ௪ (24) 

The augmented angular rate ഥ࣓ ࢉ = (0, ߱௫, ߱௬, ߱௭)் and the quaternion derivative ݍሶ  is related by: ݍሶ = 12 ݍ ⊗ ഥ߱௖ (25)

where ݍ = ,ଵݍ) ,ଶݍ ,ଷݍ ்(ସݍ  represents the rotation quaternion that rotates measurements from the 

camera frame to the world frame [33]. From the properties of quaternion multiplication, Equation (25) 

can be expressed in matrix form: ݍሶ = Ωݍ (26) 

where: 



Sensors 2014, 14 15651 

 

 

Ω = 12 ൦ 0 −߱௫ −߱௬ −߱௭߱௫ 0 ߱௭ −߱௬߱௬߱௭ −߱௭߱௬ 0−߱௫ ߱௫0 ൪ (27) 

Substituting Equation (21) into Equation (26), the estimated quaternion derivative becomes ݍොሶ = Ω෩ݍො = Ωݍො + −)ூ௖ܥ௚ܤ ௚ܾ − (௚ݓ (28) 

where: ܤ௚ = 12 ቎ ଶݍ ଷݍ ଵݍ−ସݍ ସݍ ଷݍସݍ−ଷݍ− ଶݍ−ଵݍ−  ଵ቏ (29)ݍ−ଶݍ

The error in the quaternion derivative turns out to be: ݍߜሶ = ሶݍ − ොሶݍ = Ωδq + ூ௖ܥ௚ܤ ௚ܾ + ௚ݓூ௖ܥ௚ܤ (30) 

Therefore, these continuous equations can be expressed as follows: 

(ݐ)ሶݔߜ = ێێۏ
ሶሶܾ௚ݍߜሶ௪ሶܾ௔ݒߜሶ௪݌ߜۍێێ ۑۑے

ېۑۑ = (ݐ)ݔߜ(ݐ)ܨ +  (31) (ݐ)ݓ(ݐ)ܩ

where: 

(ݐ)ܨ = ێێۏ
0ۍێ ܫ 0 0 00 0 ூ௖ܥ(ݍ)ܥ− 0 0000 000 −݀݅ܽ݃(1./ ௔ܶ௖)00 0Ω0 ௚ܤ0  ∙ /.ூ௖−݀݅ܽ݃(1ܥ ௚ܶ௖)ۑۑے

ېۑ
 (32) 

(ݐ)ܩ = ێێۏ
ۍێ 0 0 0 ܫ−0 0 0 0000 00ܫ ௚ܤ0 ∙ ூ௖0ܥ ۑۑےܫ00

ېۑ
 (33) 

(ݐ)ݓ = ൦ ௚௕൪ (34)ݓ௚ݓ௔௕ݓ௔ݓ

Discretizing the continuous state space model, and combining the characteristics of the Gauss-Markov 

process, the discrete state space model can be expressed as follows ݔߜ_(݇) = (݇)ܣ ∙ ݇)ݔߜ − 1) + ௗ (35)ݓ

where: 

(݇)ܣ ≈ ܫ + ݐ݀(ݐ)ܨ = ێێۏ
ܫ ܫۍێ ∙ ݐ݀ 0 0 00 ܫ (ݍ)ܥ− ∙ ݐூ௖݀ܥ 0 0000 000 ݀݅ܽ݃(exp (−݀ݐ./ ௔ܶ௖)00 ܫ0 + Ω݀0ݐ ௚ܤ0 ∙ ூ௖ܥ ∙ /.ݐ݀−) exp)݃ܽ݅݀ݐ݀ ௚ܶ௖)ۑۑے

ېۑ
 (36) 

where dt is the sampling interval. The discrete error covariance is 
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ܲ_(݇) ≈ ݇)ܲ(݇)ܣ − (݇)்ܣ(1 + (37) (݇)்ܩ(݇)ܳ(݇)ܩ

where the noise covariance matrix ܳ(݇) is ܳ(݇) = ݀݅ܽ݃([ܸܴܹ ܽܫܤ ܹܴܣ (38) ([݃ܫܤ

and: ܽܫܤ = ܫ) − exp /.ݐ2݀−) ௔ܶ௖)) ∙ ஻ூ௔ଶߪ ݃ܫܤ  = ܫ) − exp /.ݐ2݀−) ௚ܶ௖)) ∙ ஻ூ௚ଶߪ  
(39) 

2.4.3. Measurement Update 

In updating the error state with a set of measurements, it is necessary to know how the measurements 

vary with time. There are two measurements in our system: the pose of the system as measured by the 

vision sensor, and the accelerations and angular rates measured by the inertial sensor. Each measurement is 

defined as the measured pose ݌෤ minus the estimated pose ̂݌, where ̂݌ is pose vector obtained by integrating 

accelerations and angular rates. 

Therefore, the measurement residual can be expressed as: ݕ(݇) = (݇)෤݌) − ((݇)̂݌ − (40) (݇)_ݔߜ(݇)ܪ

where ܪ(݇) represents the measurement matrix, and can be expressed as follows ܪ(݇) = ൤ ଷ×ଷܫ 0ଷ×ଷ 0ଷ×ଷ 0ଷ×ସ 0ଷ×ଷ0ସ×ଷ 0ସ×ଷ 0ସ×ଷ ସ×ସܫ 0ସ×ଷ ൨ (41)

The state is then updated using the following equations: ܭ(݇) = (݇)ܪ)(݇)்ܪ(݇)_ܲ (݇)்ܪ(݇)ܲ_ + ܴ(݇))ିଵ  (42)ݔ(݇) = (݇)_ݔ + (݇)ݕ(݇)ܭ (43)ܲ(݇) = ܫ) − (݇)_ܲ((݇)ܪ(݇)ܭ (44)

where ܴ(݇)  is measurement noise covariance values determined from experience. Each time the 

measurement is updated, the pose is corrected using the following equation: ݌௖ = ̂݌ + (45) ݌ߜ

3. Results and Discussion 

3.1. Trajectory Reconstruction with Proposed Algorithms 

We performed the experiments by writing five English characters “cityu” in one stroke with the µIC 

system on the platform shown in Figure 1. A pen was attached to one side of the device, so the 

trajectory of the movement could be recorded on normal white paper. We analyzed the results by 

comparing the reconstructed trajectory with the one in [33], which we call it general model. In the 

general model, it assumes that the only noise in inertial sensor is white noise, so the other noises are 

not modeled. In addition, the deterministic errors in inertial sensor are calibrated by using six-position 

method, which is not as elegant as Gauss-Newton’s method. The comparison is plotted in Figure 5. 
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From Figure 5c, it can be found the shape of the trajectories can be recovered, although some 

details may have been lost. Moreover, the estimation position along the x direction is stretched a little 

bit. In Figure 5b, more detailed information has been recovered, and the result is closer to the reference 

trajectory in both the x and y directions, which proves that the proposed algorithm may help to recover 

more detail information. 

Figure 5. (a) Reconstructed “cityu” by using general model and error model;  

(b) Reconstructed trajectory using the proposed error model; (c) Reconstructed trajectory 

using the general model. 

 

3.2. Experimental Results Evaluation 

With a view to evaluating the performance of the algorithms quantitatively, the RMSE (root mean 

square error), and the absolute errors associated with each reconstructed trajectory were calculated. 

The RMSE may give us an overall error level of the reconstructed trajectory. It indicates the overall 

deviation of the reconstructed trajectory form the real trajectory, while the absolute error may show us 

the error level of each data point. The calculations however required the temporal information of the 

reference to be known. Since temporal information cannot be obtained directly from the recorded 

trajectory, DTW (dynamic time warping) was applied first to align the reference positions with the 

positions detected by the vision sensor. Next the corresponding temporal information of the reference 

was estimated. Before performing DTW, the sampling rate of vision sensor was increased from about  

5 fps to about 15 fps through interpolation, so that there will be more data points included while 

calculating RMSE values. The resulting data points used for calculating RMSE are plotted in Figure 6. 

For absolute error calculation, the following formula was applied: ݁௜ = ො௜ݔ| − ௜| (46)ݔ

where ݔ௜ represents reference position; ݔො௜ represents estimated position. The corresponding absolute 

errors obtained by using the two algorithms are plotted in Figure 7. 
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Figure 6. Position alignment versus time. (a) Position (mm) in x direction versus time;  

(b) Position (mm) along the y direction versus time; (c) Position (mm) along the z direction 

versus time. 

 

The RMSE values along each axis were calculated by: 

RMSE(ܠො) = ඨ∑ ො௜ݔ) − ଶ௡௜ୀଵ(࢏ݔ ݊  (47)

where n represents the number of measurements. The RMSE values of estimated positions in each axis 

are listed in Table 3. 

Figure 7. (a) Absolute position (mm) error in the x direction; (b) Absolute position error 

(mm) in the y direction; (c) Absolute position error (mm) in the z direction. 

 

Table 3. The root mean square error (RMSE) values associated with the estimated positions. 

Algorithm X (mm) Y (mm) Z (mm) Mean (mm) Total (mm) 

General model 20.47 17.6 25.84 21.33 63.91 

Error model 7.47 17.89 18.38 14.58 43.74 

From Figure 7, it can be observed that the absolute errors determined by the error model are much 

smaller than those determined by the general model, especially in x direction. From Table 3, we find 

that the maximum RMSE by employing the error model was 18.38 mm, whereas the maximum RMSE 
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by using the general model was 25.84 mm. That is, the mean RMSE has been reduced by 6.75 mm, 

while the total RMSE in three directions has been reduced by 20.17 mm when the proposed error 

model is applied. It is easy to understand if we combine these numbers with the trajectories in Figure 5. 

Smaller error means the algorithm is able to recover more detailed information of real movement, 

while the bigger one indicates its distance from real movement. Form both number analysis and trajectory 

comparison, it can be concluded that the proposed algorithms may help to recover more detailed 

information, which is usually very important in motion tracking. As a matter of fact, the proposed 

algorithm is not only confined to application regarding inertial sensor and vision sensor fusion, but 

also can be applied in the other applications that involve inertial sensors.  

4. Conclusions 

In this paper, algorithms for the µIC system calibration, noise determination and modeling have 

been presented. For relative rotation calibrations between the two coordinate frames, (inertial sensor 

body coordinate frame and camera coordinate frame, and model coordinate frame and world coordinate 

frame), we have shown that only one reference image is required. For deterministic error calibration of 

the inertial sensor, Gauss-Newton’s method has been adopted to iteratively refine the calibration 

results. We demonstrated that as long as the parameters are chosen properly, this algorithm is able to 

yield results with given precision in seconds. We then modelled the stochastic errors identified in the 

inertial sensor, and applied the proposed noise model to the inertial sensor and vision sensor fusion. By 

comparing the results with and without error correction, we found that the RMSE of reconstructed 

hand-writing trajectories with error correction have been reduced by 6.75 mm over a 30 cm by 15 cm 

writing area. Moreover, we have also successfully applied DTW for temporal information retrieval. 

Although good results have been achieved, there is still much work to be done in realizing a mobile 

motion tracking and recognition system based on the fusion of MEMS motion sensors and vision 

sensors. For example, the radial distortion of the web-based camera should be resolved. As can be seen 

from Figure 5a, the trajectory in x direction, which is the radial direction of the camera, has been 

“stretched”. This type d of distortion will deteriorate the fusion results, and hence, a more reliable 

distortion correction model should be constructed. Another example is the “image blurring” during fast 

movement of an input motion. Although the pose could be estimated by using inertial senor during the 

absence of vision sensor, the pose estimation results by using only inertial sensor will deteriorate 

quickly when the images are lost too often. 
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