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Abstract: The quantification of aboveground biomass using remote sensing is critical  

for better understanding the role of forests in carbon sequestration and for informed 

sustainable management. Although remote sensing techniques have been proven useful in 

assessing forest biomass in general, more is required to investigate their capabilities in 

predicting intra-and-inter species biomass which are mainly characterised by non-linear 

relationships. In this study, we tested two machine learning algorithms, Stochastic Gradient 

Boosting (SGB) and Random Forest (RF) regression trees to predict intra-and-inter species 

biomass using high resolution RapidEye reflectance bands as well as the derived 

vegetation indices in a commercial plantation. The results showed that the SGB algorithm 

yielded the best performance for intra-and-inter species biomass prediction; using all the 

predictor variables as well as based on the most important selected variables. For example 

using the most important variables the algorithm produced an R
2
 of 0.80 and RMSE of 

16.93 t·ha
−1

 for E. grandis; R
2
 of 0.79, RMSE of 17.27 t·ha

−1 
for P. taeda and R

2
 of 0.61, 

RMSE of 43.39 t·ha
−1 

for the combined species data sets. Comparatively, RF yielded 

plausible results only for E. dunii (R
2
 of 0.79; RMSE of 7.18 t·ha

−1
). We demonstrated that 
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although the two statistical methods were able to predict biomass accurately, RF produced 

weaker results as compared to SGB when applied to combined species dataset. The result 

underscores the relevance of stochastic models in predicting biomass drawn from different 

species and genera using the new generation high resolution RapidEye sensor with 

strategically positioned bands. 

Keywords: bag fraction; biosphere-atmospheric interactions; learning rate; high resolution 

RapidEye imagery; tree complexity; variable importance and variable selection 

 

1. Introduction 

Forests serve as an important key driver of regional and local climate systems through  

biosphere-atmospheric interactions [1–3]. Information on forest spatial distribution, biomass levels and 

dynamics is therefore, required for accurate estimation of greenhouse gases flux, policy development 

and implementation [4]. In addition, knowledge on intra-and-inter commercial forest biomass is central 

in: (i) determining their productive capacity; (ii) ensuring informed sustainable management practices 

and (iii) understanding the functioning of the planet and the environment [5,6]. Therefore, continuous 

estimation, mapping and monitoring of forest aboveground biomass (tonnes ha
−1

), which is the amount 

of living plant matter [5]; is central in climate modelling worldwide, due to its significance in net 

carbon emission computations [7–9].  

Currently, there are two approaches for forest biomass estimation namely, field-based traditional 

methods (i.e., field measurements or harvesting) and remotely sensed methods [10]. So far, traditional 

methods have been side lined in favour of remotely sensed techniques; since its inception. Although, 

regarded as highly accurate [10,11]; the traditional methods are exceedingly time consuming, labour 

intensive, and difficult to implement, especially in remote areas and are practically and spatially 

limited to a small tree sample size and requires a sufficient number of samples [10,12]. Recent 

evidence suggests that remote sensing seems to be a valuable and low-cost tool for determining forest 

biophysical attributes when compared to field surveys [13–15]. Remotely sensed data permits robust 

biomass retrieval which is critical for assessing the ecosystem yield and carbon accounting. As a 

result, biomass estimation using remotely sensed data as the primary source has gained increasing 

interest in the past decades especially for natural forests at both local and regional scales [10].  

Although biomass cannot be directly quantified from space, satellite image reflectance permits the 

extraction of biomass estimates especially when integrated with field-based measurements [15]. 

Consequently, various remotely sensed studies concerning forest biomass estimation have been applied 

at different scales. It has been discovered that coarse spatial resolution optical sensors are useful for 

biomass mapping at continental and global scale rather than at local scale [16,17] due to the plausible 

trade-off between spatial resolution, image coverage and frequency in data acquisition [3,6,10,18,19]. 

The main limitation with the broadband multispectral sensors for biomass estimation is the fact that 

they are characterised by mixed pixels which occur as a result of large sensor footprint [20,21]. In that 

regard, the huge difference between the satellite data pixel size and the ground reference data makes 

these sensors inapplicable for intra-and-inter species biomass prediction in commercial forest plantations.  
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Recent efforts have been geared towards the use of high resolution sensors such as narrow band 

hyperspectral, radar and lidar data for estimating aboveground forest biomass (AGB) to reduce the 

limitations associated with the broadband multispectral data sets [21–27]. Results have shown that 

hyperspectral, radar and lidar sensors have robust means of data collection and subsequent characterization 

of the vertically distributed forest attributes hence can be regarded as an appropriate primary data 

source for forest inventorying. The use of these data sets nonetheless comes with its own limitations in 

terms of cost; availability; spectral contiguity, processing and analysis complexity especially in the 

African context given its economic situation and lack of the required technical expertise. For example, 

processing hyperspectral data for vegetation applications is a major challenge due to the Hughes 

phenomenon or “the curse of dimensionality”. This problem often introduces a high degree of 

multicollinearity as a result of the similarities in the biophysical spectral reflectance properties [28–31]. 

The utility of new generation sensors, such as the RapidEye with strategic bands is therefore seen as 

a trade-off between the advantages of coarse multispectral data, hyperspectral, lidar and radar data in 

predicting intra-and-inter species AGB [32–34]. Currently, RapidEye together with WorldView-2 

sensors are the only commercial multispectral satellite sensors which provide a reasonable number of 

spectral bands that are configured in unique portions of the electromagnetic spectrum and provide a 

global, high-resolution access to the red- edge spectral band [35]. In remote sensing, the “red-edge” is 

the region of abrupt change in the leaf reflectance between 680 and 780 nm, due to the combined 

effects of strong chlorophyll absorption in red wavelengths and high reflectance in the NIR 

wavelengths due to leaf internal scattering [36]. The new generation RapidEye image containing 

strategically positioned bands with a fine spatial resolution of 5 m is hypothesized to be critical for 

vegetation mapping when compared to the traditional broadband satellite images, such as ASTER, 

SPOT and Landsat Thematic Mapper. Above all, the RapidEye reduces unnecessary redundancy, a 

problem associated with hyperspectral data [13]. Recently, the strategically positioned bands of the 

RapidEye imagery has successfully been applied extensively in detecting different levels of insect 

defoliation in Mopane woodlands [37,38] whereas other studies have demonstrated that the strategically 

positioned RapidEye bands allow for enhanced vegetation mapping [39,40].  

However, the rich spectral information contained in this data set has not been exploited for 

estimating intra-and-inter species biomass in managed commercial plantations. For instance, 

commercial forests with mixed species (inter-species) are characterised by significant biomass 

variations, making it difficult for national carbon accounting. Taxonomical and structural differences 

are a major problem for intra-species aboveground biomass estimation [21]. More importantly, 

different species and genera result in high biomass variations that are associated with non-linear 

relationships making algorithm applications a significant challenge in estimating ABG in such 

environments. Due to the intra-and-inter species variability there is a high probability of outliers and 

unbalanced data sets in the collected training data. It is therefore critical for biomass studies to identify 

robust models that could overcome the failure to estimate biomass in forests characterised with  

intra-and-inter species [21,41–43].  

In this study we therefore assessed the potential of two machine learning algorithms; Stochastic 

Gradient Boosting (SGB) and Random Forest (RF) in predicting intra-and-inter species biomass in a 

commercial plantation forest in the midlands region of KwaZulu-Natal, South Africa using the 

strategically positioned spectral information derived from 5 m RapidEye imagery. Previous studies 
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have shown that non-parametric statistical techniques such as the SGB and RF simplify the biomass 

estimation process when compared to other statistical regression methods [12,13,21]. Both regression 

ensembles have received considerable attention due to a number of statistical modeling properties. For 

instance, the SGB method produces results with plausible and highly robust estimates in regression 

studies due to its ability to handle outliers, inaccurate training data, missing and unbalanced data  

sets [44–46]. Moreover, the model’s stochastic characteristic in modelling non-linear relationships and 

the inherent ability to handle, identify as well as select critical variables from large amounts of data is 

expected to provide the best model accuracies [21,45–47]. Most importantly, SGB uses a stage-wise 

additive model fitting procedure that enhances the predictive performance of weak learning algorithms.  

On the other hand, RF provides other appealing statistical properties, such as the useful internal 

estimates of error, strength, correlation and variable importance [48,49]. In addition, Strobl, 

Boulesteix, Kneib, Augustin and Zeileis [49] describe random forest algorithm as an effective tool 

which performs simple and complex regressions with modest fine-tuning of parameters resulting in 

accurate predictions. The highlighted characteristics of SGB and RF as well as the probability of  

intra-and-inter species biomass variability have therefore prompted an investigation of their 

capabilities (SGB and RF) in predicting AGB from a commercial forest in the midlands of KwaZulu 

Natal, South Africa. Although both machine learning techniques have been found to be robust under 

certain conditions, in this mixed species environment of KwaZulu Natal, it is expected that SGB would 

perform better, due to its capabilities in modelling possible outliers and unbalanced data sets as well as 

non-linear relationships. To the best of our knowledge, so far no study has assessed the SGB and RF 

for intra-and-inter species biomass prediction in a commercial forest and in particular, using the 

strategically positioned bands of the new generation sensors such as RapidEye. Therefore, our main 

objective was to investigate the robustness of the two machine learning algorithms in predicting  

intra-and-inter species biomass from a plantation forests using the recent high spatial resolution 

spaceborne RapidEye multispectral imagery. A secondary objective was to evaluate the relative 

importance of the high resolution RapidEye reflectance bands as well as the derived vegetation indices 

in the prediction of intra-and-inter species biomass.  

2. Materials and Methods 

2.1. Study Area 

The study was conducted at sappi Clan forest, located approximately 27 km away from 

Pietermaritzburg city, the provincial capital of KwaZulu-Natal Province, South Africa (Figure 1).  

The plantation is located between Latitudes (29°24'46.74"S, 29°17'45.94"S) and Longitude 

(30°18'32.89"E, 30°28'28.21"E). South Africa is home to vast tracks of commercial plantation forests, 

both hardwood and softwoods, covering approximately one percent of the total land area [50]. 

Specifically, the Clan forest used in this study covers about 6700 ha. The forest is characterized by 

extensive commercial forestry dominated by Pinus (P. taeda), and Eucalyptus spp. (e.g., E. grandis 

and E. dunii). The climate in the study area is sub-tropical with the mean annual rainfall varying 

between 700 mm and 1500 mm [51]. These fast-growing Eucalyptus species are planted with clones or 

seedlings and harvested every six to seven years. Stands are managed on a pulpwood regime  
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(i.e., established at 1667 trees/ha); and intensive soil preparation and weed control measures are 

practiced, until crown closure occurs between 1 to 1.5 years.  

Figure 1. Location of Sappi Clan forest in the midlands of KwaZulu Natal, South Africa. 

 

2.2. Field Data Collection and Sampling Design 

The field campaign was carried out between the 30th of July and the 22nd of August 2013, in 

conjunction with Sappi annual routine-field surveys. Sampling was conducted on Eucalyptus grandis, 

Eucalyptus dunii and Pinus taeda forests aged between 8 and 20 years (Figure 2a,b). Selected tree 

structural variables, namely; tree diameter-at-breast height (DBH), tree height (H) were measured for 

each plot (181) using the Haglof Digitech Calliper and Vertex IV laser instrument respectively. A total 

of 181 plots were selected for field surveys using vector maps, courtesy of Sappi. The selection criteria 

were based on species type, age and spatial location of compartments. The measurements were 

collected using a grid-based systematic sampling technique, utilizing a circular sample plots, 

approximately 400 m
2
 in size. These plots were systematically distributed (usually every 100 m) 

within the stand. Sample intensities varied between 2% and 10%, depending on the species 

composition, stand size or local forest conditions [52].  
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2.3. Field Aboveground Forest Biomass Computation 

For individual species biomass (t·ha
−1

) calculation, two approaches were applied for the three 

selected species (E. grandis, E. dunii and P. taeda). The first method was only used for Eucalyptus 

spp. and it involved the use of volume and biomass expansion factors found in literature specifically 

for South African species [53]. Volume was derived and reported at stand level following the 

allometric method explained by Bredenkamp [54]. For P. taeda, a general allometric equation was 

used for biomass computation, as proposed by the Intergovernmental Panel on Climate Change 

(IPCC), IPCC [55]. The basis for the application of this allometric equation for this species (P. taeda) 

in particular is the fact that the rainfall (800–1500 mm) and temperature range (21 °C–34 °C) are 

similar to the climatic conditions prevailing in the study area. The equation used for the species was 

also formulated using diameter-at-breast height (DBH) ranging from 0.6 cm–56 cm at rainfall of 800 

to 1500 mm and temperatures were similar to the study area. Species difference prompted the use of 

different approaches for computing biomass because of the existing differences in species structural 

and taxonomical characteristics [11,41,43]. Moreover, literature shows that different allometric 

equations exist for biomass computation for the selected species [11,56]. The biomass results from the 

two approaches were finally standardised to the same unit of measurement, which is tonnes per  

hectare (t·ha
−1

). 

Figure 2. Typical field site showing (a) Eucalyptus spp. and (b), P. taeda in early  

August 2013. 

  

(a) (b) 

2.4. Image Acquisition and Data Preprocessing 

A recent high spatial resolution spaceborne multispectral sensor (i.e., RapidEye imagery) with zero 

percent cloud cover, covering the study area was obtained on the 25th of August 2013 from DLR 

Germany. The RapidEye image comprised of five multispectral bands with a spatial resolution of 5 m. 

The spectral ranges of the five bands are 440–510 nm (B1-blue), 520–590 nm (B2-green), 630–685 nm 

(B3-red), 690–730 nm (B4-red-edge), and 760–850 nm (B5-near infrared). All the RapidEye products 

are collected by a 12 bit imager. Radiometric corrections were applied to the RapidEye image, 

subsequently converting the image digital numbers (DN) into values directly related to absolute 
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radiances, using a constant factor (originally determined during launch) [57]. Earlier experimentation 

done by Naughton, et al. [58] demonstrated that the image registration error was within a single pixel, 

hence further geometric processing was not implemented. Radiance image was atmospherically 

corrected and transformed to canopy reflectance using the Fast Line-of-Sight Atmospheric Analysis of 

Spectral Hypercubes (FLAASH) algorithm built in ENVI 4.7 software [59]. 

2.5. Spectral Information and Vegetation Indices Derived from Strategically Positioned Multispectral 

Spaceborne RapidEye Image Bands 

A point map of the biomass plots was developed using the field data and GPS recordings. This map 

was then overlaid on the RapidEye images to generate a region-of-interest (ROI) map using the central 

GPS point for each plot (n = 181). A 3 × 3 pixels window (i.e., 15 m × 15 m) was used to collect 

vegetation image spectra from each band (n = 5) using ArcGIS 10.2 software. The 3 × 3 pixels 

window size was used in order to avoid the inclusion of pixels located outside the plot [13,60]. Hence, 

only pixels that fall entirely within the ROIs were included in the spectral dataset, while the pixels that 

partially fall inside the ROIs were discarded [13,60,61]. The spectra were collected and averaged for 

each plot. All derived parameters that were related to the field plot data are listed in Table 1. The 

indices were chosen, based on previous research dealing with forest biomass estimation from remote 

sensing data.  

2.6. Intra-and-Inter Species Biomass Training and Test Datasets 

To validate the performance of the SGB and RF algorithms the datasets (E. dunii: n = 63,  

E. grandis: n = 65, P. taeda: n = 53 and all species: n = 181) were randomly split into 70%, training 

dataset and 30% for a test (independent) dataset [12,62]. Moreover, the training datasets were used in 

optimizing both regression algorithms (SGB and RF) and to train the prediction models whereas the 

test dataset was used to examine the performance and reliability of the prediction model. 

2.7. Statistical Analysis 

Two main data analysis techniques were implemented and these include stochastic gradient 

boosting (SGB) and random forest (RF) regression algorithms. The two algorithms are discussed in 

detail below. 

2.7.1. Stochastic Gradient Boosting Regression Model  

Stochastic gradient boosting is a powerful machine learning technique producing competitive, 

highly robust and interpretable procedures for both regression and classification applications [63]. The 

tree ensemble has the ability to accommodate different types of explanatory variables and data with 

missing values [45]. The ensemble is immune to outlier effects; it can fit complex nonlinear 

relationships and automatically handles interaction effects among predictors. The algorithm introduces 

also an element of stochasticity, thus improving model accuracy and reducing over-fitting [44,47]. 
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Table 1. Selected strategically positioned Rapideye spectral parameters and vegetation 

indices used for this study. 

Parameters Formula References 

Single band reflectance    

Blue, green, red, NIR and Red-edge -  

Vegetation Indices   

Simple Ratio NIR/Red Jordan [64] 

RVI.RE (Ratio Vegetation Index) Red-edge/NIR de Sousa, et al. [65] 

NDVI (Normalized Difference 

Vegetation Index) 

(NIR−Red)/(NIR + Red) Rouse, et al. [66]; Jordan [64] 

NDVI.RE (NIR − Red-edge)/(NIR + Red-edge) Mutanga, Adam and Cho [13]- 

DVI (Difference Vegetation Index) NIR − Red Tucker [67] 

MSR (Modified Simple Ratio) (NIR/Red)-1/(NIR/Red)^°.5 + 1 Qi, et al. [68] 

MSR.RE (NIR/Red-edge)-1/(NIR /Red-edge)^°.5 + 

1 

 

TVI (Triangular Vegetation Index) 0.5*[120*(NIR − Green)−200*(Red-

Green)] 

Broge and Leblanc [69] 

TVI.RE 0.5*[120*(NIR − Green)−200*(Red-

edge-Green)] 

 

IPVI (Perpendicular Vegetation Index) NIR/(NIR + Red) Crippen [70] 

IPVI.RE NIR/(NIR + Red-edge)  

GI (Greenness Index) Green/Red Zarco-Tejada, et al. [71] 

GI.RE Green/Red-edge  

PSSR (Pigment specific simple ratio)  NIR/Red-edge Blackburn [72] 

SGB predicts the response variables by combining regression tree and boosting  

algorithms [44,45,47,73,74]. The ensemble uses a backward stage-wise approach by fitting regression 

tree models iteratively to a subset of the training data (50%) that is randomly selected without 

replacement. A residual deviance is then calculated on data not used in the model fitting process. Trees 

are added until the total residual deviance calculated from the withheld data ceases to decrease. The 

number of trees giving the lowest total residual deviance represents the most appropriate model  

for prediction. 

During model fitting SGB is governed by three important user-defined parameters [44,47,75] 

namely: (i) the learning rate (lr), which determines the contribution of each tree to the final model;  

(ii) the tree complexity (tc), which is the number of independent variables interacting to determine 

each split and (iii) the number of regression trees (nt) in the ensemble. The learning rate controls the 

increase in model complexity, with smaller values resulting in fitting a larger number of trees [45]. For 

each combination of nt, tc and lr, the combination producing the lowest cross-validated deviance is 

then identified, using the training dataset. For this study, we fitted SGB models, with varying values 

for nt (100–10,000), lr (0·1–0·0001), tc of 1 and 5, a bag fraction of 0.2–0.75 and evaluated the results 

across all categories of species biomass. The gbm library [73] for the R statistical package for 

statistical analysis [76] was utilized to implement SGB.  
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2.7.2. Stochastic Gradient Boosting and Relative Variable Importance  

For the accurate and simple prediction of inter-and-intra species biomass, the relative individual 

variable influence was determined to identify the smallest number of input variables (p = 19) that 

yielded the best predictive performance. This information is important because not all model input 

variables are equally relevant in the modelling process. In this regard, it is often suitable to learn or 

determine the relative influence of each input variable in predicting inter-and-intra species biomass. 

Based on SGB, the relative influence of model terms was calculated by the contribution of each 

variable in reducing overall model deviance [45,47]. Subsequently, variable selection was achieved by 

implementing a backward feature elimination approach to determine the most important spectral bands 

and vegetation indices required for accurate biomass prediction. More precisely, the approach develops 

a model which utilizes all the input predictor variables and then progressively eliminates input 

predictor variables with least relative influence. Additionally, all SGB models are optimized in terms 

of their lr, tc and nt hyper-parameters. The SGB model for predicting inter-and-intra species biomass 

was initially run using nineteen variables.  

2.7.3. Random Forest Regression Algorithms 

Random forest (RF) is a machine learning technique developed by Breiman [77] that employs 

bootstrap aggregation, where a number of trees (ntree) are constructed based on a random subset of 

samples derived from the training data. RF regression algorithm utilizes bootstrap samples from the 

training data without pruning to grow a large number of decision trees [48,78,79]. These trees assign 

each variable (RapidEye band reflectance or vegetation index) to a response value (biomass), using the 

averaged estimates that the value receives from the collection of all trees [48]. The algorithm has an 

additional modification of selecting only a random subset of candidate features (mtry) to determine the 

split at each node of a tree. This ensemble method uses recursive partitioning, to create multiple 

regression trees (ntree) and then averages the results of all trees [77]. RF algorithm is easy to 

implement as only two parameters (ntree and mtry) need to be optimized based on the lowest root 

mean square error (RMSE) of prediction [77,80,81,82]. The ntree parameter, the number of regression 

trees grown based on a bootstrap sample of the observations (the default value is 500 trees) and mtry is 

the number of different predictors tested at each node (the default value is 1/3 of the total number of 

the variables). Thus, in this study the ntree parameter values were tested in increments of 500 to 2500 

with a 500 interval whereas the mtry was tested in increments of 1 to 19.  

Approximately one-third of the data which is not included in the bootstrapped training sample, 

called the out-of-bag (OOB) samples is then used to evaluate the RF model. A number of researchers 

have shown that the OOB samples offer unbiased estimates of the training error [12,37,48,77,82,83]. 

The permutation based variable importance follows the rationale that the random permutation of a 

predictor variable represents the absence of the variable from the model. Hence, the difference in 

prediction accuracy prior and after permuting a variable is used as a measure of importance. The 

number of observations predicted correctly, decreases substantially if the permuted variable is strongly 

associated with the response values. Grömping [84] provided a more detailed account of the random 

forest’s variable importance measures, both from the theoretical understanding and from the 
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perspective of computational advantages. The ensemble was implemented using the randomForest 

package [85] within the R statistical package version R-3.0.2 [76]. 

2.7.4. Variables Selection Using Random Forest 

Random forest measure the importance of each predictive variable using the mean decrease in 

accuracy that is calculated using the OOB sample data. However, the challenge was to select the 

fewest number of predictors that offer the best predictive power and help in the interpretation of the 

final model. In this regard, a backward feature elimination method (BFE) integrated with random 

forest regression as part of the evaluation process was implemented (RF) based on 1000 model runs. 

The BFE uses the ranking to identify the sequence in which to discard the least important predictors 

from the input data sets. The method starts with the entire variables (p = 19) and then progressively 

eliminates the least promising variable from the list. For each iteration, the model is optimized by 

selecting the best mtry and ntree, the least promising variable is eliminated and root mean square error 

is calculated. The smallest subset of variables with lowest RMSE is then selected to predict  

inter-species biomass. A comprehensive analysis of the predictive performance of different subsets of 

extracted RapidEye reflectance and vegetation indices was implemented to explore the role of the new 

generation sensor in predicting interspecies biomass as well as to test if the variables selection method 

implemented in this study can enhance the predictive performance of random forest regression model.  

2.7.5. Effectiveness of SGB and RF in Predicting Intra-and-Inter Species Biomass  

To assess the effectiveness of SGB and RF algorithms in predicting either intra or inter species 

biomass in a commercial forest environment, the r-square (R
2
) and the root mean square error (RSME) 

were computed (Equation (1). A one-to-one relationship between measured and predicted AGB  

values was fitted with coefficients of determination (R
2
), and root mean square error (RMSE)  

values reported:  

n

XX
RMSE

n

i predictedmeasured 


 1

2)(
 (1) 

where Xmeasured is measured biomass values, Xpredicted is predicted biomass values and i represent each of 

the predictor variables included in the summation process (p = 19). 

3. Results 

3.1. Intra-and-Inter-Species Aboveground Biomass (t•ha
−1

) 

Table 2 shows descriptive statistics for each category of the target species (e.g., E. dunii (n = 63),  

E. grandis (n = 65), P. taeda (n = 53) and for the all species-datasets (n = 181). High biomass was 

observed for P. taeda, followed by E. grandis and E. dunii having the least biomass.  
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Table 2. Descriptive statistics of the measured above ground biomass (t·ha
−1

). 

Species Type Total Min. Max. Mean Std dev. 

E. dunii 63 33.24 96.49 52.86 16.39 

E. grandis 65 106.03 225.07 170.30 29.94 

P. taeda 53 137.11 298.04 206.07 42.83 

All species 181 33.24 298.04 139.89 72.22 

Figure 3. One-to-one relationship between measured and predicted intra-species biomass 

based on (i) SGB and (ii) RF algorithms. a, b, and c represent E. grandis, E. dunii, and  

P. taeda based on all the predictor variables (p = 19). 
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3.2. Intra-Species AGB: SGB and RF Regression Predictive Performance Based all Variables  

One to one relationship between measured and predicted intraspecies biomass using SGB and RF 

regression models are shown in Figure 3. For each model, the R
2
 and RMSE were reported. A 
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comparative analysis of the predictive performance of the two models shows that the SGB model 

yielded better predictions for the intra-species dataset, producing R
2
 of 0.75 and RMSE of 18.40 t·ha

−1
 

(10.80%) for E. grandis; R
2
 of 0.77 and RMSE of 19.43 t·ha

−1
 (19.18%) for

 
P. taeda. Comparatively, 

the RF produced better results for E. dunii (R
2
 of 0.74 and RMSE of 8.14 t·ha

−1
).  

3.3. Interspecies AGB: SGB and RF Regression Predictive Performance Based all Variables 

In testing the potential of SGB and RF in predicting interspecies biomass it can be observed that 

SGB produced plausible results based on the R
2
 of 0.58 and RMSE of 46.51 t·ha

−1
; 33.25% of the 

mean compared to RF which had an R
2
 of 0.33 and RMSE of 64.27 t·ha

−1
; 45.94% of the mean  

(Figure 4). 

Figure 4. The one-to-one relationship between measured and predicted inter-species 

biomass for all species data combined, based on (i) SGB and (ii) RF algorithms without 

variable selection.  
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3.4. Variable Selection Using SGB and RF Models 

The SGB and RF variable importance measures were used to explore the relevance of model input 

variables (strategically positioned RapidEye spectral bands as well as derived vegetation indices). The 

backward variable selection provided by the two algorithms (SGB and RF) have successfully explored 

and defined the relative importance of the individual input variables (predictors). Additionally,  

the methods further managed to select the optimal number of the input variables for predicting  

intra-and-inter species AGB. For SGB better results were achieved after variable selection was 

implemented, see Table 4. SGB backward variable selection method selected a few optimal number of 

important variables for (a) E. grandis (p = 4); (b) E. dunii (p = 7); (c) P. taeda (p = 6) and (d) all 

species data combined (p = 19), using the optimal nt and lr which resulted in deviance reduction 

(Table 3). For instance, E. grandis achieved the lowest predictive deviance (deviance = 0.27) based on 

nt = 2350, lr = 0.001 and tc = 3. E. dunii on the other hand, yielded better results (lowest deviance 

value) based on a value of lr = 0·001, nt = 3750 and tc= 3. Similarly, for P. taeda and all species 

combined, a value of nt = 2850, lr = 0.001 and tc = 3 produced the best results with the lowest deviance. 
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Table 3. Illustrates the most important variables retained by SGB and RF after implementing 

variable selection. 

 E. grandis E. dunii P. taeda All species 

Variables Selected SGB RF SGB RF SGB RF SGB RF 

1 RE NIR NIR RE NIR NIR 

 

 

All variables selected 

 

2 PSSR RE RE PSSR Green Green 

3 GI.RE PSSR Red GI.RE RE RE 

4 NIR DVI GI.RE NIR Red Red 

5 Green - Green Green DVI DVI 

6 - - Blue DVI  Blue 

7 - - - Blue - - 

Table 4. Inter-and-intra species biomass prediction results using the most important 

variables selected by the two regression models SGB and RF.  

Species Statistical Methods tc lr mtry nt/ntree R
2
 RMSE (t•ha

−1
) 

E. grandis SGB (n = 5) 3 0.001 - 3750 0.80 16.93 

 RF (n = 4) - - 4 500 0.76 18.61 

E.dunii SGB (n = 6) 5 0.001 - 2350 0.88 09.23 

 RF (n = 7) - - 7 500 0.79 07.18 

P.taeda SGB (n = 5) 5 0.001 - 800 0.79 17.27 

 RF (n = 6) - - 6 2800 0.80 22.43 

All species SGB (n = 19) 5 0.001 - 2800 0.61 43.39 

 RF (n = 19) - - 19 750 0.37 59.27 

For the RF ensemble, the optimal number of variables was determined based on the lowest 

averaged RMSE obtained after running the backward feature elimination process a 1000 times. The 

process selected four variables for predicting (a) E. grandis based on averaged RMSE of 26.10 t·ha
−1

; 

seven predictor variables for (b) E. dunii based on an averaged RMSE value of 10.87 t·ha
−1

; six 

variables for (c) P. taeda with an averaged RMSE value of 31.65 t·ha
−1 

and lastly, nineteen variables 

for (d) the all species dataset based on a RMSE value of 50.76 t·ha
−1 

(Figure 5). The findings in  

Figure 5 further demonstrate that the RMSE error generally decreased as the least important variables 

were removed from the model progressively. The use of the most important RF selected variables 

produced the lowest RMSE across all species categories. To conclude, important variables selected by 

SGB and RF (Table 3) were used in the final model for predicting biomass across all species 

categories using the test dataset (Table 4). 

The results in Table 3 show the most important predictor variables that were selected for estimating 

intra-and-inter species biomass. Most interestingly, the results from both models shows that a limited 

and similar number of input variables contribute to intra-and-inter species biomass prediction. It can be 

observed that in predicting intra-and-inter species biomass, the NIR, red-edge, and Red bands are 

selected across all categories by both algorithms (Table 3).  
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Figure 5. Show the optimal number of variables (spectral bands and VIs) based on the 

backward feature elimination search function for estimating intra-and-inter species using 

Random Forest (based on 1000 repetitions). In Figure 5, (a–d) represent E. grandis,  

E. dunii, P. taeda and inter-species dataset.  
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* The best number of variables with the lowest error rate is shown by the arrows and the RMSE is calculated 

from the training dataset. 

3.5. Intra-Species AGB: SGB and RF Regression Predictive Performance Using Selected Variables 

Table 4 demonstrates inter-and-intra species aboveground biomass prediction results obtained using 

the SGB and RF algorithms and the most important variables shown in Table 3. It can be observed that 

inter-and-intra species biomass predictions based on the most important variables provides better 

predictive accuracies when compared to the SGB and RF models that use all the predictor variables 

(Figures 3 and 4) The SGB model produced good accuracies in predicting E. grandis (R
2
 = 0.80, 

RMSE = 16.93), P. taeda (R
2
 = 0.79, RMSE = 17.27 t·ha

−1
) and the all species data (R

2
 = 0.61,  

RMSE = 43.39 t·ha
−1

). The RF ensemble however, demonstrated better results (R
2
 = 0.79; RMSE  

7.18 t·ha
−1

) in predicting the biomass E. dunii (Table 4).  

4. Discussion 

The accurate, reliable and timely quantification of intra-and-inter species AGB using remote 

sensing technologies is critical for better understanding the role of forests in local climate systems 

through biosphere-atmospheric interactions for a detailed evaluation of commercial forest resources, as 

well as for informed sustainable management. In this study we assessed two machine learning 

regression algorithms namely, SGB and RF based on 1000 model runs in predicting intra-and-inter 
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species biomass in a commercial plantation forest located in the midlands region of KwaZulu- Natal, 

South Africa using the RapidEye sensor.  

4.1. RapidEye Image Potential in Predicting Intra-and-Inter Species Biomass 

One of the most critical challenges in predicting biomass in plantation forests using remote sensing 

is the complexity of species structural and taxonomic composition as well as the presence of dense 

vegetation canopies resulting in significant inter-species biomass variations. It is therefore critical to 

identify remote sensing datasets with critical spectral information that can overcome the saturation 

problems and produce better intra-and-inter species biomass prediction accuracies. In this study, we 

have shown that high spatial resolution RapidEye image data with strategically positioned bands can 

accurately predict intra-and-inter species biomass in commercial forests when compared to the existing 

broadband multispectral data, which have high spectral variation and saturation problems at high 

density biomass. Furthermore, this study demonstrated new generation multispectral sensors as having 

the capability to provide a better and cost-effective alternative for predicting interspecies biomass, 

when compared to existing broadband multispectral images [12,13,32]. Most importantly, the presence 

of the red-edge band, which has been unavailable in existing multispectral sensors provide very critical 

and sensitive measurements of vegetation properties such as chlorophyll content, necessary for 

predicting forest metrics, such as biomass etc. [13,34]. The findings from this study therefore largely 

supports the claim that strategically positioned bands (e.g., red-edge) found in new generation 

RapidEye multispectral imagery, contains more spectral information critical for vegetation mapping, 

when compared to other broadband multispectral sensors.  

4.2. SGB and RF Prediction Performance Using Different RapidEye Spectral Parameters 

Stochastic gradient boosting has increasingly been used in ecological modelling with limited 

applications in remote sensing studies e.g., [44,45,47,76,86–92]. On the other hand, random forest has 

been applied mainly in classification e.g., [37,38,62,93–97], hence there are limited remote sensing 

studies that utilize SGB and RF for regression analysis e.g., [13,18,21]. The results of the present work 

have demonstrated the applicability and strength of the two algorithms (SGB and RF) for variable 

selection and intra-and-inter species biomass prediction using the spaceborne RapidEye imagery.  

Moreover, for the two different algorithms applied, the better results based on the R
2
 and RMSE 

were obtained from the SGB model across all species categories except for the E. dunii dataset. The 

results of the present study further demonstrated that SGB and RF models are useful and robust for 

intra-species biomass prediction, using remotely sensed data. For the prediction of all inter-species 

biomass (species data combined), the RF model performed poorly when using all the variables. We 

attribute this poor performance of RF to the high variability in biomass, as a result of the existing 

differences amongst the tree species considered in this study. The results of this study have shown that 

RF is less robust in environment with mixed species, when compared to the SGB algorithm. 

Furthermore, literature shows that the RF regression algorithm results in underestimation, when the dataset 

is large and variable, as well as overestimation, when the data is small with less variability [13,98].  

For the SGB model algorithm, plausible interspecies biomass prediction results were observed, 

indicating the model’s robustness in handling non-linear interspecies biomass relationships. The good 
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performance of the SGB regression algorithm can be associated with the model’s internal regularization 

process and the model’s element of stochasticity, which is well known for enhancing the model’s 

predictive performance [47,75,99,100]. These results are further supported by Carreiras, Vasconcelos 

and Lucas [21] whose work demonstrated that the simple base learner in our case, decision trees, built 

by running the SGB model using a random sub-sample of the training data without replacement, 

substantially improved the prediction accuracy. However, the effectiveness and robustness of the SGB 

algorithm in variable selection, based on remotely sensed data sets still needs to be tested in the 

mapping and understanding of other vegetation metrics such as aboveground carbon content. This 

information would aid in assessing forests contribution to carbon sequestration, as well as for a 

comprehensive evaluation of commercial forest resources, which is a pre-requisite for informed 

sustainable management. 

5. Conclusion 

This paper investigated: (i) the robustness of two machine learning algorithms, Stochastic Gradient 

Boosting and Random Forest regression trees to predict intra- and-inter species biomass in plantation 

forests using RapidEye multispectral imagery in KwaZulu Natal, South Africa and (ii) the performance 

and the strength of the SGB and RF regression algorithms as variable selection and prediction methods.  

Our results have demonstrated that:  

(1) Stochastic Gradient Boosting regression tree is more robust in predicting both intra-and-

inter species biomass in plantation forests when integrated with the strategically positioned 

bands of the multispectral spaceborne RapidEye imagery as compared to the Random Forest 

ensemble.  

(2) The new generation spaceborne multispectral sensors (e.g., RapidEye) with a high spatial 

resolution have the potential to satisfactorily predict intra-and-inter species biomass in areas 

of closed and dense vegetation. 

(3) Both machine learning algorithms (SGB and RF regression trees) were able to provide a 

valuable screening tool for the identification of the most important spectral bands and 

derived vegetation indices, required accurate inter-and-intra species biomass prediction.  

Overall, results of the present study demonstrate the utility, great potential and robustness of the 

Stochastic Gradient Boosting regression algorithm in modelling non-linear biomass relationships for 

mixed forests mainly based on the strategically positioned spectral information derived from the new 

generation multispectral sensors, a previously challenging task with broadband satellite sensors. 

However, there is need to further test the performance and robustness of this method (i.e., SGB regression 

algorithm) in mapping and understanding the spatial distribution of critical forest parameters such as 

aboveground carbon content.  
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