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Abstract: Underwater sensor networks (UWSNs) can be applied in sea resource 

reconnaissance, pollution monitoring and assistant navigation, etc., and have become a hot 

research field in wireless sensor networks. In open and complicated underwater 

environments, targets (events) tend to be highly dynamic and uncertain. It is important to 

deploy sensors to cover potential events in an optimal manner. In this paper, the 

underwater sensor deployment problem and its performance evaluation metrics are 

introduced. Furthermore, a particle swarm inspired sensor self-deployment algorithm is 

presented. By simulating the flying behavior of particles and introducing crowd control, the 

proposed algorithm can drive sensors to cover almost all the events, and make the 

distribution of sensors match that of events. Through extensive simulations, we 

demonstrate that it can solve the underwater sensor deployment problem effectively, with 

fast convergence rate, and amiable to distributed implementation. 

Keywords: underwater sensor networks; sensor deployment; coverage efficiency; particle 

swarm; crowd factor; water flow field 

 

1. Introduction 

Underwater Sensor Networks (UWSNs) are underwater monitoring network systems consisting of 

sensor nodes with computing and acoustic communication abilities. Due to their important applications 

OPEN ACCESS



Sensors 2014, 14 15263 

 

 

in sea resource reconnaissance, pollution monitoring and navigation assistance, UWSNs have attracted 

much attention from government agencies and research institutions, and have become a hot area in 

sensor network research [1–3]. In recent years, many aspects of UWSNs such as underwater 

communication [4,5], sensor deployment and self-organization [6,7], data routing [8,9], and 

localization and tracking [10–12] have been investigated. Among these, sensor deployment is a key 

research topic since it not only determines the monitoring quality of the networks, but also acts as the 

foundation of the network organization, protocol design and application deployment. 

Existing underwater sensor deployment methods fall into three categories: Sea-bottom, Sea-surface 

and Sea-column sensor deployment briefly discussed as follows: 

(1) Sea-bottom sensor deployment. In these methods, sensors are anchored to the sea bottom to form 

a two-dimensional monitoring network. The monitoring area is divided into triangle or square grids in 

which sensors are deployed. The goal is to use as few sensors as possible to cover the monitoring  

area [6,13]. Sea-bottom sensor deployment is similar to land sensor placement with regards to research 

objectives and methods, and does not truly reflect the characteristics of UWSNs. In most applications, 

we need to collect the three-dimensional information of an underwater environment. As a result,  

sea-bottom sensor deployment is insufficient. 

(2) Sea-surface sensor deployment. In this category, sensors (gateways or data collectors) are 

deployed on the sea surface, and collect data from underwater sensor nodes. Sea-surface sensor 

deployment is generally formulated as an optimization problem. In [14–19], the positions of sensors 

are computed by an Integer Linear Program (ILP), greedy algorithm and aided geometrical algorithm, 

so that the number of sensors can be reduced, and the network lifetime can be prolonged. But this line 

of work mostly still assumes two-dimensional sensor deployment. 

(3) Sea-column sensor deployment. In this category, sensors are deployed in the three-dimensional 

underwater space. Existing sea-column sensor deployment methods can be further divided into  

two classes: 

The first class is uniform coverage requirement sensor deployment. Sensors are uniformly deployed 

in the monitoring space. In 2006, Pompili et al. [6,7] pioneered the research in three-dimensional 

underwater sensor deployment, and proposed the Bottom-Grid algorithm. The basic idea is to start 

from a sea-bottom triangle-grid sensor deployment, and adjust the depth of sensors to form a  

three-dimensional sensor deployment. The goal is to use as few sensors as possible to cover the 3D 

monitoring space seamlessly. In this algorithm, global information is needed for adjusting the depth of 

sensors, and thus the algorithm has to operate in a manner. In 2009, Akkaya et al. [20] proposed a  

Self-deployment algorithm by adjusting the depth of sensors continuously to reduce the coverage 

overlap between adjacent sensors so as to improve the total coverage in the monitoring space. In [21–23], 

the authors discussed the network restoration method. When a coverage hole appears in the network, 

new sensors or redundant sensors will be sent to the position to fix the hole, so as to maintain the 

coverage and connectivity of the network. 

The second class is non-uniform coverage requirement sensor deployment. Sensors are  

non-uniformly deployed in the monitoring space according to the distribution of targets; In 2007, 

Aitsaadi et al. [24] proposed the differentiated deployment algorithm (DDA) for lake water monitoring. 

Sensors are deployed in the lake according to the distribution of pollutant using a mesh line 
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representation. This algorithm utilizes a centralized optimization method and is only suitable when the 

environment and targets are static. In 2008, Koutsougeras et al. [25] presented the Self Organizing 

Maps (SOM) method. Attracted by events (targets), sensors can move to areas with high density of 

events. Though the method was not originally designed for terrestrial sensor networks, it is expected to 

be applicable to UWSNs as well. In 2010, Golen et al. [26] proposed a scheme to estimate the 

probability of events in each underwater subregion, and compute the number of sensors that should be 

allocated in each subregion. This method also suffered from the problem of centralized implementation 

and high computation complexity. 

In non-uniform coverage requirement sensor deployments, the concept of “event” (target) is 

generally well defined. The objective of sensor deployment is to cover the events and make the 

distribution of sensors match that of the events. This kind of research is close to practice, and reflects 

the sparsity characteristic of UWSNs. However, existing methods fall short in the following aspects: 

(1) Existing methods all reply on centralized optimization methods, and are difficult to realize  

in practice; 

(2) Most of the methods are designed for static environments. For dynamic environments with 

uncertain events, these methods cannot be used to adjust the positions of sensors to guarantee desired 

monitoring quality; 

(3) These methods have not taken into account the influence of the water flow; 

(4) The performance evaluation metrics of the event-driven underwater sensor deployment are not 

fully quantifiable. 

To address these problems, we study the problem of three-dimensional underwater sensor 

deployment with the non-uniform coverage requirement. Inspired by particle swarm systems, and we 

propose PSSD (particle swarm inspired underwater sensor deployment), a distributedly realizable 

underwater sensor deployment algorithm. By simulating the flying behavior of particles and 

introducing crowd control, PSSD can drive the sensors to positions with high density of events, and 

avoid over crowding simultaneously. The design and simulation of PSSD utilize the Lagrange flow 

model, and are evaluated using an information theoretical metric. The rest of the paper is organized as 

follows: in Section 2, the underwater sensor deployment problem and its performance metrics are 

formally defined. In Section 3, the PSSD algorithm is presented in detail. An extensive evaluation is 

provided in Section 4 with our conclusions in Section 5. 

2. Preliminaries 

2.1. Underwater Sensor Deployment Problem 

Suppose an underwater monitoring space A . Denote a dynamic event by e , and the set of events as 
E ={ }1 2, , , me e e , ( ), 1,2, ,ie A i m∈ =  . Let the set of sensors be { }1 2, , , nS s s s=  , and each sensor js  (1 j n≤ ≤ ) 

has the ability of sensing, communication and moving. Denote the attribute vector of js  as 

, , ,s c
j j j j jr r l=B p , where 0s

jr ≥ , 0c
jr ≥ , 0jl ≥  describe the sensing radius, communication radius, 

and the maximal moving range of js  , respectively and jp  is the current position of js . All sensors 

have the same attributes except for position in a homogeneous network, namely, s s
jr r= , c c

jr r= , 
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jl l=  (1 j n≤ ≤ ). Sensors can detect events and communicate with their adjacent sensors to exchange 

information (the number of covered events). The task of sensors is to cover events and collect  

relevant information. 

Definition 1: Coverage. Consider an event at location ie A∈ , if ( ), s

i j jd e s r≤ , we call ie  is covered 

by js . Here ( ),i jd e s  is the Euclidean distance between ie  and js . If 1 2, , , ke e e  are all covered by js  

(Figure 1), js  is “divided” equally among all events, and each event shares 1 k  of sensor j. 

Figure 1. Sensor js  covering k events. 

 

Definition 2: Coverage degree. Given a collection of sensor placement, the number of sensors 
shared by event ie  is the coverage degree of ie . It can be computed as follows: 

( ){ }
( ){ }

I ,
( )

I ,j

u

s
i j j

s
s S u j j

e E

A i

d e s r
D e

d e s r∈

∈

≤
=

≤



 (1)

where ( )I ⋅  is an indicator function. ( ){ }I ,
u

s
u j j

e E

d e s r
∈

≤  is thus the number of events that sensor js  

covers. The physical meaning of ( )A iD e
 
is the total shares of coverage of event ie

 
among all sensors. 

The underwater sensor deployment problem is to place sensors in the underwater monitoring space 

A  to cover as many events as possible, and make the coverage degree of every event as equal as 

possible. In other words, the sensor distribution matches the event distribution. 

2.2. Performance Metrics 

The underwater sensor deployment problem is to place sensors to cover events, and make the 

coverage degree of every event as equal as possible. So, we need a metric to evaluate how equal the 

coverage degree of every event is. 

Then, we borrow the concept of “entropy” from Information Theory. As we know, the closer the 

probabilities of q outcomes are, the larger the entropy is, and when the probabilities of q outcomes are 

equal, the entropy reaches the maximum value logq. So, “entropy” is suitable as the metric to evaluate 
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how equal the coverage degree of every event is. Furthermore, because the maximum value of entropy is 
known, it is easy to be normalized for evaluation. Normalizing ( )A iD e , we have: 

′DA ei( ) =
DA(ei )

DA(eu )
eu∈E
  (2)

Clearly, D 'A(ei ) ∈[0,1] . When DA (ei ) = c , namely all events have the same  normalized coverage 

degree, D 'A (ei ) =
1

m
. 

Definition 3: Coverage entropy of the event set. It measures the uniformity of the coverage degree 

of events, and can be computed as follows: 

( ) ( ) ( )log
i

A A i A i
e E

H E D e D e
∈

′ ′= −  
(3)

Clearly, ( )AH E m≤ . When the number of sensors is large, ( )AH E  remains the same when only a 

subset of sensors covers the events equally. Therefore, we further introduce a penalty factor associated 

with the percentage of sensors covering events in the final definition of coverage efficiency as follows. 

Definition 4: Coverage efficiency of the event set. It evaluates the overall performance of sensor 

deployment, and is computed as: 

( ) ( )
log

AH E n
E

m n
η α β= +


 (4)

where , [0,1]α β ∈ , and 1α β+ = , n
  is the number of sensors covering events. In what follows, we 

prove some properties of coverage efficiency. 

Lemma 1: Coverage efficiency ( )Eη of event set E will be maximized when all sensors cover 

some events and all the coverage degree of events are equal. 

The proof of Lemma 1 is in Appendix. 

Lemma 2: Coverage efficiency of the events set ( )Eη  will increase when the number of sensors 

covering events is fixed, and the coverage degree of events becomes equal. 

The proof of Lemma 2 is in Appendix. 

From on Lemmas 1 and 2, we observe that ( )Eη  is a suitable metric to characterize event-driven 

underwater sensor deployment. 

2.3. Water Flow Field 

Underwater environments are complicated and dynamic. Water flow and vortex may introduce 

disturbance to events and sensor measurements. We introduce the water flow field model discussed in [27] 

to simulate the underwater environment and test the sensor deployment algorithms. For an 
incompressible fluid, it can be described by a stream function ψ , from which the two components of 

the divergenceless velocity field ( ),u v≡u  are computed as: 
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u
y

ψ∂= −
∂

;   v =
∂ψ
∂x

,  (5)

where u  is the zonal (eastward) component of the velocity field and v  is the meridional (northward) 

one. The trajectory of a Lagrange device that moves with the current is the solution of the following 

system of Hamiltonian ordinary differential equations: 

( ), ,yx x y tψ= −∂ ,  ( ), ,xy x y tψ= −∂  (6)

The water flow jet model is given by: 

( ) ( ) ( )( )
( ) ( )( )2 2 2

sin
, , tanh

1 cos

y B t k x ct
x y t

k B t k x ct
ψ

− −
= −

+ −

 
 
  

 (7)

where ( ) ( )cosB t Av tε ω= + . The flow induces a net mass transport along the current, and a vigorous 

chaotic mixing across the current in a wide range of parameters. The parameter k  sets the number of 

meanders in the unit length; c  is the phase speed with which they drift downstream; the  

time-dependent function B modulates the width of the meanders: Av  determines the average meander 

width, ε  is the amplitude of the modulation, and ω  is its frequency. Water flow leads to the movement 

of events, and can also be utilized for sensors to move so as to conserve energy. 

3. PSSD (Particle Swarm Inspired Underwater Sensor Deployment) Algorithm 

In this paper, a particle swarm inspired underwater sensor deployment algorithm (PSSD) is 

proposed to solve the underwater sensor deployment problem. Particle swarm optimization (PSO) is a 

population based stochastic optimization technique developed by Eberhart and Kennedy [28,29], to 

simulate the social behavior of bird flocking or fish schooling. In PSO, the potential solutions are 

called particles. All particles have velocities that direct the flight of the particles. Particles fly across 

the problem space to search for the optimal position (solution). PSO is initialized with a group of 

random particles and then searches for the optima by following two “best” solutions to date. One is the 

best position that has been achieved so far by the particle itself. This is called “pbest”. The other is the 

best position obtained so far by any particle in the population. This is a global best and called “gbest”. 

In the past several years, PSO has been successfully applied in many research and application  

areas [30,31], and its parameters setting has been well discussed [32,33]. 

PSO is a centralized intelligent searching method. Inspired by the operation mechanism of particle 

swarm systems, we present a distributedly realizable underwater sensor deployment algorithm. Sensors 

correspond to the particles of PSO. Sensors moving and covering events is similar to particles 

searching for solutions. 
Denote the number of events covered by js : 

( ) ( ){ }I ,
k

s
event j j k j

e E

N s d s e r
∈

= ≤  (8)

If an event is in the sensing range of a sensor, the sensor will detect the event and obtain its 

approximate location. Furthermore, the sensor will share this information with its adjacent sensors. 
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Definition 5: Allowed crowd factor. Let the allowed crowd factor of js  in monitoring space A  be: 

( ) ( )j event js D N sδ = ×  (9)

where D  denotes the expected coverage degree for each event. It can be set by experience. Another 

reasonable way is to set D  as the average value n/m for n sensors and m events. 

The number of sensors in the coverage of js  is ( )near jN s . 

The set of the adjacent sensors of js  is: 

( ) ( ){ }, , 1, 2, ,c
j k j k jK s s d s s r k n= ≤ =   (10)

So, the number of the adjacent sensors of js is: 

( ) ( )( )neighbor j jN s card K s=  (11)

Where card(.) is to compute the number of the elements in a set. 

Initialization: randomly scatter n  sensors in the underwater monitoring space A . Sensor js  will 

execute the following operations according to the state of itself and its adjacent sensors. 

I. If ( ) 0neighbor jN s > , which means js  has some adjacent sensors, js  will follow the “gbest”. 

Find the best adjacent sensor 
( )

( ){ }arg max
k j

event k
s K s

s N s∗

∈
= . 

If s∗  is covering more events than js , and the position of s∗  is not crowded, that is, 

( ) ( )event event jN s N s∗ ≥ , and ( ) ( )nearN s sδ∗ ∗< , then js  will move toward s∗ . It is depicted in Figure 2. 

Figure 2. js moves toward s∗ (the red points are sensors; the purple spheres represent the 

sensing space (coverage) of sensors; black dots are events.). 
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The expected velocity of js is as follows: 

( ) ( )1j jt t∗ ∗+ = −v x x  (12)

( )
( )
( ) ( )

( )

1
1 ,

11

1

j
j j j

jj

j

t
l if t l

tt

t otherwise

∗
∗

∗∗

∗

 +
+ > ++ = 

 +

v
v

vv

v

 (13)

where ∗x  is the position of s∗ ; ( )j tx  is the current position of js ; t is the iteration number of the 

algorithm. The expected velocity ( )1j t∗ +v  is restricted by the maximal moving range jl , and the 

adjustment of velocity is given in Equation (13). 
Since the movement of the sensor will be affected by its inertia and the water flow, js  should either 

overcome or take advantage of them in moving. Therefore, the actual velocity of js  is computed 

according to Equation (14) as illustrated in Figure 3. 

( ) ( ) ( ) ( )1 1 , , ,j j jt t t x y z t∗+ = + − −v v v ψ  (14)

where ( )j tv  is the current velocity of js . It represents the sensor’s inertia. ( )1j t +v  is the actual 

velocity of js . ( ), , ,x y z tψ  is the local water flow field (the water flow velocity vector can be 

measured by acoustic Doppler velocity measurement ADCP) detected by js . 

Figure 3. the computing for the actual velocity. 

( )1j t∗ +v
s∗

js

( ), , ,x y z tψ

( )1j t +v
( )j tv

 

Then, the position of js  will be updated as follows: 

( ) ( ) ( )1 1j j jt t t+ = + +x x v  (15)

This sensor movement strategy not only inherits the flying behavior of particle swarm, but also 

takes into account the influence of water flow to conserve energy. 

After the movement, if ( )event jN s  increases, the moving behavior is successful, otherwise the sensor 

will move back to its original position. 

II. If ( ) 0neighbor jN s = , or equivalently, js  has no adjacent nodes, js  will follow the “pbest”. “pbest” 

is the best position that has been achieved so far by js  itself. It is recorded by js . 

II.(a) Find the best recorded position ˆ jx . If ˆ jx is not the current position of js , i.e., x̂ j ≠ x j t( ) , js  

will move toward ˆ jx . The expected velocity is computed as: 
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( ) ( )ˆ1j j jt t∗ + = −v x x  (16)

Equation (13) can also be applied to adjust the velocity. The actual velocity and the updated sensor 

position follow Equations (14) and (15). 
II.(b) If ˆ jx

 
is the current position of js , i.e., ( )ˆ j j t=x x , js  will move randomly. 

After the movement, if ( )event jN s  increases, the moving behavior is successful, otherwise the sensor 

will move back to its original position. 

Based on the description above, we present the complete particle swarm inspired underwater sensor 

deployment algorithm in Algorithm 1. 

Algorithm 1. Particle Swarm Inspired Underwater Sensor Deployment Algorithm. 

Input: sensing range rs, communication range rc, the maximal moving range l, the maximal 

iteration number I. 

Output: the positions of sensors in the underwater monitoring space 

1. S  Randomly deploy sensors in the monitoring space; 

2. for step  1 to I do 

3.     Nevent(sj) detect1(sj)       /* detect the number of the events covered by sj itself */; 

4.     Nneighbor(sj) detect2(sj)   /* detect the number of the adjacent sensors */; 

5.     Nnear(sj) detect3(sj)        /* detect the number of the near sensors */; 

6.     if Nneighbor(sj) > 0 then 

7.        find the best adjacent sensor s*; 

8.        if Nevent(s*) > Nevent(sj) and Nnear(s*) <δ (s*) then    /* follow the gbest */; 

9.            move towards s*; 

10.        end 

11.     else find the best position of sj during its moving ( x̂ j ); 

12.        if x̂ j ! = x j(t) then                         /*follow the pbest */; 

13.            move towards x̂ j; 

14.        else  

15.            move randomly; 

16.        end 

17.     end 

18. end 

 

4. Performance Evaluation 

In order to evaluate the performance of the proposed algorithm PSSD, we conduct several rounds of 

Monte Carlo simulations using Matlab. We define the attribute and moving strategy of the sensors in 

the program. Because the existing event-driven sensor deployment algorithms are all centralized 

optimization methods while our algorithm is realized in a distributed manner, a comparison between 

them is not very meaningful. However, for completeness, we still compare the SOM (self organizing 

maps) algorithm in [25] with PSSD. As a centralized method, SOM can utilize the global information 
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to search for the solution, so the quality of its solution is guaranteed. In the comparison experiments, if 

PSSD does better than SOM, the validity of PSSD will be verified. 

The parameter settings of the simulations are given in Table 1. The evaluation metrics for both 
algorithms include ( )Eη  defined in Section 2.2, and the convergence speed. In ( )Eη , 0.5α β= = . 

Table 1. Parameter settings. 

Experiment parameters Algorithm parameters 
sr (m) cr (m) l (m) D  I  

sensing 
radius 

communication 
radius 

the maximal 
moving range 

the expected coverage degree 
for each event 

Max number of 
iterations 

40 80 15 1 50 

4.1. Static Environments 

In a 200 × 200 × 200 sea-column monitoring space, three sets of experiments are conducted: 

Experiment Ⅰ: 40 events are uniformly distributed. A total of six sensors are deployed. 

Experiment Ⅱ: 40 events are non-uniformly distributed following a T-shape. A total of six sensors  

are deployed. 

Experiment Ⅲ: 40 events are non-uniformly distributed following a line. A total of six sensors  

are deployed. 

Both SOM and PSSD are applied to all scenarios. Figures 4–6 show the results. Black dots denote 

events, and the spheres represent the sensing space (coverage) of sensors. At the center of each sphere 

is a sensor. It is clear that with PSSD, all sensors cover some events, and the distribution of sensors 

matches that of events. In contrast, with SOM, a few sensors cannot cover any events, and the 
distribution of sensors does not match that of events. Figure 7 shows the evolution of ( )Eη  with both 

algorithms in three sets of experiments. It can be seen that PSSD reaches higher coverage efficiency 

than SOM. Furthermore, the sensors require fewer steps to reach good position, which indicates the 

fast convergence speed of PSSD. Also note that PSSD is a distributedly realizable algorithm, while 

SOM is a centralized algorithm. 

Figure 4. Events randomly distributed. (a) solution of SOM (self organizing maps);  

(b) solution of PSSD (particle swarm inspired underwater sensor deployment). 
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Figure 5. Events distributed non-uniformly in T-shape. (a) solution of SOM; (b) solution of PSSD. 
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Figure 6. Events distributed non-uniformly along a line. (a) solution of SOM; (b) solution of PSSD. 
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Figure 7. The evolving of ( )Eη  of the two algorithms in three sets of experiments.  

(a) Experiment Ⅰ; (b) Experiment Ⅱ; (c) Experiment Ⅲ. 
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Figure 7. Cont. 
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Table 2 summarized the results for static environments. In each set of experiments, PSSD algorithm 
runs 20 times to determine the optimal and average coverage efficiency denoted by ( )Eη∗  and ( )Eη , 

respectively. The average running time is estimated as the time for each sensor to move 50 steps 

measured on a desktop PC with Intel Core2 CPU@ 2.00 GHz, 1G memory. Again, we observe that 

PSSD achieves higher coverage efficiency than SOM (1 is the best possible value) at very low 

computation costs. As deterministic method, SOM just runs once. 

Table 2. Summary of Results in Static Experiments. 

Experiment set 
Ⅰ: Randomly 

distributed 

Ⅱ: T-shape  
non-uniformly 

distributed 

Ⅲ: Line-shape non-uniformly 
distributed 

algorithms PSSD SOM PSSD SOM PSSD SOM 

the optimal coverage 
efficiency ( )Eη∗  

0.9707 0.905 0.9708 0.945 0.9860 0.976 

the average coverage 
efficiency ( )Eη  

0.9634 0.905 0.9535 0.945 0.9847 0.976 

average running time (ms) 0.0921 0.024 0.1003 0.063 0.1012 0.055 
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4.2. Dynamic Environments 

Dynamic simulations are conducted in a special water flow environment. Figure. 8 illustrates the 

water flow environment and the established grids. Figure 9 depicts the distribution of water flow 

velocity. The water flow velocity is generated using the model described in Section 2.3, and the model 

parameters are given in Table 3. The update period T for sensors in PSSD is 1 s. 

Initially, 16 events are distributed non-uniformly along a line in the water flow environment (Figure 10). 

The black dots denote the events. Six sensors are deployed randomly in the field. The red circle 

represents the sensing area of a sensor. Figures 10–13 show the distribution of the events and sensors 

at four time points during the execution of the algorithm. Evidently, the sensors swarm toward and 

eventually cover the events, adjusting their positions with the moving events, and maintaining the 
optimal coverage over time. Figure 14 shows the changes in the coverage efficiency ( )Eη  over time. 

It is clear that after time t2, the sensor deployment becomes stable with ( )Eη  fluctuates between 0.8 

and 0.9, achieving high monitoring quality. 

Table 3. Parameters of the water flow field. 

Parameter k  c  Av ε  ω  

value 2 7.5π 0.12 1.2 0.3 0.4

Figure 8. Water flow environment and established grids. 

 

Figure 9. The distribution of water flow velocity. 

 

entrance

entrance
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Figure 10. The distribution of events and sensors at t1. 

 

Figure 11. The distribution of events and sensors at t2. 

  

Figure 12. The distribution of events and sensors at t3. 

 

Because the proposed moving strategy can overcome or use the inertia and the water flow to move, 

as described in Equation (14), the moving efficiency of the sensor is improved. Furthermore, sensors 

can save energy. Another experiment is conducted to show this point. We modify Equation (14) as 
( ) ( )1 1j jt t∗+ = +v v . The dynamic simulation experiment result is shown in Figure 15. It shows that 
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the sensors spend more time on moving to cover the events. As a result, more energy is consumed. 
Even if in the stable stage, ( )Eη  is around 0.8. The monitoring quality decreased. 

Figure 13. The distribution of events and sensors at t4. 

 

Figure 14. The varying of the coverage efficiency ( )Eη . 

 

Figure 15. The varying of the coverage efficiency ( )Eη  in the comparison experiment. 
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Impact of the update period: We conduct three sets of dynamic simulations with different 

parameters T (0.5 s, 1 s, and 2 s). The experimental results are shown in Figure 16. It can be seen that 

the smaller T is, the more efficiently the sensors move, and the better coverage efficiency the network 

achieves. However, if T is too small, the sensors will collect the environment information (covered 

events, adjacent sensors, and near sensors) more frequently, and need to update the velocity frequently. 

Thus, a smaller T leads to higher communication overhead as well as higher computing cost. An 

optimal choice of T would need to account for the velocity of the water flow, sensor mobility, 

communication latency and remaining energy. This will part of our future work. 

Figure 16. The varying of the coverage efficiency ( )Eη  with different parameter T. 

 

5. Conclusions 

In this paper, we investigated the problem of event-driven underwater sensor deployment: 

(1) We introduced a novel performance evaluation metric, termed coverage efficiency of the events 

set, which not only reflects the total number of the sensors covering events, but also 

quantifies the matching between distributions of sensors and events. 

(2) Inspired by particle swarm system, we propose PSSD, a distributedly realizable underwater 

sensor deployment algorithm. By simulating the flying behavior of the particles (following “gbest” and 

“pbest”) and introducing a crowd control factor, PSSD can drive sensors to swarm to and cover the 

dynamic events adaptively, and make the distribution of sensors match that of events. 

(3) Simulations under both static and dynamic setting show that the algorithm can solve the 

underwater sensor deployment problem effectively, with fast convergence rate, and amiable to 

distributed implementation. 

As an ongoing objective, we plan to rigorously prove the convergence of PSSD, and conduct 

experiments in realistic underwater environments. 

Appendix: 

Lemma 1: Coverage efficiency ( )Eη  of event set E will be maximized when all sensors cover 

some events and all the coverage degrees of events are equal. 
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Proof: Suppose stochastic vector Y =
1

A′D
, that is iy =

( )
1

A iD e′
. log Y  is a convex function on the 

set of positive real numbers, so: 

[ ] [ ]( )log logE E≤Y Y  

( ) ( )
1 1

log log
m m

A i i A i i
i i

D e y D e y
= =

′ ′≤   

( ) ( ) ( ) ( )1 1

1 1
log log log

m m

A i A i
i iA i A i

D e D e m
D e D e= =

′ ′≤ =
′ ′   

( ) logAH E m≤  

If ( ) 1A iD e m′ = , which means all the coverage degree of events are equal: 

( ) ( )
1

log log
m

A A i
i

H E D e m m
=

′= =  

Furthermore, if all sensors cover events, that is n n= , then 

( ) ( )
1

log
AH E n

E
m n

η α β α β= + = + =


 (the maximal value) □ 

Lemma 2: Coverage efficiency of the events set ( )Eη  will increase when the number of sensors 

covering events is fixed, and the coverage degree of events becomes equal. 

Proof: Suppose ( ) ( ) ( )1 2, , ,A A A mD e D e D e′ ′ ′  are the coverage degree of 1 2, ,..., me e e , and 

( )A iD e′ > ( )A jD e′ , , 1,...,i j m= . If ( ) ( )A i A iD e D e ε′′ ′= − , ( ) ( )A j A jD e D e ε′′ ′= + , where 

( ) ( )( )0 2 A i A jD e D eε ′ ′< < − , and the rest coverage degrees of events don’t change, the increment of 

( )Eη  will be: 

( ) ( )E Eη η′ − = ( ) ( )( )
log

A AH E H E
m

α ′ −  

( ) ( ) ( ) ( ){
( ) ( ) ( ) ( ) }

log log
log

log log

A i A i A j A j

A i A i A j A j

D e D e D e D e
m

D e D e D e D e

α ′′ ′′ ′′ ′′= − −

′ ′ ′ ′+ +

  

  

 

 
( ) ( ) ( ) ( ){

( )( ) ( )( ) ( )( ) ( )( ) }
log log

log

log log

A i A i A j A j

A i A i A j A j

D e D e D e D e
m

D e D e D e D e

α

ε ε ε ε

′ ′ ′ ′= +
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Let ( ) ( )( ) ( )( ) ( )( ) ( )( )log logA i A i A j A jf x D e x D e x D e x D e x′ ′ ′ ′= − − + + + , then: 

( )Eη′ − ( )Eη ( ) ( )( )0
log

f f
m

α ε= −  

( ) ( )
( )

log
A j

A i

D e x
f x

D e x

′ +
′ =

′ −
, 

when 
( ) ( )

0,
2

A i A jD e D e
x

′ ′−
∈
 
  
 

, ( ) 0f x′ < , which means ( )f x  is a decreasing function in this interval, then: 

( )Eη′ − ( )Eη ( ) ( )( )0
log

f f
m

α ε= − > 0 

It indicates that ( )Eη  is increased when the coverage degree of events becomes equal. □ 
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From Lemmas 1 and 2, we observe that ( )Eη  is a suitable metric to characterize event-driven 

underwater sensor deployment. 
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