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Abstract: The transmit array of multi-overlapped-transmit-subarray configured bistatic
multiple-input multiple-output (MOTS MIMO) radar is partitioned into a number of
overlapped subarrays, which is different from the traditional bistatic MIMO radar. In this
paper, a new unitary ESPRIT scheme for joint estimation of the direction of departure
(DOD) and the direction of arrival (DOA) for MOTS MIMO radar is proposed. In our
method, each overlapped-transmit-subarray (OTS) with the identical effective aperture is
regarded as a transmit element and the characteristics that the phase delays between the two
OTSs is utilized. First, the measurements corresponding to all the OTSs are partitioned
into two groups which have a rotational invariance relationship with each other. Then,
the properties of centro-Hermitian matrices and real-valued rotational invariance factors are
exploited to double the measurement samples and reduce computational complexity. Finally,
the close-formed solution of automatically paired DOAs and DODs of targets is derived
in a new manner. The proposed scheme provides increased estimation accuracy with the
combination of inherent advantages of MOTS MIMO radar with unitary ESPRIT. Simulation
results are presented to demonstrate the effectiveness and advantage of the proposed scheme.
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1. Introduction

Multiple-input multiple-output (MIMO) radar is a radar system transmitting multiple linearly
independent waveforms which enables joint data processing received by multiple receive antennas. As
an emerging field of radar research, MIMO radar has attracted intensive research [1–5]. In terms of the
antenna configuration, MIMO radars can be divided into two types: widely separated antennas [3] or
colocated antennas [4,5] which includes bistatic and monostatic MIMO radar with transmit and receive
antennas closely spaced. Over conventional phased-array counterparts, MIMO radars offer unique
advantages, such as extra degrees of freedom offered by waveform diversity [6], higher resolution and
better parameter identifiability [7], and a larger virtual or effective aperture than the real aperture [8].

However, the advantages offered by the MIMO radar come at the price of sacrificing transmit
directional gain at the transmit array. Since MIMO radar transmits each orthogonal waveform
omni-directionally, it is faced with the problem of SNR gain loss which is unfavorable for angle
estimation. One of the solutions to alleviate the SNR gain loss is subarray MIMO radar. Subarray MIMO
can be grouped into overlapped and non-overlapped cases according to the subarray configuration. In
this paper, we focus on the type of the overlapped subarray configuration [9], which is different from the
non-overlapped situation that antennas of transmit array are simply partitioned into subarrays without
transmit coherent processing [10]. The overlapped transmit subarray (OTS) for MIMO radar has a
transmit coherent gain which results in improvement in SNR per virtual element, while non-overlapped
configuration does not have such a gain. In essence, this type of subarray MIMO radar can be regarded as
a tradeoff between phased-array and MIMO radar, and more details could be found in [9]. The transmit
array of the subarray MIMO radar is divided into several OTSs, and the transmit waveforms are coherent
within each OTS while orthogonal to the waveform transmitted by other OTSs. In addition, transmit
beam-pattern optimization with respect to the beamforming weights of the subarrays can be employed
to focus transmitted energy and improve the SNR gain per virtual element [11]. However, transmit
beampattern optimization is often a high computation work.

Angle estimation of multiple targets is one of the most important applications of radar system in
practice. Some classic estimation algorithms, such as Capon, multiple signal classification (MUSIC)
and Estimation of signal parameters via rotational invariance techniques (ESPRIT), have been applied to
MIMO radar [5,10–17]. In bistatic MIMO radar, direction of arrival (DOA) and direction of departure
(DOD) of multiple targets are obtained and paired automatically. Methods in [5,12] require an exhaustive
peak search or root finding over the unknown parameters and hence bear high computational cost if the
search is performed over a fine grid. The ESPRIT based methods proposed in [10,13–16] both take
full advantage of the rotational invariance property of the uniform linear array and they are free of peak
searches and achieves two-dimensional angle estimations. Moreover, [13] provides an effective ESPRIT
scheme for multiple subarrays in monostatic MIMO, but its focus is on beam-pattern optimization,
which is a high computation work. Methods in [10] and [16] are effective for just three transmit
antennas configuration and only two non-overlapped subarrays with three or more transmit antennas,
respectively. Unitary ESPRIT is applied in [17], which provides increased estimation accuracy with a
reduced computational burden.
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Among the methods above, the directional gain of transmit array of bistatic MIMO radar is not
exploited. Without taking transmit directional gain into consideration, they all suffer from low SNR per
virtual antenna as a result of dividing the total transmit energy over different waveforms without transmit
coherent gain. In this paper, we propose a method of joint DOA and DOD of multiple targets present
in the same range-bin for bistatic MIMO radar configured with multi-overlapped-transmit-subarray
(MOTS), which we call MOTS MIMO radar for short. First, all the OTSs are partitioned into two groups
which has a rotational invariance relationship. Then, a synthetic observation data matrix whose data
samples can be doubled is built, in terms of the property of centro-Hermitian matrix. And the rotational
invariance relationship obtained can be transformed into real-valued. Finally, the DOAs and DODs of
targets can be solved in closed form in a new manner and paired automatically.

The rest of this paper is organized as follows. In Section 2, we briefly introduce the signal model
of MOTS MIMO radar. In Section 3, a new unitary ESPRIT method is applied to MOTS MIMO
radar. MOTS configuration systems are considered and the closed-form solution of angles is derived.
In Section 4, the computational complexity of the proposed method is evaluated. The simulations results
that show the advantages of the proposed scheme are presented in Section 5, which is followed by the
conclusions in Section 6.

Notation: Scalars, column vectors and matrices are expressed by regular, bold lowercase and bold
uppercase, respectively. (·)∗ (·)T (·)H and (·)−1 denote conjugate, transpose, conjugate transpose and
matrix inverse, respectively. IN represents a N × N identity matrix, ΠMN stands for the MN ×MN

exchange matrix with ones on its antidiagonal and zeros elsewhere, diag(·) denotes a diagonalization
operator and E[·] denotes the expectation operator. ⊗ and ⊙ represent Kronecker product and Hadamard
product, respectively.

2. Signal Models of MOTS MIMO Radar

Consider a bistatic MIMO radar system, shown in Figure 1, with N transmit antennas and M receive
antennas, both of which are half-wave-length spaced uniform linear arrays (ULAs). The transmit array
is partitioned into a total of K OTSs (2 ≤ K ≤ N ), and the kth OTS contains Nk = N − K + 1

array elements, i.e., each OTS has the identical effective aperture. Let a (φ) =
[
1, qr, q

2
r , . . . , q

N−1
r

]T
with qr = e−jπ sin(φ) and b(θ) =

[
1, qt, q

2
t , . . . , q

M−1
t

]T
with qt = e−jπ sin(θ) denote as transmit and

receive steering vectors, respectively. ak(φ) denotes the steering vector associated with the kth OTS
which is an Nk × 1 subvector formed from the a(φ). the waveform transmitted by the kth OTS is
denoted by ϕk(tl)

T ∈ C1×Q where l = 1, 2, . . . , L, ϕk(tl)
Tϕk(tl) = 1, ϕki(tl)

Tϕkj(tl) = 0(ki, kj =

1, 2, . . . , K; ki ̸= kj), tl = lTr denotes the slow time where Tr is the pulse repetition interval, l is the
slow time index and L is the number of pulses. We assume that there are P targets at the same range bin
with different Doppler frequencies. fp denotes Doppler frequency with p = 1, 2, . . . , P . wk = ak(φ)

∥ak(φ)∥
donates the unit-norm complex vector of beamforming weights associated with the kth OTS. The signal
reflected by the pth target located in the far-field can be then modeled as

sTr (tl, φp) =

√
N

K
σp

K∑
k=1

wH
k ak (φp) e

−jτk(φp)ϕk(tl)
T ej2πfptl (1)
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where N is the total transmitted energy for MOTS MIMO within one pulse, σp is the reflection coefficient
and τk (φp) is the time required for the wave to travel across the spatial displacement between the first
element of the first OTS and the first element of the kth OTS.

Figure 1. Multi-overlapped-transmit-subarray configured bistatic multiple-input
multiple-output (MOTS MIMO) radar scenario.
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Then, the K×1 vector of the transmit coherent gain and waveform diversity vector can be introduced
as follows,

c (φp) =
[
wH

1 a1 (φp) ,w
H
2 a2 (φp) , . . . ,w

H
KaK (φp)

]T
(2)

d (φp) =
[
e−jτ1(φp), e−jτ2(φp), . . . , e−jτK(φp)

]T
(3)

where c (φp) = [Nk, Nk, . . . , Nk] ∈ RK×1, Nk denotes the transmit coherent gain and
d (φp) =

[
1, qt,q2t , . . . ,qK−1

t

]T
, which is an K × 1 subvector formed from the a(φ). Then the reflected

signal in Equation (1) can be rewritten as

ST
r =

√
N

K
σp(c(φp)⊙ d(φp))

T

ϕ1(tl)
T

...
ϕK(tl)

T

 ej2πfptl (4)

At the receive array, the array observations can be written as

X =
P∑

p=1

b(θp)S
T
r (5)

By match-filtering X to each of the waveforms {ϕk(tl)}Kk=1, we can form the output of the match
filter within the duration of L pulses, which is corresponding to the kth OTS

Yk =
P∑

p=1

b (θp)uk (φp)

√
N

K
σpe

j2πfpt = BDkΦ+Nk (6)

where Yk =
[
yT
1 , . . . ,y

T
M

]T , B = [b(θ1), . . . , b(θP )] ∈ CM×P , Dk = diag
(
[uk(φ1), . . . , uk(φP )]

T
)
∈

CP×P with uk(φp) = Nkq
k−1
t being the kth element of u(φp) = [c(φp)⊙ d(φp)]

T ∈ CK×1,
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Φ =


√

N
K
σ1e

j2πfpt

...√
N
K
σP e

j2πfpt

 ∈ CP×L, t = [t1, t2, . . . , tL] and Nk is the received noise of the kth slice.

It should be noted that the effective aperture of MOTS MIMO radar and traditional MIMO radar are
(M +K − 2)λ/2 and (M +N − 2)λ/2 , respectively, where λ is the wave length. Accordingly, the
SNR gain per virtual element of them are (NkN)/K and N/M [13]. For K < N , the MOTS MIMO
radar has the smaller effective aperture as the traditional MIMO radar but higher SNR per virtual element
due to the transmit coherent processing.

3. A Unitary ESPRIT Method for MOTS MIMO

In this section, the MOTS configuration, i.e., the number of OTSs is K, is taken into account. From
Equation (6) we can easily obtain data Yk, where k = 1, 2, . . . , K. After stacking the individual
components Yk in one column, we obtain the following observation data matrix

Y =


y1

y2

...
yK

 =


BD1Φ+N1

BD2Φ+N2

...
BDKΦ+NK

 =


BD1

BD2

...
BDK

Φ+


N1

N2

...
NK

 = CΦ+N (7)

where C =


C1

C2

...
CK

 denotes the steering matrix with Ck = BDk and N =


N1

N2

...
NK

 denotes the

observation noise matrix.
As seen from Figure 1, every Nk elements of transmit array is used to form the identical OTS. All

the OTSs are partitioned into two groups, which are composed of the first and last (K − 1) OTSs,
respectively. From Equations (6) and (7), a rotational invariance relationship can be developed as

J2C = J1CΛt (8)

where J1 and J2 are M(K − 1) × MK block selection matrices, which are defined as J1 =[
IM(K−1),0M(K−1)×M

]
and J2 =

[
0M(K−1)×M , IM(K−1)

]
, respectively. Λt = Dk+1D

−1
k =

diag
([

e−jπ sin(φ1), . . . , e−jπ sin(φP )
]T). J1 and J2 select the observation data corresponding to the first

and second group of OTSs from Y , respectively.
Then, we build a synthetic observation data matrix, whose data samples can be doubled. The synthetic

data matrix defined as
Z = [Y ,ΠMKY

∗ΠL] ∈ CMK×2L (9)

It can be shown that Z is centro-Hermitian [18]. According to the theorem in [19], a centro-Hermitian
matrix can be mapped to a real matrix. The real-valued matrix from the complex-valued Z via a unitary
transformation can be obtained as:

Ω = QH
MK [Y ,ΠMKY

∗ΠL]Q2L ∈ RMK×2L (10)
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where the unitary transform matrix Qm of even and odd order are respectively defined as

Q2m =
1√
2

[
Im jIm

Πm −jΠm

]
,Q2m+1 =

1√
2

 Im 0m×1 jIm

0T
m×1

√
2 0T

m×1

Πm 0m×1 −jΠm

 (11)

Then the P dominant left singular vectors Es ∈ RMK×P of the real-valued matrix Ω can be computed
through a real-valued singular value decomposition (SVD) of Ω. Alternatively, Es can be also computed
through a real-valued eigenvalue decomposition (ED) of RT = ΩΩH = Re

(
QH

MKY Y HQMK/2L
)
.

There exists a nonsingular matrix T ∈ RP×P such that

ES = QH
MKCT (12)

where QH
MKC is the real-valued steering matrix. Since QMK is unitary, i.e., QMKQ

H
MK = IMK , it can

be obtained from Equation (8) by premultiplying both sides by QH
M(K−1), as follows:

QH
M(K−1)J2QMKQ

H
MKC = QH

M(K−1)J1QMKQ
H
MKCΛt (13)

For the pth target, the shift invariance relation in (13) can then be written as

QH
M(K−1)J2QMKQ

H
MKC = e−jπ sin(φp)QH

M(K−1)J1QMKQ
H
MKC (14)

Note that the two selection matrices satisfy ΠM(K−1)J1ΠMK = J2. As a result,

QH
M(K−1)J1QMK = QH

M(K−1)ΠM(K−1)ΠM(K−1)J1ΠMKΠMKQMK

= QT
M(K−1)J2ΠMKQ

∗
MK

=
(
QH

M(K−1)J2QMK

)∗ (15)

where the fact that ΠmQm = Q∗
m and ΠmΠm with m being any integer is exploited.

Let K1 and K2 , respectively, be the real and imaginary parts of QH
M(K−1)J2QMK with

K1 = Re
(
QH

M(K−1)J2QMK

)
and K2 = Im

(
QH

M(K−1)J2QMK

)
. Then, with Equation (15) substituted

into Equation (14), we can obtain:

ejπ sin(φp)/2 (K1 + jK2)Q
H
MKC = e−jπ sin(φp)/2 (K1 − jK2)Q

H
MKC (16)

According to the definition of the tangent function, Equation (16) can be rewritten as:

K2Q
H
MKC = tan(−π sin(φp)/2)K1Q

H
MKC (17)

For all the P targets, the complex-valued rotational invariance relation in Equation (8) can be
transformed into the real-valued manifold as follows:

K2Q
H
MKC = K1Q

H
MKCΨt (18)

where Ψt = diag
(
[tan (−π sin(φ1)/2) , . . . , tan (−π sin(φP )/2)]

T
)

is a real-valued diagonal matrix.
With Equation (12) substituted into Equation (18), it can be obtained as:

K2ES = K1ESΥt (19)
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where Υt = T−1ΨtT . Υt can be computed as the least squares (LS) or the total least squares (TLS)
solution of Equation (19). Eigenvalue decomposition of Υt yields

Ψ̂t = V −1ΥtV (20)

where Ψ̂t = diag
(
[Ψ1,Ψ2, . . . ,ΨP ]

T
)

and V are composed of the eigenvalues and the corresponding
eigenvectors of Υt, respectively. The DODs of the targets are

φ̂p = − arcsin (2 arctan(Ψp)/π) (21)

Note that V is the estimate of T−1. In terms of Equation (12), it can be obtained

Ĉ = QMKESV (22)

through which the estimates of DOAs can be obtained. Here, we develop a closed-form solution of
DOAs by an averaging method. Combining Equation (6) with Equation (7), we assume ξp,k = βp,kb (θp)

to be the pth column of Ĉk ∈ CM×P which is the submatrix of Ĉ. Then, b̂ (θp) = ξp,kβ
∗
p,k/|βp,k|2 has the

same phases as the steering vector uk(φp)b(θp), where uk(φp) is a complex constant corresponding to
Ck and varying with different k. Since ûk(φp)b̂(θp) brings the estimation errors of two variables, we only
consider the case of k = 1 when u1(φp) is a real constant. Therefore, b̂(θp) = ξp,1β

∗
p,1/|βp,1|2 has the

same phases as the steering vector b(θp). Let Γ̂ = angle
(
b̂(θp)

)
be the phases of b̂(θp). Thus, we can

obtain the estimation of the DOAs via the method in [16]. However, we can also obtain the estimation
of the DOAs by virtue of the difference δΓ between the adjacent elements of the Γ̂. The ith element of
δΓ can be obtained as

δ̂Γ(i)=Γ̂(i+ 1)− Γ̂(i) (23)

where i = 1, 2, . . . ,M − 1. Under the ideal condition, the estimate of δΓ can be given as

δΓ0=[0, π sin (θp) , . . . ,π sin (θp)]
T

=Θδ sin (θp)
(24)

where Θδ = [0, π, . . . ,π]T ∈ R(M−1)×1. Then the least-square estimation of the angle can be given as

θ̂p = argmin
θ

∥∥∥δ̂Γ −Θδ sin (θp)
∥∥∥2

= −arcsin

(
δ̂T
ΓΘδ

ΘT
δ Θδ

)

= −arcsin

(
1

(M − 1) π

M−1∑
i=1

δ̂Γ (i)

) (25)

It is shown that the DODs and DOAs of targets can be paired automatically.
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4. Computational Complexity Analysis

In order to analyze the complexity for the computation of the proposed method, we have to know the
complexity of the SVD algorithm, which is the main computational burden. Since the computational
complexity of the SVD is varying with different methods [20]. Among them, an efficient orthogonal
iteration approach for SVD algorithm has a complexity in order of O(MNr) for an M × N matrix
truncated to rank r. Based on this point, the main computational cost of the ESPRIT method in [15] is
O (M2N2P ). Different from the MN×MN complex-valued covariance matrix in the ESPRIT method,
the covariance matrix of the unitary ESPRIT in [17] with the same size MN ×MN is real-valued.Since
the complexity of complex-valued computation is higher than that of the real-valued, the computational
complexity of the unitary ESPRIT in [17] is O(µM2N2P ), where µ < 1. The computational complexity
of our method is O(µM2K2P ), which is approximately equal to unitary ESPRIT in [17] and lower than
ESPRIT in [15].

5. Simulation Results

Consider a traditional bistatic MIMO radar which consists of a ULA of M = 8 receive antennas and a
ULA of N = 6 omni-directional transmit antennas, which are spaced half a wavelength apart from each
other. The N transmit antennas transmitting N orthogonal waveforms, and the nth waveform transmitted
is the nth row of S ∈ CQ×Q, where S = (1 + j)/

√
2QHQ and HQ is the Q × Q Hadamard matrix.

Based on the configuration of the traditional bistatic MIMO radar, the MOTS MIMO radar improves its
transmitter which has K OTSs transmitting K orthogonal waveforms and the kth transmitted waveform
ϕk (tl) is the kth row of S. Q = 256 is the number of samples per pulse period, and Tr = 64 µs is
the pulse repetition interval. Assume that there exists P = 3 noncoherent sources, which are located
at angles (φ1, θ1) =

(
20

◦
,−20

◦)
, (φ2, θ2) =

(
−18

◦
, 10

◦)
and (φ3, θ3) =

(
5
◦
, 35

◦)
, and the reflection

coefficients of the targets are {σp}3p=1 = 1. The Doppler frequencies are {fp}3p=1 = {200, 400, 600}Hz.
The additive noise is Gaussian zero-mean unit-variance spatially and temporally white. The average root
mean square error (ARMSE) of the angle estimation is defined as:

ARMSE =

√√√√ 1

Pη

P∑
p=1

ηmax∑
η=1

[
(φ̂η

p − φp)
2 +

(
θ̂ηp − θp

)2]
(26)

where ηmax = 200 is the number of Monte Carlo trials and φ̂η
p and θ̂ηp are the estimation of DOD φp and

DOA θp of the ηth Monte Carlo trial, respectively.
The traditional MIMO radar employing ESPRIT [15] and unitary ESPRIT [17], and MOTS MIMO

with K = 3 OTSs employing our method are used to compare. Figure 2 shows the ARMSE of angle
estimation of different methods versus SNR, where L = 40. It can be seen that the traditional MIMO
radar employing unitary ESPRIT has better performance of angle estimation than ESPRIT. It can also
be observed that the traditional MIMO radar employing ESPRIT and unitary ESPRIT provide worse
accuracy performance than the MOTS MIMO employing the proposed method. The MOTS MIMO
radar has the smaller effective aperture as the traditional MIMO radar but higher SNR per virtual element
due to transmit coherent processing. It yields the comparative advantage of the proposed scheme over
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traditional MIMO scheme, especially at lower SNR region. Figure 3 shows the probability of the
successful detection of the different methods versus SNR. The absolute errors |φ̂p − φp| ≤ 0.5

◦
and∣∣∣θ̂p − θp

∣∣∣ ≤ 0.5
◦

are both required for the successful detection of DOD and DOA for all three targets. It
can be seen from Figure 3 that all the methods exhibit a 100% successful detection at high SNR values.
As the SNR decreases, the probability of successful detection starts dropping for each method at a certain
point. The SNR level at which the transition happens is known as the SNR threshold. It also can be seen
that MIMO employing ESPRIT and MIMO employing unitary ESPRIT have the highest and the second
highest SNR thresholds, respectively. In contrast, the proposed method has the lowest SNR threshold,
i.e., the best probability of the successful detection.

Figure 2. Average root mean square errors (ARMSEs) of angle estimation versus SNR.
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Figure 3. Probability of successful detection versus SNR.
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Figure 4 shows the RMSE of angle estimation of different methods versus the number of pulses under
SNR = 10 dB. It is indicated that the unitary ESPRIT has better angle estimation performance than the
ESPRIT in traditional MIMO configuration especially in small pulse number case. The performance
improvement is lost for large pulse number, and this may be caused by the averaging of the number
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of pulses without SNR improvement. The MOTS MIMO employing the proposed method has the best
performance of angle estimationin all pulse number cases, mainly due to the SNR improvement per
virtual element via transmit coherent processing.

Figure 4. ARMSEs of angle estimation versus the number of pulses.
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Figure 5. ARMSEs of angle estimation versus the number of overlapped-transmit-subarrays
(OTSs).
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For different numbers of OTSs, Figure 5 shows the ARMSE of angle estimation of MOTS MIMO
employing the proposed method versus SNR , where L = 40. Note that if K = 1 is chosen, the whole
transmit array is considered as one subarray and only one waveform is emitted, there is no estimation
of DODs. When K = 6 is chosen, the MOTS MIMO becomes the MIMO radar without subarray
partitioning, which has largest effective aperture but no transmit coherent gain. It can be easily seen that
the angle estimation performances are the best when the number of OTSs is equal to 3 or 4. It is the
fact that effective aperture becomes larger with an increase in the number of OTSs K while SNR gain
per virtual antenna becomes lower. It is the combination of effective aperture and SNR gain per virtual
antenna that has an impact on the estimation performance. It also can be observed that the MOTS MIMO
with K = 3 slightly outperforms the MOTS MIMO with K = 4 at low SNR region while the opposite
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occurs at high SNR region. This means that having high SNR gain per virtual antenna is more important
at low SNR region, while having large effective aperture is more important at high SNR region. Thus,
K is chosen as the tradeoff between effective aperture and SNR gain per virtual antenna.

6. Conclusions

In this paper, a unitary ESPRIT scheme is presented to DOD and DOA estimation for MOTS MIMO
radar. The proposed method exploits the combination of inherent advantages of MOTS MIMO radar
with unitary ESPRIT. The MOTS MIMO improves the SNR gain through the carefully chosen number
of OTSs, which is a tradeoff between effective aperture and SNR gain per virtual antenna. The proposed
method, which is based on unitary ESPRIT, doubles the data samples and reduces the computational
burden. Our scheme for MOTS MIMO provides increased estimation accuracy of angle estimation with
DODs and DOAs of targets solved in closed form and automatically paired in a simple manner. Several
experimental results have demonstrated the performance of the proposed scheme.
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