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Abstract: One of the main challenges in automatic target tracking applications is represented
by the need to maintain a low computational footprint, especially when dealing with
real-time scenarios and the limited resources of embedded environments. In this context,
significant results can be obtained by using forward-looking infrared sensors capable
of providing distinctive features for targets of interest. In fact, due to their nature,
forward-looking infrared (FLIR) images lend themselves to being used with extremely
small footprint techniques based on the extraction of target intensity profiles. This work
proposes a method for increasing the computational efficiency of template-based target
tracking algorithms. In particular, the speed of the algorithm is improved by using a dynamic
threshold that narrows the number of computations, thus reducing both execution time and
resources usage. The proposed approach has been tested on several datasets, and it has been
compared to several target tracking techniques. Gathered results, both in terms of theoretical
analysis and experimental data, showed that the proposed approach is able to achieve the
same robustness of reference algorithms by reducing the number of operations needed and
the processing time.
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1. Introduction

Detection and tracking of objects and people represent an important research topic in computer vision.
The ever-increasing need for automatic, fast and reliable solutions for extracting information from video
flows through image processing techniques are dictated by the large domain of vision-based applications.
In fact, nowadays, a growing number of applications are envisioned to analyze the motion of pedestrians
or moving objects in several scenarios, such as driver assistance (e.g., warning drivers about obstacles on
the road, helping with the piloting of aircraft), surveillance and human activity recognition (e.g., locating
pinpointing sources of ignition during firefighting operations, the control of servo-motor cameras in
security areas), etc. From this point of view, image processing techniques are useful, among others, for
tracking both vehicles (e.g., in automatic traffic monitoring tools) and people (e.g., for the detection of
potentially dangerous situations).

In general, the use of color cameras working in the visible domain represents the most investigated
and widespread solution in the above-mentioned applications. However, visible light sensors suffer
from illumination issues that make this solution not capable of correctly accomplishing its tasks in
all-day and all-weather conditions [1]. The advances in infrared sensor technology laid the ground
for introducing the use of forward-looking infrared (FLIR) cameras to overcome some limitations due
to the use of traditional color sensors. In fact, thermal-infrared images present a key advantage with
respect to images produced by sensing visible light. Since the intensity values are determined by the
temperature and radiated heat of objects in the field of view, lighting conditions and object properties,
such as material color or texture features, do not influence the generation of the image. However, often,
the visible light and the infrared spectrums have been used together in sensor fusion approaches to
exploit the benefits of both domains, at the cost of a generally increased system and computational
complexity. Moreover, additional challenges are posed when dealing with real-time applications and
limited-resource environments. For example, mobile platforms can be equipped with on-board sensors
to perform autonomous navigation and tasks [2]; in this scenario, a target-following task is usually
implemented by enabling the corresponding actuators after the target detection and tracking phases. Data
coming from on-board sensors can be processed and analyzed both locally and remotely [3]. It is worth
noticing that, in the case of remotely-processed video flows, the real-time requirements are not only
affected by the computational load of the image processing procedure; indeed, the overall latency might
be affected by the performance of the communication network. However, proper network technologies
exist that guarantee real-time delivery over packet-switched networks. For example, it has been shown
that pipeline forwarding technology can offer deterministic delivery over wireless [4], wired [5] or even
all-optical [6] networks.

This paper deals with target tracking in forward-looking infrared image sequences; in this context,
the thermal imprint of a target is a distinctive feature with respect to background and clutter. Generally,
target tracking applications are based on three consecutive steps: first, the detection of stationary or
moving objects of interest; then, the tracking of these objects frame by frame; lastly, the classification
of the target motion through the analysis of the objects’ tracks to recognize their behavior. In this
paper, the focus is on the second phase. In particular, the key contribution of this paper is the design
of a novel strategy for improving the computational speed of template-matching-based algorithms, the



Sensors 2014, 14 14108

computational domain of which is reduced by selecting a subset of pixels to be analyzed according to a
relevance-based strategy.

The designed technique has been compared both to algorithms based on template-matching steps
and several other traditional algorithms in target tracking applications. With the aim of assessing
the devised technique on different working conditions, experimental tests have been carried out on
FLIR image sequences from various datasets; for this reason, both object (vehicle) and pedestrian
tracking scenarios have been considered. Results have been gathered both in terms of computational
speed and precision. The results obtained by the proposed algorithm indicate an improvement in
computational speed by maintaining precision comparable to that achievable by reference algorithms
based on traditional template-matching implementation.

The remainder of this paper is organized as follows. Section 2 provides a review of the main target
tracking techniques in FLIR imagery. Section 3 focuses on the aspects pertaining to reference algorithms
used as the basis for the current work, whereas the proposed solution is presented in Section 4. A detailed
theoretical analysis evaluating the use of resources and an evaluation of the tracking performance are
illustrated in Section 5. Finally, conclusions are drawn and future research directions are sketched in
Section 6.

2. Background

Visual tracking is an important topic in computer vision due to the ever-growing number of
applications and systems that benefit from its integration, such as traffic monitoring [7] and video
surveillance [8]. In spite of many efforts, some challenges remain to be faced in order to build accurate
and reliable tracking systems, such as dealing with occlusions, the alternating appearance of objects,
illumination issues, and so on. Different techniques have been proposed to cope with different situations.
Basically, target tracking can be realized by using traditional color camera sensors, infrared cameras and
exploiting data-fusion techniques. Visual tracking with color cameras has been widely investigated.
Among the most recent works in this field, studies of interest encompass detection by classification
techniques to deal with adaptability for occlusion, appearance and illumination changes [9]. New
schemes to account for appearance variation are considered in [10]. Recently, sparse representation
has been widely applied to visual tracking as a solution to illumination changes and occlusions [11–14].
However, these techniques are not able to deal with sequences characterized by poor illumination.

Among the numerous algorithms for target tracking, only a limited amount of them is specifically
designed to address the particular issues of target tracking in FLIR imagery. Target tracking in infrared
images presents several issues. First of all, they present a low signal-to-noise ratio and are affected by the
sensors’ ego-motion [15,16]. Several techniques have been devised to cope with such a scenario [17–19].
Traditionally, target tracking has been based on two phases: a target detection (TD) step and a
target tracking phase based on spatio-temporal correlation, like the mean-shift algorithms [20–22].
Target detection should be realized using very fast techniques, such as the intensity variation function
(IVF) [17]. However, some conditions in FLIR images can invalidate the traditional mean-shift
algorithms, for instance the assumptions that they are based on might not be true in the case of sensor
ego-motion. Moreover, the presence of similar target signatures or noise represent conditions that lead
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the TD to fail in FLIR images, returning wrong results; hence the necessity of a strategy for the activation
of a recovery phase [23].

To cope with a low signal-to-noise ratio and sensor ego-motion, target correlation approaches have
been explored. Among target correlation-based techniques, the one presented in [17] has the peculiarity
of using a small and compact target signature for fast frame-to-frame target tracking through IVF, using
a larger template only to recover from IVF failures through a template matching (TM) technique. The
higher reliability of TM is in terms of resources usage, which is much more intense in the TM phase
with respect to the TD phase. In other words, TM is slower than TD, even though it is able to generate
more precise results.

The reference algorithms selected for this work, presented in [17,18], are based on the TM technique.
Although, while in [17], the IVF failure detection was based on a Cartesian distance metric, in [18],
a motion prediction-based metric is presented, and it showed better tracking performances than the
Cartesian metric. The techniques presented in [17,18] are analyzed more in detail in Section 3, since
they constitute the base layer of the proposed algorithmic improvement.

3. Reference Algorithms

The target tracking procedure followed in this work puts down its roots in the techniques proposed
in [17,18], in the following, referred to as ATT (automatic target tracking) and PATT (predictive
automatic target tracking), respectively. Both of them have been employed as a reference for evaluating
the performance of the proposed solution in Section 5.

Both ATT and PATT use a target detection (TD) phase and a possible target recovery phase; the TD
phase is based on the IVF algorithm, and the eventual recovery phase is based on a template matching
algorithm. TM is triggered when false alarms are detected during the TD phase. In particular, the
detection of IVF false alarms is performed through two different strategies. In [17], a Cartesian distance
metric approach is used, while in [18], a motion prediction-based metric and a probabilistic evaluation
is introduced.

In the following paragraphs, the main concepts concerning the TD and recovery phases are reviewed.
These concepts will be recalled in Section 4 during the exposition of the proposed algorithm.

3.1. IVF-Based Target Detection

The detection of targets is based on the analysis of their thermal signature. This phase exploits a
local maximum window extracted from the previous frame to compute IVF and uses IVF results to find
a new local maximum representing the candidate target position for the current frame. Computations
are limited to a sub-frame to avoid non-target objects from the background being identified as potential
targets by the algorithm. This simplification clearly assumes that the target motion among frames is
confined within the sub-frame. IVF is defined as follows.

F n(v, z) =
1

Λ

l∑
j=0

k∑
i=0

[
Sn(i+ v, j + z)− ωn−1

]
(1)
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In Equation (1), Λ = k × l is the area of the target window, v and z are the coordinates in the
sub-frame, ωn−1 is the local maximum matrix in the previous frame (n − 1), Sn is the target window
centered at (i+v, j+z) and F n(v, z) is the IVF computed in (v, z) for the current frame n. A correlation
output plane (COP) is built starting from IVF, and it is defined as follows.

C(v, z) = e−λF
n(v,z) (2)

In Equation (2), λ is an arbitrary parameter, selected to ensure a satisfactory enhancement of IVF
results. The position of the candidate target is associated with the position of the highest peak on the
correlation output plane. In fact, the maximum on the COP is by definition the point in the sub-frame
most similar to the local maximum in the previous frame; for this reason, it is considered the best
candidate to represent the target in the current frame.

Figure 1. Processing of the intensity variation function (IVF) algorithm in a sample
frame from the OTCBVS (Object Tracking and Classification Beyond the Visible Spectrum)
dataset [24] (sequence otcbvs 03-l1s2ir-4). (a) Frame 57; (b) correlation output plane (COP)

of Frame 57.

(a) (b)

Figure 1 shows an example of the correlation output plane generated by IVF computed on a sample
frame extracted from the OTCBVS (Object Tracking and Classification Beyond the Visible Spectrum)
dataset [24]. As shown in this example, more peaks with a different local maximum can coexist in the
COP. Despite the similarity between local maximum matrices in consecutive frames, it is not guaranteed
that the highest peak in the plane (the one selected by IVF) is the real target. In this case, the activation
strategy later described determines the need for the execution of a recovery phase. In general, IVF is
a fast and reliable algorithm when the sequence is not affected by severe sensor ego-motion and target
feature changes are not too swift. Nonetheless, it may be misled by a non-target object included in the
sub-frame whose features are similar to those of the target. Moreover when ego-motion is dramatic, the
chances of gathering correct results from the IVF algorithm alone are quite low because, due to its small
target window and to the low signal-to-noise ratio of the images, a significant sensor ego-motion is very
likely to be introduced into the sub-frame of an object with a higher IVF value than the target. Finally,
changes in frame features may result in target feature changes, such that IVF is not able to determine the
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correct position of the target in the current frame. To solve these issues, the detection strategy described
in the following section is used to decide when to launch a TM phase able to recover from this type
of error.

3.2. Cartesian Distance Metric

Despite the good results and proven efficiency of IVF, the low signal-to-noise ratio and occasional
sensor ego-motion can lead to wrong matches; a strategy to detect and correct false alarms is therefore
mandatory in target tracking for FLIR images. In [17], an approach based on Cartesian distance was
used. The algorithm evaluates the distance between the IVF candidate target (pnIV F ) and the previous
position of the target pn−1. Whenever the distance exceeds a threshold β, the value of which depends on
the sequence features (e.g., the sensor’s ego-motion), the TM recovery phase is activated. The distance
is computed as follows:

dIV F =

√(
xpnIV F

− xpn−1

)2
+
(
ypnIV F

− ypn−1

)2 (3)

Even though this approach is rather simple and efficient, because little overhead is added for the
activation strategy, it might not be effective enough. Indeed, an optimal β value is difficult to determine,
because it hugely depends on sequence features, such as the motion of the target or the ego-motion of
the sensor itself.

3.3. Motion Prediction-Based Metric

The strategy proposed in [18] for the activation of the recovery step is based on the target history.
Information on the target position in previous frames is stored to generate a motion vector and to
elaborate a prediction for the current frame using a position estimator. The candidate target position
p̄nIV F , computed by IVF, is associated with a motion vector (pn−1, p̄nIV F ), and it is compared to the
predicted motion vector (pn−1, p̂n), where p̂n is the target position in the current frame estimated by
a linear predictor. The reliability of the IVF result is then evaluated using a conditioned probability
approach based on the distance and angle of the motion vectors. In particular, the probability that the
result of the target detection phase is the correct target in the current frame is computed as follows:

P (p̄nIV F ) = P (dIV F ∩ αIV F ) = P (dIV F )× P (αIV F |dIV F ) (4)

where dIV F is the IVF motion vector length and αIV F is the angle it describes with the predicted motion
vector. In Equation (4), P (dIV F ) and P (αIV F |dIV F ) are defined as follows:

P (dIV F ) =


1− d̂−dIV F

d̂
if dIV F < d̂,

1− dIV F−d̂
dmax−d̂

if d̂ < dIV F < dmax

1 if dIV F = d̂

0 if dIV F = dmax

(5)

P (αIV F |dIV F ) =


|αIV F−180◦|

180◦
×
(

1− dmax−dIV F

dmax

)
if αIV F 6= 0, dIV F > 0

1 otherwise
(6)
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Both in Equations (5) and (6), dmax is the maximum distance at which the target can be found given a
certain sub-frame size. In Equation (5), d̂ is the predicted motion vector length; moreover, the probability
is defined, so that it is highest if the length of the IVF motion vector is the same as the one of the predicted
motion vector; on the other hand, it decreases as the difference between the motion vectors increases,
until it is set to zero when distance dmax is reached. In Equation (6), the angular contribution is computed
modulo 180◦, and it is weighted to minimize its impact on short motion vectors. This probability value
is then compared to a confidence level µ to decide whether the IVF position should be selected as the
new target position (when P (p̄nIV F ) > µ) or if a recovery algorithm should be invoked to recover from
an error condition (when P (p̄nIV F ) ≤ µ).

3.4. Template Matching

Whenever an error condition is detected through the aforementioned metrics (Sections 3.2 and 3.3), a
TM phase is necessary to recover from the error in the TD phase and to find the correct target position
on the current frame. The algorithm used in [17,18] is very similar to the described IVF, and it is defined
as follows.

T n(v, z) =
1

Φ

p∑
j=0

m∑
i=0

[
Sn(i+ v, j + z)−W n−1

]
(7)

In Equation (7), T n(v, z) is the computed TM value for the point of coordinates (v, z), Φ = (p×m) is
the area of the target window, while W n−1 is the target window in the previous frame. All other symbols
have the same meaning as in Equation (1). With reference to Equations (1) and (7), usually p > l and
m > k, so Φ > Λ; hence the greater resource demand of TM over IVF. As in IVF, the value resulting for
each point of the sub-frame is used to build a COP as follows.

CTM(v, z) = e−λT
n(v,z) (8)

As in the case of IVF, λ is an arbitrary parameter. The highest peak on the COP is taken as the best
candidate for the target position on the current frame. Even though the use of W instead of the smaller ω
matrix increases the computational complexity of TM with respect to IVF, it also guarantees the use of
information on target shape and surrounding background, allowing one to better discriminate between
target and non-target objects. In this way, TM can recognize the target, even when IVF fails. Indeed,
TM has a better capability of finding the target at the cost of a considerably higher computational time.
This is due to the bigger size of the matrices used in TM computation with respect to the size of the
matrices used in IVF computation. In [18], the position p̄nTM obtained by the TM phase is then used
to build a new motion vector (pn−1, p̄nTM), which is, in turn, compared to the predicted motion vector
(pn−1, p̂n), as described in Section 3.3. The probability P (p̄nTM) is then compared to the probability
P (p̄nIV F ) previously computed. The point with the highest probability in this comparison is finally
selected as the position of the target in the current frame. This step is necessary to avoid drifting issues
that can be introduced by TM [18].
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4. Proposed Algorithm

The computational complexity of the template matching step could undermine the applicability in
real-time systems of algorithms using the approach so far described. Indeed, the TM step, as described
in Section 3.4, necessarily considers a larger domain of computations leading to long execution times.
Therefore in this section, an approach based on the relevance of the sampling points in the sub-frame is
proposed with the aim of reducing the computational complexity of the TM step.

The proposed solution for tracking targets in FLIR imagery combines the algorithms presented in
Section 3.4 and improves the computational speed of the template matching step. The overall tracking
algorithm is presented in Algorithm 1. For each new frame of a sequence, the IVF algorithm computes
a candidate target; based on the history of the locations of the target under analysis, an expected target
position based on a predictive step is computed, and a probability score is thus associated with the
candidate target of the IVF step. Since the IVF algorithm has a small footprint, if the result coming
from this step satisfies a minimum confidence level, the location of the candidate target is considered
reliable, and it is designated as the current position of the target. Otherwise, additional steps are required
to solve the ambiguity. In this case, the template matching procedure involving the analysis of the
sub-frame should be activated to gather more accurate results. The correlation output plane is thus
analyzed to select an adaptive and suitable threshold used to restrict the computational domain of the
TM step. The selected subset of the correlation output plane identifies the areas where the correlation
between the searched target and the pixel areas of the current frame is strongest. Within only the selected
subset, a score is computed for each possible candidate point, as well as the associated TM value and
probability value; as will be explained in more detail later in this section, the score is based both on the
TM value and on the likelihood associated with the prediction step for the candidate point under analysis.
The higher the threshold, the greater the computational savings. However, it is imperative to avoid too
restrictive results; this is the reason why the threshold is designed to be also dynamic: it starts from
a high value and decreases as needed to accommodate adequate results (i.e., the scores should satisfy
minimum requirements in terms of quality). The three results within the selected subset maximizing the
designed score, the TM value and the probability value are finally evaluated with a weighted comparison
to choose the new position of the target. Deeper details are given in the remainder of this section. Given
the considerable number of symbols cited in the text, for a quick reference, the interested reader can find
a digest of them in Table 1.

The traditional TM phase (described in Section 3.4) computes the TM values for each point of
the sub-frame, regardless of the likelihood of that point belonging to the target area. The proposed
algorithmic improvement takes into account the relevance, i.e., the likelihood of belonging to the target,
of a point with coordinates (v, z) in the sub-frame before computing T n(v, z) with Equation (7). The
relevance of a point is evaluated by comparing the value associated with the point on the COP computed
by IVF in the TD phase, using Equation (2), with a threshold δ. The threshold is designed to be adaptive
on a frame-by-frame basis, and it is dependent on the maximum value on the same COP. A point within
the sub-frame is labeled as relevant (ṗn) if its value on the COP is above the δ threshold. Therefore,
the TM function described in Equation (7) is computed only for relevant points of the COP; a detailed
discussion about the savings in computational complexity is provided in Section 5.3.
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Algorithm 1 The proposed algorithm (see Table 1 for symbols meaning). Details on weighted
comparisons are given in Equations (10)–(13).

Input: ωn−1, pn−1, history

Output: pn

1: COP ← ComputeCOP (pn−1, ωn−1)

2: p̄nIV F ← position of max{COP}
3: p̂n ← LinearPrediction(history)

4: PIV F ← P (p̄nIV F )

5: if PIV F > confidence level then
6: pn ← p̄nIV F
7: else
8: δ ← 0.95

9: repeat
10: for all p : Cn(p) ≥ δ ×max{COP} do
11: if maxscore < ψ(p) then
12: maxscore← ψ(p)

13: end if
14: if maxTM < T n(p) then
15: maxTM ← T n(p)

16: ṗnTM ← p

17: end if
18: if maxP < P (p) ∨maxPScore < ψ(p) then
19: maxP ← P (p)

20: ṗnP ← p

21: end if
22: end for
23: if WeightedComparison_P_TM(ṗnP , ṗ

n
TM) then

24: pn ← ṗnP
25: else
26: if WeightedComparison_IV F_TM(p̄nIV F , ṗ

n
TM) then

27: pn ← p̄nIV F
28: else
29: pn ← ṗnTM
30: end if
31: end if
32: δ ← δ − 0.2

33: until maxscore ≥ ε ∨ δ ≤ 0

34: end if
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Table 1. List of symbols.

Symbol Significance

n current frame number
m number of activations of TM phase in a sequence

pn−1 position of the target at the previous frame
p̂n predicted location of the target of interest
ṗn point of coordinates (v,z) belonging to the sub-frame marked as relevant
ṗnP point with maximum probability value

ṗnTM point with maximum template matching value
p̄nIV F point with maximum intensity variation function value
Tn (p) template matching value for a point p; see Equation (7)
P (p) probability value for a point p; see Equation (4)
ψ (p) score associated to the point p; see Equation (9)

δ adaptive threshold for restricting the computational domain of the TM step
ε minimum score ψ (p) to be reached by at least one relevant point
α weight for the TM value
β weight for the probability value
Φ target window area in the computation of Tn (p)

Cn(p) correlation output plane value for a point p; see Equation (2)
Λ target window area during the target detection phase (Section 3.1)

S{Pe} size of the domain of evaluated points

For each relevant point ṗn, a motion vector (pn−1, ṗn) is computed in order to be compared with the
predicted motion vector (pn−1, p̂n) following Equation (4). The likelihood value P (ṗn) resulting from
the comparison of motion vectors is used along the value resulting from the computation of the template
matching value T n (ṗn) for the same point with the aim of defining a score as follows:

ψ (ṗn) = P (ṗn)× T n (ṗn) (9)

where ψ (ṗn) is the score associated with a relevant point ṗn. To ensure that a significant number of
relevant points is found for a specific frame, i.e., the subset is not too small, a minimum score ε is
required. If no point in the current subset reaches the required minimum score ε, the threshold δ is
lowered, so that other relevant points can be added to the subset. Once the set of points is considered
large enough, i.e., when at least one of the points in the subset reaches the required minimum score ε,
the algorithm should decide which of these points represents the target in the current frame. The point
with the highest probability ṗnP and the point with the highest TM value ṗnTM are subjected to a weighted
comparison to decide whether to choose ṗnP or not. The Boolean function performing the decision is
represented in the following:

a×
(
bc+ b̄d+ e

)
(10)
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In Equation (10), a weight α is used for the TM value, and a weight β is used for the probability one.
In particular,

a = T n(ṗnP ) + α > T n(ṗnTM)

b = P (ṗnP ) < 0.9

c = P (ṗnP )− β > P (ṗnTM)

d = P (ṗnP ) > P (ṗnTM)

e = P (ṗnTM) + η < P (p̄nIV F )

(11)

When the Boolean function (10) returns a true value, ṗnP is selected as the position for the target in
the current frame; otherwise ṗnTM is compared to the IVF candidate position p̄nIV F . Experimental results
in Section 5 have been gathered using η equal to α; moreover, the required level of confidence in the
probability metric was set to 0.9.

Likewise, the following Boolean function has been designed to choose between ṗnTM and p̄nIV F :

f × (g + h)× i (12)

where:

f = ψ(p̄nIV F ) > 0

g = ψ(p̄nIV F ) + ι > ψ(ṗnTM)

h = T n(ṗnTM)− T n(p̄IV F ) < 0.15

i = P (p̄nIV F ) + ξ > P (ṗnTM)

(13)

In Equation (12), ξ is numerically equivalent to ι in the performed tests. In this case, when the
Boolean function (12) returns a true value, p̄nIV F is selected as the position of the target in the current
frame; otherwise ṗnTM is selected. Weights in the above equations are assigned so that the correlation is a
main criterion for the selection of the target position; on the other hand, also the motion prediction-based
metric is taken into account to make sure that the best possible choice is made.

Moreover, the candidate points obtained from the IVF step are always reconsidered against the TM
preferred points as in [18]; this is to avoid the TM being subject to drifting and losing the target, as
happens when only TM routines are used, without an IVF-based target detection phase. Overall, the
logic represented in Equations (10) and (12) showed a satisfactory robustness at the cost of using some
thresholds. These levels of confidence depend on sequence features and on the desired precision of
the algorithm.

5. Results and Discussion

The performance of the proposed algorithm in terms of tracking speed has been evaluated, both
from a theoretical and experimental point of view. In fact, the primary objective of the relevance-based
algorithm is to enhance the computational efficiency by discarding useless computations in areas with a
low probability of finding a target. A preliminary theoretical analysis of the improvements introduced by
adopting the devised technique has been carried out with respect to the reference algorithms ATT [17]
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and PATT [18], on which this work is based. For this purpose, a set of metrics has been designed in
Section 5.1 to enable a fair comparison between these algorithms. Moreover, the analysis of the tracking
speed has been widened by taking into account several alternative and faster algorithms according to a
recent benchmark on online tracking [25].

5.1. Assessment Criteria

With the aim of evaluating the computational efficiency of the devised technique, this section
introduces the metrics designed to make a comparison with the reference tracking methods [17,18].

As previously described, all the considered algorithms share the computation of the template matching
Function (7), which is activated when tracking error conditions are met. In reference algorithms, the
template matching function T n(Pe) is computed for each evaluation point Pe(v, z) with coordinates
(v, z) lying inside the sub-frame. For each evaluation point Φ subtractions, Φ− 1 additions, one division
and one exponentiation are required, where Φ is the target window area, as defined in Section 3.4. The
complexity of the implementation is therefore O(Φ) for reference algorithms.

The devised technique proposes to execute the T n(Pe) function on a subset of points of the sub-frame.
The operations executed on each relevant point are: Φ subtractions, Φ − 1 additions, one division,
one multiplication and one computation of probability. Since the algorithm implementing the probability
computation has a complexity O(1), the overall complexity of the proposed implementation is also
O(Φ); from these considerations, it follows that the size S{Pe} of the domain of evaluated points Pe can
be assumed as a valid comparison metric to evaluate the complexity savings of the proposed algorithm
with respect to the reference algorithms.

In the reference algorithms, the size of the domain of evaluated points directly depends on the number
of template matching activations m, and it is proportional to the size of the target window during the
target detection phase:

S{Pe} = Λ×m (14)

On the other hand, the size of the domain of evaluated points with the relevance-based algorithm is
defined as follows:

S{Pe} = |{p : Cn(p) ≥ δ}| (15)

The comparison of the domain size of the template matching function is useful for giving an idea of
the boost in performance, as discussed in Section 5.3. However, since it relates to only a portion of the
overall tracking algorithm, it is necessary to introduce also another metric able to take into account the
most relevant parts of the target tracking algorithms. With this intent, it is worth defining the number of
operations required by the different algorithms, including IVF execution from the first to the last frame
of a sequence. Since sum and subtraction operations are dominant in both the reference and proposed
implementations, the designed metric is based on the number of these operations. IVF requires a number
of operations dependent on the size of its target window Λ; in particular, it requires Λ subtractions and
Λ− 1 additions. Similarly, the TM phase requires Φ subtractions and Φ− 1 additions; thus, the number
of operations of this kind performed by reference algorithms is computed as follows:

Θ(n,m) = n× [Ψ× (2Λ− 1)] +m× [Ψ× (2Φ− 1)] (16)
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where n is the number of frames in the sequence, m identifies the number of activations of the TM phase
in the sequence, Ψ is the sub-frame area and Λ is the IVF target window area. The number of operations
for the reference algorithms can be computed with the same Equation (16), because it is not dependent
on the activation strategy, and the same TD and TM phases are used by both algorithms.

Similarly, the number of operations performed by the proposed algorithm is computed as follows:

Ω(n, p) = n× [Ψ× (2Λ− 1)] + p× (2Φ− 1) (17)

In Equation (17), p is the number of relevant points found and analyzed throughout the sequence,
whereas the other symbols have the same meaning as Equation (16). It is worth noticing that, in
both formulas, a double contribution is considered: the first product takes into account IVF operations,
whereas the second product is related to the TM phase.

5.2. Analysis of Computational Complexity

The proposed algorithm, in the following referred to as RATT (relevance-based ATT), and the
reference ones have been tested on a set of FLIR sequences to measure the designed metrics and to
perform an analysis of their computational complexity. Sequences from various public datasets have
been considered to take into account different target shapes, background scenarios and sensor and image
characteristics (such as resolution). The considered datasets include the OTCBVS 03/OSU (Ohio State
University) Color and Thermal Database [24], the Army Missile Command (AMCOM) FLIR dataset
and the AIC (Adaptive Information Cluster) Thermal/Visible Nighttime Database [1,26]. The first
and the latter concern the tracking of pedestrians, whereas the second one represents a database of
military sequences.

Figure 2. Excerpts from the considered dataset. (a) OTCBVS (Object Tracking and
Classification Beyond the Visible Spectrum) sequence; (b) Army Missile Command
(AMCOM) sequence; (c) AIC (Adaptive Information Cluster) Thermal Database sequence.

(a) OTCBVS (b) AMCOM (c) AIC

Figure 2 shows some excerpts taken from the aforementioned datasets. Sequences from the OTCBVS
03/OSU Color and Thermal Database have a resolution equal to 320 × 240 pixels. the AMCOM
sequences are provided at a resolution equal to 120×120 pixels, and the AIC Thermal/Visible Nighttime
frames have a resolution of 640× 480 pixels. In all of the considered datasets, test sequences have been
extracted in such a way that target losses do not occur by using reference algorithms. In particular, twelve
sequences have been extracted, both from the OTCBVS and AMCOM datasets, and two sequences have
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been considered for the AIC database. For each sequence, one or more particular subset of frames has
been identified to isolate the appearance and disappearance of targets; in fact, the coordinates and size
of the target have been provided to the algorithms for the first frame of each sequence.

Both the reference and the proposed algorithms have been executed on the datasets using the same
common parameters. In particular, all of the three algorithms share the same sub-frame size, target
window size and the initial target position. The target window size is different for each sequence, since
it depends on the shape of the target itself; on the other hand, the sub-frame has been kept constant with
a size equal to 33 × 33 pixels, as indicated in [17] for the first two datasets (OTCBVS and AMCOM).
A slightly wider sub-frame (44× 44 pixels) has been used with the AIC dataset for enabling a complete
encapsulation of the target window inside the sub-frame. Instead, concerning only the comparison
with the PATT algorithm, the same level of confidence µ has been used to trigger the activation of
the TM phase.

Table 2. Comparison of the number of activations m of the TM phase and the number of
evaluated points S{Pe} among the proposed algorithm and the reference ones, ATT (automatic
target tracking) [17] and and PATT (predictive automatic target tracking) [18]. O, OTCBVS
dataset; A, AMCOM dataset; AI, AIC dataset; RATT, relevance-based ATT.

Dataset ATT [17] PATT [18] RATT ∆ ATT [17] ∆ PATT [18]
Seq. L STW m S{Pe} m S{Pe} m S{Pe} S{Pe}% S{Pe}%

O 03-l1s1ir-1 154 16 × 30 41 44,649 23 25,047 60 846 1.89% 3.38%
O 03-l1s1ir-2 637 7 × 15 4 4,356 4 4,356 F F - -
O 03-l1s2ir-1 557 10 × 22 27 29,403 16 17,424 69 648 2.20% 3.72%
O 03-l1s2ir-2 339 10 × 20 112 121,968 92 100,188 105 635 0.52% 0.63%
O 03-l1s2ir-3 96 9 × 18 11 11,979 4 4,356 45 1,548 12.92% 35.54%
O 03-l1s2ir-4 24 12 × 30 0 0 0 0 8 18 >100% >100%
O 03-l1s3ir-1 84 11 × 24 31 33,759 29 31,581 37 238 0.70% 0.75%
O 03-l1s3ir-2 787 8 × 15 33 35,937 0 0 83 373 1.04% >100%
O 03-l1s3ir-3 448 10 × 24 4 4,356 40 43,560 6 26 0.60% 0.06%
O 03-l2s4ir-1 270 11 × 30 45 49,005 61 66,429 67 2,080 4.24% 3.13%
O 03-l2s6ir-1 323 15 × 28 8 8,712 124 135,036 200 1,382 15.86% 1.02%

A 14-15-mantruck 281 10 × 10 6 6,534 3 3,267 19 96 1.47% 2.94%
A 16-08-m60 290 13 × 7 60 65,340 18 19,602 32 2,788 4.27% 14.22%
A 16-08-apc 80 14 × 8 3 3,267 3 3,267 5 11 0.34% 0.34%
A 16-18-apc 300 11 × 8 15 16,335 1 1,089 29 161 0.99% 14.78%
A 16-18-m60 103 14 × 8 2 2,178 0 0 1 1 0.05% >100%
A 17-02-mantruck 221 9 × 9 2 2,178 16 17,424 39 1,511 69.38% 8.67%
A 17-02-bradley 185 9 × 9 5 5,445 9 9,801 6 132 2.42% 1.35%
A 18-13-m60 227 9 × 9 25 27,225 8 8,712 34 550 2.02% 6.31%
A 18-16-m60 162 12 × 12 79 86,031 5 5,445 17 150 0.17% 2.75%
A 19-06-apc 208 10 × 10 6 6,534 7 7,623 41 367 5.62% 4.81%
A 21-17-apc 360 12 × 12 0 0 1 1,089 51 229 >100% 21.03%

AI ir11-1 263 21 × 40 93 180,048 110 212,960 147 8,789 4.88% 4.13%
AI ir11-2 155 25 × 37 101 195,536 109 211,024 103 2,993 1.53% 1.42%

Table 2 reports the results for all of the above-mentioned sequences concerning the number of
activations of the TM phase and the number of evaluated points. The first three columns provide the
identifier of the sequence (Seq.), its length L (expressed in frames) and the size of the target window
STW , respectively. The fourth and fifth column show the number of activations m of the TM phase and
the size of the domain of evaluated points S{Pe} for the ATT algorithm. Similarly, the next four columns
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provide the same information for the PATT algorithm and the proposed one, respectively. Finally, the last
two columns give an indication of the behavior of the proposed algorithm with respect to ATT (second
to last column) and PATT (last column), in terms of the variation of the size of the domain of evaluated
points. More specifically, they indicate the percentage of points for which the template matching function
T n(Pe) is evaluated by using Equation (7) for the proposed algorithm with respect to the ones evaluated
by the reference techniques. S{Pe} is computed by using Equations (14) and (15).

The theoretical analysis shows that, in general, it is possible to hugely reduce the size of the function
domain despite a higher number of TM activations that are triggered by the algorithm. In fact, in most
cases, the number of evaluated points is a small percentage of the size of the original domains. For
example, let us consider sequence otcbvs 03-l2s6ir-3: a very high number of activations occur using
the proposed algorithm (template matching is triggered 200-times, about two thirds of the length of the
sequence); on the other hand, ATT requires only eight activations, and PATT requires 124 activations.
Nevertheless, the proposed technique really evaluates the template matching function on 15.86% of the
points with respect to ATT and only on 1.02% of the points with respect to PATT.

The different number of observed activations among algorithms is due to the different results given by
the respective template matching processes. In this way, the history of target positions slightly changes
and different probabilities are computed, which, in turn, are used to determine the activation of the TM
phase. In some cases, reference algorithms never trigger any recovery phase.

Figure 3 visually shows the tracking results by running the proposed algorithm on a sequence for each
dataset. Since the behavior of ATT and PATT from the point of view of the tracked position is analogous
to RATT, their frames are omitted. The OTCBVS dataset is represented by the frames extracted from the
sequence 03-l2s4ir-1 in Figure 3a–d, where pedestrians are tracked throughout the sequence. Vehicles
are considered in the AMCOM dataset; an excerpt of these tests is provided by sequence 16-08-m60 in
Figure 3e–h. Finally, Figure 3i–l concerns again pedestrian tracking (sequence ir11-1). The smallest
rectangle represents the bounding box (i.e., the target window) of the target of interest; the widest one
represents the search area (i.e., the sub-frame).

It is worth pointing out that, in some cases, the proposed computational savings can come at the
expense of the tracking robustness. As anticipated before, sequences have been selected in such a way
that target losses do not occur with the reference algorithms; in Table 2, F indicates a failure in the
tracking algorithm. Considering the extended dataset, the proposed algorithm gets into a target loss
for the sequence otcbvs 03-l1s1ir-12; more in detail, in this case, only 64% of the sequence has been
correctly tracked. For this reason, the comparison of the number of evaluated points is not meaningful;
therefore, in Table 2, it is not reported. On the other hand, all of the other sequences are tracked
successfully. Figures 4 and 5 point out significative frames for the sequence otcbvs 03-l1s1ir-12 using
the ATT and the proposed algorithm, respectively. This sequence represents a challenging situation, due
to the presence of similar targets in the scene. Indeed, though the behavior of the original algorithm is
correct (Figure 4), a tracking failure occurs with the proposed technique (Figure 5); in this case, from (a)
to (e), the tracking is correct; from (f) to (h), the algorithm selects an improper peak in the correlation
output plane, thus giving rise to the failure.
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Figure 3. Tracking results by running the proposed algorithm on sample sequences extracted
from each considered dataset. (a–d) OTCBVS sequence 03-l2s4ir-1; (e–h) AMCOM
sequence 16-08-m60; (i–l) AIC ir11-1.

(a) 03-l2s4ir-1 fr. 1 (b) 03-l2s4ir-1 fr. 42 (c) 03-l2s4ir-1 fr. 93 (d) 03-l2s4ir-1 fr. 269

(e) 16-08-m60 fr. 175 (f) 16-08-m60 fr. 205 (g) 16-08-m60 fr. 266 (h) 16-08-m60 fr. 289

(i) ir11-1 fr. 6 (j) ir11-1 fr. 90 (k) ir11-1 fr. 171 (l) ir11-1 fr. 245

Figure 4. Tracking results with the ATT algorithm for sequence otcbvs 03-l1s1ir-12.
(a) Frame 142; (b) Frame 188; (c) Frame 249; (d) Frame 333; (e) Frame 391; (f) Frame
407; (g) Frame 498; (h) Frame 556.

(a) (b) (c) (d)

(e) (f) (g) (h)
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Figure 5. Tracking results with the proposed algorithm for sequence otcbvs 03-l1s1ir-12.
(a) Frame 142; (b) Frame 188; (c) Frame 249; (d) Frame 333; (e) Frame 391; (f) Frame 407;
(g) Frame 458; (h) Frame 556.

(a) (b) (c) (d)

(e) (f) (g) (h)

The first designed metric gives only an indication of the possibility of reducing the computations.
With the aim of better evaluating the complexity of the considered algorithms, Tables 3 and 4 summarize
the results of the theoretical analysis, introducing the comparison of the number of estimated operations
among the same algorithms considered so far. Moreover, the theoretical analysis is complemented with
real average speed at run-time. The dominant operations in all considered algorithms are the sums and
subtractions performed by IVF and TM; thus, Table 3 shows the number of such operations performed by
all considered algorithms as described in Section 5.3. Due to the different kinds of parameters involved,
the number of operations Θ with ATT and PATT are estimated by using Equation (16) and the number
of operations Ω of the reference algorithm are computed with Equation (17). After listing the number of
operations and the average time per frame TA for each algorithm, the four columns of Table 4 provide
a comparison of the proposed algorithm with ATT and with PATT . In both cases, Table 4 provides
the percentage of the number of operations needed by using the proposed algorithm with respect to
the number of operations needed by using the respective reference algorithm (first and second to last
columns). Overall, the theoretical analysis concludes that in most cases, it is possible to reduce the
number of operations. In particular, as could be expected, the ratio is more significant on sequences with
a relevant number of TM process activations, since the proposed algorithm realizes a real performance
gain only acting on this phase. Nonetheless, the algorithm shows an intrinsic capacity to obtain a
performance gain in sequences with a relatively low signal-to-noise ratio, thanks to the mechanism used
to determine a sufficient set of relevant points. For instance, in sequence otcbvs 03-l1s3ir-1, the number
of activations is comparable among the algorithms, but the gain in terms of reducing the number of
operations by using the proposed one is quite significant; in fact, less than 5% of the operations are
performed with respect to ATT and PATT, even though the proposed algorithm activates the TM phase a
higher number of times than the reference algorithms. Nonetheless, the performance gain becomes less
significant when the percentage SPe of evaluated points between the reference and proposed algorithms
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increase. As can be observed, in sequence amcom 17-02-mantruck, where SPe is high, the savings in the
performed operations is rather low in percentage terms (only 86.32% operations with respect to ATT).

Table 3. A comparison of the number of estimated operations (Θ and Ω) and the real average
time per frame TA among the proposed algorithm and the reference ones ATT [17] and
PATT [18]. O, OTCBVS dataset; A, AMCOM dataset; AI, AIC dataset.

Dataset ATT [17] PATT [18] RATT
Seq. Θ TA (ms) Θ TA (ms) Ω TA (ms)

O 03-l1s1ir-1 44,327,745 1.38 25,529,427 0.6 1,566,894 0.195
O 03-l1s1ir-2 7,153,641 0.105 7,153,641 0.075 F F
O 03-l1s2ir-1 18,367,074 0.705 13,108,293 0.615 5,489,448 0.33
O 03-l1s2ir-2 51,987,771 1.515 43,297,551 1.41 3,364,434 0.135
O 03-l1s2ir-3 4,810,113 0.195 2,347,884 0.165 955,431 0.06
O 03-l1s2ir-4 235,224 0.015 235,224 0.09 240,976 0.015
O 03-l1s3ir-1 18,614,277 0.69 17,466,471 0.975 842,783 0.225
O 03-l1s3ir-2 16,302,330 0.525 7,713,387 0.375 7,733,224 0.42
O 03-l1s3ir-3 6,477,372 0.15 25,256,088 0.87 4,393,722 0.135
O 03-l2s4ir-1 34,940,565 1.065 46,422,981 1.365 2,690,423 0.3
O 03-l2s6ir-1 10,475,091 0.3 116,460,927 4.11 3,333,523 0.24

A 14-15-mantruck 4,054,347 0.21 3,404,214 0.165 2,757,862 0.17
A 16-08-m60 14,668,830 0.42 6,390,252 0.24 2,848,082 0.20
A 16-08-apc 1,512,621 0.18 1,512,621 0.09 785,195 0.09
A 16-18-apc 5,798,925 0.255 3,130,875 0.21 2,945,375 0.16
A 16-18-m60 1,495,197 0.075 1,009,503 0.075 1,009,726 0.06
A 17-02-mantruck 2,516,679 0.15 4,971,285 0.225 2,172,300 0.14
A 17-02-bradley 2,689,830 0.21 3,391,146 0.18 1,814,151 0.17
A 18-13-m60 6,608,052 0.63 3,627,459 0.15 2,230,301 0.19
A 18-16-m60 26,278,659 1.23 3,150,477 0.15 1,592,641 0.14
A 19-06-apc 3,338,874 0.165 3,555,585 0.165 2,046,767 0.17
A 21-17-apc 3,528,360 0.225 3,840,903 0.165 3,542,997 0.24

AI ir11-1 306,883,104 4.88 362,142,352 5.18 4,829,325 0.39
AI ir11-2 364,246,784 6.99 392,884,096 5.5 2,891,167 0.24

As anticipated, since the theoretical analysis presented in Tables 3 and 4 is based on a series of
assumptions (Section 5.1), the computation time per frame has been gathered for each algorithm to
be able to compare the real performance (third, fifth and seventh column of the same table). The
measured running time inherently includes all of the algorithmic details and, obviously, depends on
the implementation of the algorithm. Experiments have been carried out by using a 2.13-GHz Intel
Core 2 CPU. Similarly to the theoretical comparison of the number of operations, the third to last and
last columns show the ratio between the average time per frame for the proposed algorithm and for the
respective reference one (expressed in percentage terms). Furthermore, in this case, percentages smaller
than 100% indicate savings in running time. In general, the proposed algorithm shows firm improvements
with a growing number of activations. For example, when the reference algorithms do not need any
TM activation (e.g., in the OTCBVS dataset in sequences otcbvs 03-l1s2ir-4 and otcbvs 03-l1s3ir-2)
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or this number is very low (e.g., in the AMCOM dataset in sequences amcom 14-15-mantruck,
amcom 16-08-apc, amcom 19-06-apc and amcom 21-17-apc), the speed of the proposed algorithm is
comparable to those of the reference ones. On the other hand, it is possible that the low signal-to-noise
ratio of the sequences or the presence of similar targets in the scene induces a considerable number
of activations; in these cases, e.g., in the AIC dataset in sequences aic ir11-1 and aic ir11-2 or in the
OTCBVS dataset in sequence otcbvs 03-l1s2ir-2, the proposed algorithm is able to noticeably boost the
performance of the target tracking application.

Table 4. A comparison of the number of estimated operations (∆%O ) and real average
time per frame ∆%TA with respect to the reference algorithms, ATT [17] and PATT [18].
O, OTCBVS dataset; A, AMCOM dataset; AI, AIC dataset.

Dataset RATT/ATT [17] RATT/PATT [18]
Seq. ∆%O ∆%TA ∆%O ∆%TA

O 03-l1s1ir-1 3.53% 14.13% 6.14% 32.50%
O 03-l1s1ir-2 - - - -
O 03-l1s2ir-1 29.89% 46.81% 41.88% 53.66%
O 03-l1s2ir-2 6.47% 8.91% 7.77% 9.57%
O 03-l1s2ir-3 19.86% 30.77% 40.69% 36.36%
O 03-l1s2ir-4 102.45% 100.00% 102.45% 16.67%
O 03-l1s3ir-1 4.53% 32.61% 4.83% 23.08%
O 03-l1s3ir-2 47.44% 80.00% 100.26% 112.00%
O 03-l1s3ir-3 67.83% 90.00% 17.40% 15.52%
O 03-l2s4ir-1 7.70% 28.17% 5.80% 21.98%
O 03-l2s6ir-1 31.82% 80.00% 2.86% 5.84%

A 14-15-mantruck 68.02% 80.02% 81.01% 101.84%
A 16-08-m60 19.42% 48.03% 44.57% 84.06%
A 16-08-apc 51.91% 51.22% 51.91% 102.43%
A 16-18-apc 50.79% 62.59% 94.08% 76.00%
A 16-18-m60 67.53% 80.00% 100.02% 80.00%
A 17-02-mantruck 86.32% 93.33% 43.70% 62.22%
A 17-02-bradley 67.44% 80.02% 53.50% 93.35%
A 18-13-m60 33.75% 30.68% 61.48% 128.88%
A 18-16-m60 6.06% 11.61% 50.55% 95.17%
A 19-06-apc 61.30% 101.84% 57.56% 101.84%
A 21-17-apc 100.41% 108.39% 92.24% 147.80%

AI ir11-1 1.57% 7.99% 1.33% 7.53%
AI ir11-2 0.79% 3.43% 0.74% 4.36%

5.3. Tracking Speed vs. Tracking Robustness

After having analyzed the tracking speed of the proposed approach with respect to the reference
algorithms, it is worthwhile to extend this analysis to the state-of-the-art algorithms in target tracking
scenarios. For this purpose, a set of experimental tests has been carried out by considering several
alternative techniques. In particular, they have been selected from a recently implemented benchmark
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on online tracking [25]. The benchmark is composed of a rather heterogeneous set of target tracking
algorithms, but only the most relevant ones for the scope of this work have been chosen for comparison,
i.e., the fastest techniques, based on a study presented in [27]. In particular, nine of 29 algorithms have
been selected, and all of the them have been tested using their default parameters, like in [25]. The
terminology used for identifying the algorithms in this manuscript directly follows the one used in [25].
Moreover, each sequence has been evaluated also in terms of tracking failures in order to find a trade-off
between tracking speed and robustness among the various approaches. Furthermore, in this case, various
datasets have been considered to test the algorithms in different working conditions.

Results gathered using the considered algorithms are summarized in Table 5. The first two columns
identify the name of each sequence and its length. Then, for each considered technique, two columns
show the measurements: the first represents the number of tracked frames Tf for a given sequence
(expressed as a percentage value with respect to the length of the sequence), and the latter represents the
average tracking speed of the algorithm expressed in frames per second (fps). The first three algorithms
are ATT [17], PATT [18] and the proposed one (abbreviated as RATT). Each subsequent technique is
identified by the same acronyms used in [25]. Sequences are grouped by dataset, and their average
results are highlighted in bold, just as an indication of the performance of the techniques on different
datasets. The percentage of tracked frames Tf for each dataset is computed as the ratio between the
sum of the number of correctly tracked frames and the total number of frames in a given dataset (L).
Similarly, the average speed (SA) for each dataset is computed as the ratio between the sum of the
average frames per second achievable in each sequence of the dataset itself and the total number of
frames in the same dataset.

The performance in terms of achievable frames per second for each technique is quite consistent
within each dataset. Indeed, the tracking speed for each technique depends both on parameters that are
in common within the dataset (such as image resolution) and on parameters that can be set separately
for tracking each sequence (e.g., the target window size, which is indicated in Table 2). As expected,
the fastest algorithm is KMS [28]. By considering separately the three datasets, the proposed algorithm
is second to only KMS, except for the OTCBVS dataset. In fact, in this case, the CSK [29] algorithm
provides a higher frame rate than RATT. On the other hand, RATT is faster than KMS on the AMCOM
and AIC datasets. The reason resides in the different behavior of the two algorithms. More in detail,
CSK is an efficient algorithm that exploits the redundancy that characterize the targets in the process of
sampling their features. Generally, OTCBVS sequences are characterized by well-defined target shapes
that generate a high contrast with the background. Conversely, the AMCOM and AIC sequences are
characterized by a low signal-to-noise ratio; indeed, these sequences present a lot of noise that changes
the background around the target frame by frame. This fact indicates that CSK should be preferred in
sequences where the target shape and background do not considerably change, such as the ones in the
OTCBVS scenario.
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Table 5. A comparison of the percentages of tracked frames and the speed for different tracking algorithms applied to three datasets.
TM, template matching.

Datasets ATT [17] PATT [18] RATT KMS [28] CSK [29] TM PD VR RS CPF [30] MS [31] SMS [20]
Sequence L Tf SA Tf SA Tf SA Tf SA Tf SA Tf SA Tf SA Tf SA Tf SA Tf SA Tf SA Tf SA

(%) (fps) (%) (fps) (%) (fps) (%) (fps) (%) (fps) (%) (fps) (%) (fps) (%) (fps) (%) (fps) (%) (fps) (%) (fps) (%) (fps)

otcbvs 03-l1s1ir-1 154 100 322 100 430 100 521 35 3,998 100 207 100 81 100 74 100 65 100 76 100 71 19 60 19 51
otcbvs 03-l1s1ir-2 637 100 546 100 556 64 442 6 6,217 27 1,191 100 98 26 99 25 79 7 69 13 71 2 65 1 35
otcbvs 03-l1s2ir-1 557 100 412 100 427 100 487 33 5,189 41 637 45 98 55 93 100 82 49 61 58 48 28 64 13 26
otcbvs 03-l1s2ir-2 339 100 309 100 319 100 538 3 5,895 34 1,073 100 99 89 86 0 82 2 62 4 91 2 64 2 16
otcbvs 03-l1s2ir-3 96 100 521 100 529 100 560 6 5,764 100 1,044 100 100 100 86 100 77 100 61 76 90 6 64 12 46
otcbvs 03-l1s2ir-4 24 100 575 100 551 100 575 32 3,890 100 209 100 96 36 68 0 65 32 57 100 84 60 61 20 32
otcbvs 03-l1s3ir-1 84 100 414 100 370 100 513 59 5,133 100 537 100 99 100 75 21 73 100 59 100 78 20 63 7 65
otcbvs 03-l1s3ir-2 787 100 444 100 476 100 466 4 6,023 1 1,083 3 91 46 83 46 87 4 62 21 79 3 64 1 39
otcbvs 03-l1s3ir-3 448 100 533 100 385 100 538 4 5,343 96 698 33 80 100 86 100 85 3 68 100 82 73 63 3 134
otcbvs 03-l2s4ir-1 270 100 358 100 324 100 494 26 4,720 100 561 100 91 100 81 100 92 100 75 100 77 25 63 100 82
otcbvs 03-l2s6ir-1 323 100 494 100 171 100 509 91 4,924 100 570 100 90 100 76 17 92 100 60 20 80 80 61 6 27

OTCBVS TOTAL 3719 100%450 100%417 94% 492 21% 5,523 51% 850 63% 93 68% 87 57% 83 35% 65 46% 74 25% 64 12% 49
amcom 14-15-mantruck 281 100 1,626 100 1,754 100 1,745 1 6,663 53 864 75 496 100 474 100 436 100 280 5 124 1 379 1 19
amcom 16-08-m60 290 100 1,220 100 1,550 100 1,648 1 6,250 59 821 100 588 100 422 41 463 100 334 41 115 1 399 14 16
amcom 16-08-apc 80 100 1,709 100 2,000 100 2,011 4 7,557 12 805 100 555 74 416 15 451 62 326 62 110 4 393 9 11
amcom 16-18-apc 300 100 1,515 100 1626 100 1,771 1 6,902 1 830 100 571 27 385 23 430 37 327 10 128 1 384 20 19
amcom 16-18-m60 103 100 2,083 100 2,083 100 2,128 4 7,529 100 816 100 416 46 399 13 426 100 324 78 102 3 364 6 7
amcom 17-02-mantruck 221 100 1,802 100 1,587 100 1,818 1 7,578 41 833 100 463 100 478 100 409 52 335 54 116 2 406 2 13
amcom 17-02-bradley 185 100 1,626 100 1,709 100 1,745 3 7,506 11 770 81 503 43 470 43 426 38 329 59 110 2 390 38 14
amcom 18-13-m60 227 100 966 100 1,802 100 1671 63 7,301 13 791 65 548 9 452 2 451 57 324 2 102 4 402 57 23
amcom 18-16-m60 162 100 612 100 1,802 100 1,826 22 7,114 31 805 77 497 100 468 74 415 56 321 56 103 9 389 93 9
amcom 19-06-apc 208 100 1,754 100 1,754 100 1,745 10 7,609 29 604 100 535 38 473 100 436 59 326 96 110 2 391 3 15
amcom 21-17-apc 360 100 1,587 100 1,754 100 1,541 1 6,768 1 763 1 536 100 420 100 410 1 322 1 112 1 392 1 15

AMCOM TOTAL 2,417 100%1,477 100%1,725 100%1,737 9% 7,045 29% 792 76% 527 70% 441 62% 431 56% 322 34% 114 2% 391 20% 16
aic ir11-1 263 100 151 100 145 100 472 100 3,496 100 162 100 73 100 72 100 72 100 60 100 81 38 65 23 2
aic ir11-2 155 100 115 100 138 100 508 100 3,769 100 196 100 72 100 85 100 68 100 50 100 67 12 62 19 2

AIC TOTAL 418 100%138 100%142 100%485 100%3,597 100%175 100%73 100%77 100%71 100%56 100%76 28% 64 22% 2
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The KMS algorithm [28] is the fastest. However, in this case, the speed comes at the cost of a
general decrease of robustness. In fact, the KMS algorithm was one of the algorithms with the lowest
performance in terms of the number of correctly tracked frames. The only exception is the result in the
AIC dataset, where KMS continues to outperform the proposed algorithm in terms of speed, and it is also
able to achieve the same result in terms of robustness. In this case, it is worth considering that the test
sequences do not present particular challenges in terms of possible failures, due to the static and rather
uniform nature of the background; in fact, most algorithms (all, but two) have been able to correctly
track all of the frames of the sequences.

Nonetheless, it is worth noticing that in AIC, the relative improvements concerning the speed of
the RATT algorithm versus the speed of other algorithms are significantly higher than in the other two
datasets. In fact, RATT performance in terms of average speed is better, but still comparable to, e.g.,
the performance of ATT and PATT (in OTCBVS, on average, 492 fps are achieved by RATT, whereas
ATT and PATT reach 450 fps and 417 fps, respectively; in AMCOM, on average, 1737 fps are achieved
by RATT, whereas ATT and PATT reach 1477 fps and 1725 fps). Instead, in AIC, the improvement in
average speed is much better in relative terms than other algorithms; e.g., in RATT, on average, 485 fps
can be achieved, whereas only 138 fps and 142 fps can be reached by ATT and PATT, respectively
(tripling the improvement in speed with respect to the other datasets). In fact, as indicated in Table 2, the
AIC dataset is characterized by a high number of TM activations (m), which is the main reason for the
computational time savings.

6. Conclusions

This paper presented a novel algorithm for improving the speed performance in target tracking
applications making use of template matching (TM) techniques in forward-looking infrared images
(FLIR). The template matching algorithm is improved by selecting a representative group of points
on which it has to be executed, thus reducing both execution time and resources usage. The selection
strategy is based on dynamic thresholding and on the results of the target detection (TD) phase. After
analyzing the theoretical impact, the paper discusses the results obtained by comparing the proposed
technique and the reference implementations on different datasets. Moreover, several alternative
techniques are evaluated and included in the performance analysis.

The proposed algorithm showed significant computational performance improvements with respect
to reference algorithms, although this came at the cost of introducing some more parameters. Besides
target window size and sub-frame size, the two reference algorithms depend only on a probability
threshold and on the value of a parameter, whereas the new implementation requires also weights for
computing probability and TM values to compare relevant points and a minimum score threshold to
get a set of relevant points large enough to be representative of the whole sub-frame without losing
essential information.

A different weighting strategy might be devised in the future to improve the precision of the algorithm
and to reduce its dependency on arbitrary parameters that may be a hindrance to its use in real-time
automatic target tracking applications. For instance, a strategy based on frame features might be used
to determine, in a frame-by-frame fashion, the minimum score needed to ensure that the relevant points
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are a representative set for the current frame. With a similar strategy, a mechanism to automatically
set the weights on probability and TM values could be determined in a frame-by-frame fashion. Even
though such a strategy might increase the computational complexity of the algorithm, the performance
gain found in this paper should be enough to cover the increased complexity.
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