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Abstract: In this study, a multiple kernel learning support vector machine algorithm is 

proposed for the identification of EEG signals including mental and cognitive tasks, which 

is a key component in EEG-based brain computer interface (BCI) systems. The presented 

BCI approach included three stages: (1) a pre-processing step was performed to improve 

the general signal quality of the EEG; (2) the features were chosen, including wavelet 

packet entropy and Granger causality, respectively; (3) a multiple kernel learning support 

vector machine (MKL-SVM) based on a gradient descent optimization algorithm was 

investigated to classify EEG signals, in which the kernel was defined as a linear 

combination of polynomial kernels and radial basis function kernels. Experimental results 

showed that the proposed method provided better classification performance compared 

with the SVM based on a single kernel. For mental tasks, the average accuracies for  

2-class, 3-class, 4-class, and 5-class classifications were 99.20%, 81.25%, 76.76%, and 

75.25% respectively. Comparing stroke patients with healthy controls using the proposed 

algorithm, we achieved the average classification accuracies of 89.24% and 80.33% for  

0-back and 1-back tasks respectively. Our results indicate that the proposed approach is 
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promising for implementing human-computer interaction (HCI), especially for mental task 

classification and identifying suitable brain impairment candidates. 

Keywords: brain computer interface; mental task; stroke patients; multiple kernel learning; 

polynomial kernel; radial basis function kernel 

 

1. Introduction 

A brain computer interface (BCI) system is generally composed of a set of sensors and signal 

processing units, which can establish an information communication channel between a subject’s brain 

and an external device. The realization of electroencephalography (EEG)-based BCI systems mainly 

involves three processes: first, the brain activity is recorded by means of electrodes located on the 

scalp and then a pre-processing step is applied to remove artifacts in order to enhance the  

signal-to-noise ratio; second, a feature extraction step is performed to extract meaningful information 

from raw EEG signals; the last step is conducted to translate such specific features into effective 

control commands and drive the external device. Since the implementation of BCI does not depend on 

peripheral nerves and muscles, it is particularly useful for individuals who suffer from the motor 

disorder with the cognitive ability [1–6].  

EEG-based BCI technologies can be divided into many categories. In this study, we concentrate on 

the mental task recognition [7] and the P300 evoked related potential (ERP) recognition [8]. Keirn and 

Aunon [9] proposed that it was possible to accurately distinguish between various mental tasks using 

only the EEG. Many classification algorithms have been developed to improve mental task-based BCI 

performance due to the difficulty in obtaining high classification accuracy [10]. Garrett et al. [11] 

applied one linear (i.e., linear discriminant analysis (LDA)) and two nonlinear (neural network (NN) 

and support vector machine (SVM)) classifiers to the classification of spontaneous EEG during five 

mental tasks. Palaniappan [10] used the spectral power differences in four bands and a NN classifier to 

classify different mental tasks. Li et al. [12] studied the classification of mental task EEG signals using 

SVM. Gupta et al. [13] used the relevant features with the SVM and LDA techniques to classify 

mental tasks. 

Some studies have been also motivated by the goal of using EEG with effective algorithms to 

identify cognitive impairment patients. Lehmann et al. explored the ability of a multitude of linear and 

non-linear classification algorithms (i.e., LDA, NN, SVM) to discriminate between EEG signals of 

patients with varying degrees of cognitive impairment [14]. Dauwels et al. used LDA and quadratic 

discriminant analysis (QDA) to classify cognitive impairment [15]. Gallego-Jutglà et al. used theta 

band power and LDA to achieve the best accuracy for diagnosing cognitive impairment [16]. 

In those EEG-based classification algorithms, although LDA has a very low computational 

requirement, it is not suitable for solving nonlinear problems [17]. NN can make the classification 

more flexible. However, the NN classifier requires a large number of training data and is also sensitive 

to over-fitting, especially for noisy and nonstationary data such as the EEG. This is because NN based 

on empirical risk minimization cannot control the learning mode well and requires more empirical 
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parameters [18]. SVM based on structural risk minimization yields good performance in many 

applications, especially for solving problems with high dimension, nonlinearity and small dataset [19]. 

In SVM, a kernel function is an essential element, which maps samples in one feature space to 

another feature space. However, it is often unclear what the most suitable kernel for a task at hand is, 

and hence the user may wish to combine several possible kernels. One problem with simply adding 

kernels is that using equal weights is possibly not optimal. For instance, if one kernel is not correlated 

with the classification problem at all, then assigning it a great weight will degrade the performance. 

Multiple kernel learning SVM (MKL-SVM) is an efficient way of optimizing kernel weights [20,21]. 

Compared with a single kernel SVM, MKL-SVM can enhance the interpretability of the decision 

function and improve the performance [22–24].  

For a BCI system, a major component is efficient feature extraction from multi-channel EEG 

signals. In recent years, as useful tools for analyzing the complexity and rhythm information of EEG 

signals, several popular approaches for the extraction of quantitative EEG features have been 

introduced, such as wavelet packet entropy (WPE), causality analysis, etc. Since EEG signals are  

non-stationary (both time-varying and space-varying), these methods are excellent candidates for the 

feature extraction process [25,26]. 

In this study, WPE was extracted from the mental task EEG. Granger causality flow was extracted 

from the cognitive task EEG. Then these features and the MKL-SVM classifier were used to perform 

the recognition of different tasks. The mental tasks were baseline task, visual counting task, mental 

letter composing task, mathematical multiplication task, and geometric figure rotation task, respectively. 

The recognition of 2-class, 3-class, 4-class, and 5-class cases of mental task EEG signals were 

performed. The cognitive tasks based on working memory that may elicit a P300 ERP component were 

0-back and 1-back tasks. The recognition of stroke patients and healthy controls was also performed. 

2. Classification Algorithm 

The BCI performance mainly depends on the features and the classification algorithm adopted. The 

recognition efficiency of the classification algorithm is a key issue. Several popular algorithms have 

been developed to serve certain scenarios, such as LDA, NN and SVM [10–16]. These classical 

algorithms will be briefly reviewed. Comparatively, SVM is a powerful approach for pattern 

recognition especially for high dimensional, nonlinear problems. SVM has achieved better classification 

results in mental task and cognitive task classifications. Recent developments on SVM have shown the 

need to consider multiple kernels [23]. This provides flexibility and reflects the fact that typical 

learning problems often involve multiple, heterogeneous data sources. For appropriately designed 

kernels, the optimized combination weights can be used to understand which features are important for 

a specific recognition problem. In this study, we applied the MKL-SVM algorithm to the classifications 

of mental task and cognitive task EEG signals. 

2.1. Brief Review of Popular Classification Algorithms 

The LDA classifier is a dimension reduction method which finds an optimal linear transformation 

that maximizes the class separability. It performs well when the feature vector is multivariate normally 
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distributed in each class group and different groups have a common covariance. However, these 

assumptions are rare in practice. 

The NN classifier is a data driven self-adaptive method and provides a direct estimation of the 

posterior probabilities. It can be viewed as a mapping function, : → , where d-dimensional 

input is submitted to the network and an M-vector network output is obtained to make the 

classification decision. Although the NN classifier can detect complex nonlinear relationships, its 

disadvantages include higher computational cost and the empirical nature of the model, etc. 

The SVM algorithm is based on the statistical learning theory and the Vapnik-Chervonenkis 

dimension [27]. It maps the input patterns into a higher dimension feature space through some 

nonlinear mapping where a linear decision surface is then constructed [28]. In SVM, a kernel function 

implicitly maps samples to a feature space given by a feature mapping [29]. Since there are different 

kernel types, it is often unclear what the most suitable kernel for a task at hand is, and hence  

the user may wish to combine several possible kernels. It is thus desirable to use an optimized kernel 

function that can fit the data structure well [21]. To optimally combine multiple kernels in SVM, the  

MKL-SVM approach is introduced as follows. 

2.2. Multiple Kernel Learning SVM 

We employed an algorithm called SimpleMKL that Rakotomamonjy et al. [30] proposed to solve 

the MKL-SVM problem. The kernel of SimpleMKL is defined as a linear combination of multiple 

kernels. The algorithm is essentially based on a gradient descent on the SVM objective value through a 

weighted 2-norm regularization formulation with an additional constraint on the weights. It can be 

applied to multiclass classification beyond binary classification, meanwhile it has rapid convergence 

and favourable efficiency compared with other algorithms [31–33]. 

SVM is developed from the optimal hyperplane in the case of linear separating. In MKL-SVM, any 

dataset , , where ∈ , ∈ 1,1 , can be separated by an optimal separating hyperplane: 
∑ 0  with the maximum margin between two classes. The constrained optimization 

problem for MKL-SVM is described as [30]: 

min 1, 0, ∀  

min
, , ,

1
2

1
‖ ‖ 	∀

. . 	 	 1

0 ∀

 

(1)

where  is a loose variable. 0  represents a linear separable case, 0  represents a linear 

nonseparable case with certain misclassification. The penalty factor C controls the degree of 

misclassification. M is the total number of kernels used. 	is the weight coefficient of the kernel 

function. Each basic kernel  corresponds to one . Each 	controls the squared norm of  in the 

objective function. The smaller  is, the smoother  will be. Equation (1) can be transformed into 

the following dual form using Lagrange multipliers: 
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2

, 	∀
,

. . 0	

0 ∀

	. (2)

This is a typical dual problem. Only a small number of  are nonzero, and they correspond to some 

data points that are support vectors. 
For the nonlinear case, the original problem can be solved by mapping the original data space into a 

high dimension feature space  with a mapping ∅: → . It is unnecessary to exactly know the 

mapping ∅  if we use the kernel function , ∅ ∙ ∅ , which is a symmetric 

function and satisfies the Mercer condition [21]. The classical kernel functions include polynomial 

function (Poly) , ∙ 1 , radial basis function (RBF) , exp	 ‖
2/2 2  and sigmoidal function (Sig) , tanh	 ∙ , etc. 

	 is updated with the descent direction. The updating scheme is ← , where  is the step 

size. This procedure is repeated until the objective value stops decreasing. The descent direction D is 

defined as: 

0 	 0,
	 	

0

	 	
	 	 0,

,

 (3)

where 
	

∑ , , . 	  is the maximal nonzero component of . 	  is a 

component corresponding to the maximal admissible step size. 

The algorithm is terminated at the following duality gap [30]: 

max
,

,
,

,  (4)

The optimal classification function is: 

sgn ,

, ,
 (5)

3. Methods 

The presented approach consisted of three main parts: (1) the purpose of the pre-processing step 

was to improve the general signal quality of the EEG in order to get more accurate rhythm analysis and 

measurements; (2) the features including WPE and Granger causality were extracted from the EEG 

signals to compose a feature vector for further classification; (3) MKL-SVM was employed to perform 
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the different task classification, and the classification accuracies were used to evaluate the performance 

of the proposed algorithm. 

3.1. Human Subjects 

3.1.1. EEG Data of Mental Task 

The EEG data used in this study were collected by Keirn and Aunon [9]. Seven subjects, 21  

to 48 years old, participated in the experiment. An elastic electrode cap was used to record EEG 

signals. The electrodes were placed on the scalp at C3, C4, P3, P4, O1, and O2 based on the 

international 10–20 system. They were referenced to two electrically linked mastoids, A1 and A2.  

The data were sampled at 250 Hz. Signals were recorded for 10 s during each task. Each task was 

repeated for two sessions. Each session contained five trials. The data are available online at 

http://www.cs.colostate.edu/~anderson. Five different mental tasks were involved [10], namely: 

Baseline Task (denoted by task B): The subjects were told to relax and try to think of nothing. 

Visual Counting Task (denoted by task C): The subjects were told to imagine a blackboard and 

visualise numbers being written on the board sequentially, with the previous number being erased 

before the next number was written. 

Mental Letter Composing Task (denoted by task L): The subjects were told to mentally compose a 

letter to a friend or a relative without vocalising. 

Mathematical Multiplication Task (denoted by task M): The subjects were given nontrivial 

multiplication problems, e.g., 24 times 14 and were told to solve them without vocalising or making 

any other physical movements. 

Geometric Figure Rotation Task (denoted by task R): The subjects were given 30 s to study a 

particular three-dimensional block object, after which the drawing was removed and the subjects 

were told to visualise the object being rotated about an axis. 

3.1.2. EEG Data of Cognitive Task 

Consecutive patients aged 50 years or older with a first-ever acute ischemic stroke at Huadong 

Hospital Affiliated to Fudan University were recruited. All patients underwent cognitive testing, and 

those who met the criteria for mild cognitive impairment were included (n = 13). 13 age- and  

sex-matched healthy controls were enrolled in this cross-sectional study. All subjects were right 

handed and had normal vision. This study was approved by Huadong Hospital Affiliated to Fudan 

University Ethics Board, and all subjects gave written, informed consents before participation. 

As shown in Figure 1, the working memory was assessed using a verbal N-back task [34]. A 

pseudorandom set of 4-digit numbers was displayed on a monitor, and the subjects were instructed to 

determine whether a specific digit–one appeared on the screen (0-back task); or the currently displayed 

number at any given time had been already displayed in the previous presentation (1-back task). 

Stimuli consisted in a 0.5 s. Inter stimulus interval (ISI) was 2.5 s in all conditions. Subjects had to 

distinguish between targets and non-targets by pressing a keyboard. Continuous ERP signals were 
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acquired using an EEG/ERP amplifier system (NATION® Inc., Shanghai, China). For all ERP 

recordings, 18 electrodes were placed according to the 10–20 international system. The chosen 

electrode positions were EOG1, EOG2, Fp1, Fp2, F3, F4, F7, F8, Fz, C3, Cz, C4, P3, Pz, P4, O1, Oz 

and O2 (Figure 1). The data were sampled at 256 Hz. Signals were recorded for 120 s during each task. 

Each task was repeated for three sessions. Each session contained 40 trials with a 1:1 target/non-target 

relation. Namely, the total number of targets was 60, the same as that of non-targets. 

Figure 1. N-back task timeline and electrode positions. Here trial time sequences for  

0-back and 1-back conditions. Black squares represent each stimulus in the task. The 

symbol * stands for the target number during each trial. Five brain regions: Fronto-Central 

(FCentral)-FP1, FP2, F7, F3, Fz, F4 and F8, Left Sensorimotor (LSM)-C3 and P3,  

Central- Cz and Pz, Right Sensorimotor (RSM) - C4 and P4, and Occipital-O1 and O2. 

 

3.2. Recognition of Mental Task EEG 

We proposed a mental task-based BCI approach, as illustrated in Figure 2. 

Figure 2. The basic diagram of mental task recognition. 

 

WPE can characterize the physiological state changes of the subjects during different mental  

tasks [12]. It provides an effective way for studying the complexity of EEG signals that can decode 

specific function states from the brain activity, and the obtained model from the time sequence and the 

estimated parameters can reveal the mechanism of EEG. 



Sensors 2014, 14 12791 

 

 

Brain electrical activity mapping (BEAM) summarizes the EEG data as color maps. Li et al. [12] 

studied the BEAM at 2.9 Hz, 6.1 Hz, 10 Hz, and 22 Hz of five different mental states and found that 

different mental tasks had different energy distributions in the brain area. They correspond to specific 

frequency bands in the EEG, such as 0–4 Hz (delta), 4–8 Hz (theta), 8–12 Hz (alpha), and 12–32 Hz 

(beta). The wavelet packet transform (WPT) can be viewed as a generalization of the classical wavelet 

transform, which provides a multi-resolution and time-frequency analysis for nonstationary EEG 

signals with a binary tree structure. The entropy provides a measurement of the signal uncertainty. 

As mentioned above, we extracted four frequency band data (i.e., delta, theta, alpha, and beta) of 

mental task EEG signals through the WPT decomposition, then calculated their entropies to analyze 

locally nonlinear features that can reflect the complexity distribution of the signal in each  

frequency band. A wavelet packet is represented as a function [25]: 

, 2 2 , 1, 2,⋯ ,  (6)

where  is the modulation parameter,  is the dilation parameter,  is the translation parameter,  is the 

level of the decomposition in the wavelet packet tree, and  is called as a mother wavelet. 
The wavelet packet coefficients ,  corresponding to the signal  can be obtained as:  

, ,  (7)

The wavelet packet component of the signal at a particular node can be obtained as: 

, ,  (8)

The Shannon entropy  can be defined as the entropy of the signal component , 	 is  

written as: 

log  (9)

3.3. Recognition of Cognitive Task P300 

We proposed a classification approach of stroke patients and healthy controls, as illustrated in 

Figure 3. 

Figure 3. The general diagram of cognitive task recognition. 
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3.3.1. Pre-Processing 

Independent component analysis (ICA) is a kind of blind source separation technique that extracts 

statistically independent sources called independent components (ICs) from a set of recorded signals. 

Orthogonal empirical model decomposition (OEMD) is a self-adaptive signal processing and data 

driven method. Compared with classical time-frequency analysis methods, such as short time Fourier 

transform (STFT) and wavelet, it is based on the local characteristic time scales of a signal and could 

decompose the signal into a set of complete orthogonal components called intrinsic mode functions 

(IMFs) which are determined by the signal itself without prior knowledge about the signal [35,36].  

In this study, ICA and OEMD were combined to extract more informative features, which can be 

used as inputs to a classifier to improve the classification accuracy of task-related activity. We first 

extracted statistically independent sources from the given ERP signals by ICA, and then decomposed 

them into spectrally independent modes using OEMD algorithm. 

3.3.2. Feature Extraction 

Understanding and modeling the brain function is based not only on the correct identification of the 

active brain regions, but also on the functional interactions among the neural assemblies distributed 

across different brain regions. Correlation, coherence, Granger causality and information entropy have 

been widely used for the estimation of effective connectivity from the EEG data in the space-frequency 

and space-time-frequency domains. In particular, Granger causality is one of the prototypical data-driven 

effective connectivity techniques. It can describe the direct or indirect information flow that one neural 

system exerts another neural system and quantify causal interactions between brain sources [26,37]. 

According to the principle of Granger causality,  causes  ( → ) if the inclusion of past 

observations of  reduces the prediction error of  in a linear regression model of  and , as 

compared to a model which includes only previous observations of . Two time series  and 

 can be defined as [38]: 

, , 	 

	 , ,  

(10)

where p is the maximum number of lagged observations included in the autoregressive (AR) model, A 

represents the AR coefficients,  and  are the residuals.  

The magnitude of →  in the time domain can be obtained by the log ratio of the prediction error 

variances, as follows: 

→  (1)

where  is derived from the AR model omitting the ,  coefficients and  is derived from the 

full AR model. 
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The spectral Granger causality from  to  can be defined as: 

→ ln	 1
∑ ∑ /∑ | |

 (12)

where ∑ is the noise covariance matrix, H is the transfer matrix and S is the power spectrum of  at 

frequency f [38]. 

In this study, we analyzed the spectral Granger causality in the theta band. To simplify the analysis, 

the EEG signals were divided into five regions. They were FCentral (F), LSM (L), Central (C), RSM 

(R) and Occipital (O), respectively. The raw signals of the electrodes within each region were averaged 

as the overall activity of the region. Figure 4 shows the average causal network between brain sources 

for stroke patients and healthy controls in 0-back and 1-back tasks. The connectivity pattern difference 

between stroke patient group and healthy control group was obvious (t = 3.8621, p < 0.05).Compared 

with healthy controls, stroke patients showed a connectivity reduction, especially for the left cortex. 

There were some functional disconnections among different cortical regions for stroke patients, such 

as F ↔ C  and L → R  in 0-back task, F → L, O → C  and F → O  in 1-back task. From an anatomical 

standpoint, the cognitive disturbances associated with the information transmission may not solely be 

due to the loss of neurons, but also due to the impairment of distributed neuronal activity [37–40]. 

Figure 4. Brain connectivity patterns of stroke patients and healthy controls. (a) Stroke 

patients in 0-back task; (b) Healthy controls in 0-back task; (c) Stroke patients in 1-back 

task. (d) Healthy controls in 1-back task. 

 

3.4. Parameter Settings 

In this study, all EEG signals were classified via a 5-fold cross-validation. 80% of all samples were 

used for training and 20% for testing. 

When WPE was used, the EEG signals in each channel were decomposed into 4 levels through the 

WPT decomposition with the db4 wavelet. We used D40, D41, D42 and (D43, D21) node to 

reconstruct the signal, which corresponded to delta, theta, alpha and beta frequency bands respectively. 

WPE feature was computed for each frequency band. 

For the proposed MKL-SVM algorithm, three Poly kernels and ten RBF kernels were chosen. The 

Poly kernel is a global kernel which has a good generalization ability and a low learning capacity, 

while the RBF kernel is a local kernel which has a poor generalization ability and a high learning 

capacity. The overall performance of the kernel function may be improved by their linear combination. 

In the Poly kernel, if the freedom degree is too high, the generalization ability will decrease, and the 
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over-fitting problem may occur. The degrees (d) of Poly kernels were chosen as [1, 2, 3]. In the RBF 

kernel, the small Gaussian width is available for severe changeable samples. The large Gaussian width 

is available for mild changeable samples. The widths ( ) of RBF kernels were chosen as [0.5, 1, 2, 5, 

7, 10, 12, 15, 17, 20]. The kernel parameters chosen in the following single kernel SVM also came 

from these parameters. 

SVM was originally designed for binary classification, but can be extended to the multiclass 

classification cases. Several approaches have been suggested for multiclass classification using SVM, 

and here we adopted the one-versus-rest approach. In this approach, a set of binary classifiers, each of 

which is trained to separate one class from the rest, are undertaken and each test sample is allocated to 

the class for which the largest decision value is determined [21].  

4. Results 

4.1. Kernel Weights  

The MKL-SVM algorithm combines several possible kernels through optimizing kernel weights. 

The weight values vary with different classification tasks. Figure 5 shows the boxplots of kernel 

weights for mental task and cognitive task classifications. In general, the weight values of RBF kernels 

were greater than the ones of Poly kernels and more RBF kernels were favorable.  

Figure 5. Boxplots of kernel weights for mental task and cognitive task classifications.  

(a) Mental task classification; (b) Cognitive task classification. 

 

4.2. Mental Task Classification 

The mental task combinations used for the classification are shown in Table 1. Corresponding to the 

WPE feature, the accuracies of 2-class, 3-class, 4-class, and 5-class classification are presented in 

Table 2. The average accuracies over all seven subjects were 99.20%, 81.25%, 76.76%, and  

75.25% respectively.  
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Table 1. The classification problems for different mental task combinations. The five 

mental tasks are represented by B, C, L, M and R, as described in Section 3.1.1. Here the 

notation “BC” is used to represent the 2-class classification problem of mental tasks B and 

C (baseline, visual counting). The notation “BCL” is used to represent the 3-class 

classification problem of mental tasks B, C and L (baseline, visual counting and letter 

composing). The notation “BCLM” is used to represent the 4-class classification problem 

of mental tasks B, C, L and M (baseline, visual counting, letter composing and 

multiplication). The other notations are similarly defined. 

2-Class Classification 3-Class Classification 4-Class/5-Class Classification 

BC BCL BCLM 
BL BCM BCLR 
BM BCR BCMR 
BR BLM BLMR 
CL BLR CLMR 
CM BMR BCLMR 
CR CLM  
LM CLR  
LR CMR  
MR LMR  

Table 2. Classification accuracies for mental tasks over all seven subjects. Here S1 

represents the first subject. The other notations are similarly defined. 

Subject 
Average Classification Accuracies (%) 

2-Class 3-Class 4-Class 5-Class 

S1 98.24 73.95 73.14 66.15 
S2 100 83.78 78.46 72.22 
S3 100 80.89 69.62 75.00 
S4 100 84.89 88.17 85.71 
S5 96.61 79.72 78.64 67.64 
S6 99.58 87.17 70.99 85.04 
S7 100 78.33 78.33 75.00 

Mean 99.20 81.25 76.76 75.25 

For 2-class classification, all subjects can completely recognize BM, BR, CL, LM, LR and MR pair 

tasks. Their classification accuracies were all 100%. The classification accuracy of the BL classification 

was the lowest, 96.94%. Therefore, it was easy for all subjects to recognize mathematical multiplication 

and geometric figure rotation tasks, with respect to the baseline state. In addition, the combination of 

mathematical multiplication and geometric figure rotation tasks was also easy to be distinguished. This 

supports the neuroscience knowledge that the brain can make fine distinction between calculation and 

visual tasks, because the left hemisphere of the brain is dominant for the calculation task, while the 

right hemisphere of the brain is dominant for the visual task [41]. The accuracy of 2-class classification 

using MKL-SVM was further compared with the single kernel SVM when using same features. The 

comparison results are shown in Figure 6. As can be seen, the classification results based on  

MKL-SVM were better than those based on SVM with the Poly kernel (t = 6.306, p < 0.05) and the 
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RBF kernel (t = 5.308, p < 0.05). Besides, RBF had better results than Poly. These results indicated 

that the overall classification accuracy of MKL-SVM was much higher than the accuracy of the SVM 

algorithm based on a single kernel. 

Figure 6. Accuracy comparisons of 2-class classification cases. In the legend, the notation 

“SVM (RBF)” represents the SVM algorithm with the RBF kernel. The notation “SVM 

(Poly)” represents the SVM algorithm with the Poly kernel. 

 

In all ten 3-class mental task classification cases, the average accuracy for BMR classification was 

the highest, 89.93%, while CLM was the lowest, 74.31%. 

In all five 4-class mental task classifications, the average accuracy for BLMR classification was the 

highest, 83.14%. The average accuracy for BCLM classification was the lowest, 71.09%. 

The sensitivity degrees for certain mental tasks in subjects varied, and there were individual 

differences for the adaptability for the mental task experiment. We noted that the most discriminatory 

tasks differed among the subjects, which was consistent with the reported studies [42]. None of the 

subjects had the perfect classification performance for CLM and BCLM. It could be noted from the 

results that most of the subjects may well recognize BMR tasks due to the high difference in the 

baseline, mathematical multiplication and geometric figure rotation tasks. From a physiological point 

of view, the region and level of the excitation in the cerebral cortex are different during different mental 

tasks. Compared with other regions, the EEG generated from the active area of the cortex is obvious. 

Zhang et al. [43] studied the multiclass classification from four subjects using the frequency band 

powers and asymmetry ratios from the frequency range of 0 to 100Hz with the Fisher discriminant 

analysis, in which the average accuracies for 3-class, 4-class, and 5-class classifications were 65.88%, 

58.18%, and 52.75% respectively (different sizes of training set and test set). Comparatively, the 

performance of the proposed algorithm was better. As mentioned above, SVM with the RBF kernel 

performed better than that with the Poly kernel. We also compared the average accuracy using  

MKL-SVM with SVM based on single RBF kernel. The comparisons of 3-class classification are 

shown in Figure 7 (t = 2.108, p < 0.05). The comparisons of 4-class and 5-class classifications are 
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shown in Figure 8 (t = 2.719, p < 0.05). We note that MKL-SVM performed consistently better. From 

Figures 7 and 8, we also noted that the same best mental task combinations were observed for both 

MKL-SVM and the single kernel SVM, i.e., BMR and BLMR. This observation suggested that the 

most easily recognized tasks were rather independent of the classification methods in most cases. 

Figure 7. Accuracy comparisons of 3-class classification cases. 

 

Figure 8. Accuracy comparisons of 4-class and 5-class classification cases. 

 

4.3. Cognitive Task Classification 

Table 3 shows the classification comparison results of 0-back and 1-back tasks distinguishing stroke 

patients versus healthy controls between MKL-SVM and another two single kernel SVM algorithms 

with the spectral causality flow feature. The average classification accuracy for 0-back task was 89.24%. 

The average classification accuracy for 1-back task was 80.33%. As has been shown, the classification 

results based on MKL-SVM were better than those based on Poly kernel (t = 6.221, p < 0.05) and RBF 

kernel (t = 4.187, p < 0.05). The general classification accuracy of 0-back task was higher than that of 
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1-back task. These results provide theoretical and experimental basis of the quantity diagnosis for 

cognitive impairment. It is helpful for the intelligent identification of cognitive function and 

appropriate rehabilitation training. 

Table 3. Classification accuracies for 0-back and 1-back tasks with different classifiers 

(%). Here SP represents stroke patient, HC represents healthy control. 

Classification Tasks Classifiers Classification Accuracies (%) 

0-back 
(SP-HC) 

MKL-SVM 89.24 
SVM(RBF) 81.61 
SVM(Poly) 77.14 

1-back 
(SP-HC) 

MKL-SVM 80.33 
SVM(RBF) 75.28 
SVM(Poly) 70.81 

4.4. Computational Cost 

The proposed MKL-SVM algorithm was implemented in MATLAB 7.12.0 on a personal computer 

(using an Intel(R) Core(TM) i5-2430M CPU@2.40 GHz, 2.91 GB RAM). The average runtime varied 

from 6.86 s to 25.78 s. It included the cross validation and the optimization process. The average 

runtime with SVM was from 5.44 s to 20.47 s. 

5. Conclusions 

In this paper, we have presented the MKL-SVM algorithm for the classifications of mental tasks 

and working memory tasks with WPE and Granger causality features. The proposed method yielded 

better performance than the single kernel SVM. It can achieve 99.20% average accuracy for 2-class 

classification and above 75% for multiclass classification. It achieved above 89% accuracy for 0-back 

task and above 80% for 1-back task. The average CPU runtime was 15.39 s for the training and testing. 

Therefore, it can be a practical method for EEG-based BCI. Meanwhile, the classification results 

showed that the most discriminatory tasks varied among different subjects. In general, BMR and 

BLMR were the most suitable mental tasks to be distinguished. The Granger causality results showed 

that the effective connections among different cortical regions were reduced in stroke patients. 

The physiological phenomena whereby different types of mental activities can activate distinct 

areas of the cortex and evoke different EEG rhythms made it possible to classify mental tasks using 

EEG signals and to realize a BCI system based on the conversion of different mental tasks. For 

example, invalids can express their demands to the carers and people can operate home computers 

using only their mind through the BCI. It is also an effective method to implement working memory 

task-based BCI based on cognitive impairment. First, we can perform the accurate identification and 

assessment of cognitive function by the EEG signal detection. Then, the rehabilitation training for 

cognitive impairment may be employed by the BCI with the appropriate apparatus. 
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