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Abstract: A multidrug-resistant clinical bacteria strain GB11 was isolated from a wound 

swab on the leg of a patient. Identity of stain GB11 as Pseudomonas aeruginosa was 

validated by using matrix-assisted laser desorption/ionization-time-of-flight mass 

spectrometry (MALDI-TOF MS). Detection of the production of signaling molecules,  

N-acylhomoserine lactones (AHLs), was conducted using three different bacterial 

biosensors. A total of four different AHLs were found to be produced by strain GB11, 

namely N-butyryl homoserine lactone (C4-HSL), N-hexanoylhomoserine lactone (C6-HSL), 

N-octanoyl homoserine lactone (C8-HSL) and N-3-oxo-dodecanoylhomoserine lactone  

(3-oxo-C12-HSL) using high resolution liquid chromatography tandem mass spectrometry 

(LC-MS/MS). Of these detected AHLs, 3-oxo-C12-HSL was found to be the most 

abundant AHL produced by P. aeruginosa GB11. 
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1. Introduction 

Bacterial cell-to-cell communication (quorum sensing, hereafter QS) modulates the regulation of 

the network of physiological activities in relation to the population density by synchronizing the 

concentration of signaling molecules (also known as “autoinducers”) [1,2]. QS is employed by bacteria 

to sense and response to any changes in the environment through secretion of signaling molecules. 

When a critical threshold of signaling molecules concentration is achieved, various targeted gene  

will be regulated either by activating or inhibiting a cascade of gene expression [3]. There are  

different signaling molecules employed by Gram-negative and Gram-positive bacteria which are  

N-acylhomoserine lactones (AHLs) and oligopeptide molecules, respectively. The QS mechanism 

utilized by Gram-negative bacteria typically involves a LuxI family protein as “autoinducer” synthase 

and LuxR family protein as transcriptional activator [4]. QS had been reported in many different types 

of bacteria to regulate bacterial physiological activities including those phenotypic adaptations to the  

environment [5–8].  

Most Gram-negative pathogenic bacteria possess the ability of producing AHLs that allow them to 

control virulence genes that could affect bacterial-host interactions [8]. The ability of eukaryotic hosts 

to produce signals that mimic AHLs suggests that the hosts have adapted and are able to detect the 

extracellular AHLs [8]. This suggests that the AHL could be the “interkingdom signals” that could 

make direct interactions between host and bacteria. While Pseudomonas aeruginosa is a clinically 

significant and opportunistic pathogen which often associated with nosocomial infections in 

compromised hosts, it could be an attractive target for sorting out its communication system and 

developing QS inhibitors that could act as potential therapeutics [9–12]. P. aeruginosa acts as an 

important pathogen that can express its pathogenicity in almost any part of the human body and can be 

divided into two general categories which are loss of cell integrity and immune modulation [8]. The 

creation of biofilms, a bacterial activity regulated by QS with the production of signaling molecules, 

often renders Pseudomonas infections difficult to eradicate and more resistant towards antibiotics [13]. 

It is known that P. aeruginosa adopts a hierarchical network of QS systems to regulate biofilm 

formation and expression of virulence factors that involves the RhlI/R, LasI/R and PQS signalling 

systems [14–16]. Thus, investigating the QS molecules in P. aeruginosa is an important first step to 

further understanding this multidrug resistant pathogen and could be one of the means for generating 

cures for diseases caused by this opportunistic pathogen.  

2. Experimental Section 

2.1. Clinical Isolate 

The bacterial strain GB11 was isolated from a wound swab taken from an infected leg ulcer of an 

83 years old man. Gram stain initially showed scanty leucocytes with numerous gram negative rods 

and scanty gram positive cocci. Heavy growth of P. aeruginosa (initially identified using API® 20 NE) 

was obtained from the Blood Agar and McConkey Agar plates after overnight incubation. 

Antimicrobial Susceptibility Testing following the Clinical and Laboratory Standards Institute (CSLI) 

method was performed [17]. The isolate was sensitive to amikacin, gentamicin, netilmicin, tobramycin 

and imipenem, but resistant to ceftazidime, cefoperazone and ciprofloxacin. 
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2.2. Bacterial Strains and Culture Conditions 

Bacteria strain GB11 was cultured aerobically at 37 °C in Tryptic soy medium (TSm) which 

consists of casein peptone 15.0 (mg/mL), soy peptone 5.0 (mg/mL), sodium chloride 5.0 (mg/mL), and 

agar 15.0 (mg/mL). All other strains, including three biosensors and two controls, were cultured 

aerobically in LB agar and LB medium (LBm) at 28 °C as described previously [18–20], unless stated 

otherwise. The three biosensors are Chromobacterium violaceum CV026 [21], Escherichia coli 

[pSB401] and E. coli [pSB1075] [22], which were used for the detection of AHLs while Erwinia 

carotovora GS101 and E. carotovora PNP22 act as positive and negative controls, respectively.  

2.3. Preparation and Screening of AHL by C. violaceum CV026 Biosensor 

All AHLs used were obtained as described previously [23–25]. Briefly, AHL stock solutions were 

prepared with acetonitrile (ACN) (Merck, Frankfurt, Germany) to a concentration of 1 g/L. AHL 

solutions were stored at −20 °C for not more than a month. The stock solutions were then diluted with 

ACN to 100 ppm as standard in liquid chromatography mass spectrometry analysis. Production of 

AHL obtained from strain GB11 was screened using cross-streaking with the biosensor C. violaceum 

CV026 on LBm agar.  

2.4. AHL Extraction 

Bacteria strain GB11 was cultured overnight for 18 h in LBm as illustrated previously [23]. Briefly, 

50 mM of 3-[N-morpholino] propanesulfonic acid (MOPS) was used to buffer the culture media to pH 

5.5 at 37 °C. Extraction of supernatant was conducted twice with equal volume of ethyl acetate 

buffered with 0.1% v/v glacial acetic acid. AHL extracts were dried completely before further analysis. 

2.5. Bioluminescence Assay 

Bioluminescence assay was conducted with Tecan luminometer (Infinite M200, Männerdorf, 

Switzerland) as described previously [26,27]. Briefly, 250 µL of diluted E. coli biosensor (OD600 = 0.1) 

was used to resuspend the AHL extract. Bioluminescence and optical density (OD495) readings were 

documented simultaneously every 60 min interval for 24 h and experiments were repeated three times 

with triplicates for each repeat. Bioluminescence measurement was calculated as relative light unit per 

OD495 (RLU/OD495) against 24 h [22].  

2.6. MALDI-TOF MS for Strain Identification 

Fresh culture of bacteria strain GB11 was identified by MALDI-TOF (Bruker Daltonik GmbH, 

Leipzig, Germany) using Bruker FlexControl software version 3.3 (Build 108) as described  

previously [28].  

2.7. High Resolution Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS) Analysis 

High Resolution Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS) was conducted 

as reported previously [20,24,25]. Briefly, an Agilent 1290 Infinity LC system (Agilent Technologies 



Sensors 2014, 14 12514 

 

 

Inc., Santa Clara, CA, USA) was equipped with a C18 column. Then, 2 µL of sample was injected into 

the system for analysis. Water and ACN were used as the solvents for mobile phases. HPLC gradient 

profiles were set as: 0 min: 4:1, 7 min: 1:1, 12 min: 1:4, and 14 min: 4:1. For AHL detection, precursor 

ion scan mode was used and the product ion m/z ratio was set as 102 indicating the [M+H]+ ion of the 

core lactone ring where the precursor ions were then scanned from 150 to 400. Thus, various AHLs 

were identified based on the detection of the fragmentation of the core HSL moiety in the  

collision cell. 

3. Results and Discussion 

3.1. Detection of AHL Production in Strain GB11 

The ability of a variety of bacterial biosensors has paved a pathway for researching and 

understanding bacterial QS properties and be able to provide a fast and accurate way for detecting the 

production of AHLs. The AHL biosensor practically relies on the LuxR protein and displays a specific 

attraction towards the cognate AHL and positively regulates the transcriptional of targeted gene [29]. 

CV026 biosensor is a white colony C. violaceum mutant [21]. It is most sensitive to C6-HSL, its 

natural AHL produced by wild-type C. violaceum, however it can also detect short-chain AHLs 

ranging from 4 to 8 carbon side-chain AHLs with or without C-3 substitution. Although the CV026 

bioassay is comparatively easy to perform, false-negative results occasionally happen when some 

sample isolates produce bactericides that might kill CV026 [22]. Hence, bioassays using CV026 

should be coupled with other analytical methods such as mass spectrometry. Also, other types of AHL 

biosensors should be used in addition to CV026.  

Figure 1. Detection of AHL by C. violaceum CV026. Purple pigmentation was visible 

after 24 h of incubation as the AHLs produced by the isolate GB11 diffused through the 

agar and activated the biosensor strain. E. carotovora GS101 and E. carotovora PNP22 

were included as positive and negative controls, respectively.  
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E. coli harbouring the pSB401 and pSB1075 plasmids are chosen as alternative AHL biosensors. 

Plasmid pSB401 is a pACYC184 plasmid containing a fusion of luxRluxl’::luxCDABE while plasmid 

pSB1075 is a pUC18 plasmid containing lasRlasl’::luxCDABE whereby E. coli [pSB401] and  

E. coli [pSB1075] are capable of detecting short-chain AHLs and long-chain AHLs, respectively [22]. 

Strain GB11 showed induction of purple violacein in CV026 biosensor after incubation for 24 h that 

indicated the presence of short-chain AHLs (Figure 1). Bioluminescene bioassays were conducted to 

validate this results with increase of bioluminescence activity in both E. coli [pSB401] and E. coli 

[pSB1075] (Figure 2).  

Figure 2. Measurement of bioluminescence with E. coli [pSB401] and E.coli [pSB1075] 

AHL biosensors. Increase in bioluminescence measurement in both E. coli [pSB401] 

(circle) and E. coli [pSB1075] (diamonds) indicates the production of both short and  

long-chain AHLs in the spent supernatant of strain GB11, respectively. Extract from 

uninoculated LB broth was used as negative control (triangles). Each point represents a 

mean value of three independent replicates. 

 

3.2. Identity of Strain GB11 

Recent advances ease the path on bacteria identification with established technique such as 

MALDI-TOF, which is one of the fastest mean to classify bacteria [30,31]. Strain GB11 was identified 

as Pseudomonas aeruginosa as the best match in MALDI-TOF identification (Figure 3). Our  

MALDI-TOF results is in agreement with the preliminary microbiological assessment of strain GB11. 

Later, we have verified the identity of strain GB11 using 16S rRNA gene analysis where a phylogeny 

tree was constructed by comparing the closely-related sequences from NCBI database (Figure 4). 
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Figure 3. Bacterial identification of strain GB11 using MALDI-TOF. Dendogram shows 

the distance value assembled from the reference between species in the database using 

logarithmic function. 

 

3.3. AHL Profile Analysis by High Resolution Liquid Chromatography Tandem Mass Spectrometry 

(LC-MS/MS) 

P. aeruginosa is an opportunistic pathogen that often infects patients with immunocompromised 

conditions such as those with cancers, burns or cystic-fibrosis [32]. QS is believed to be adopted by  

P. aeruginosa to invade and infect its host. The expression of many genes in P. aeruginosa are known 

to be regulated by QS such as lasA (onset of proteolysis and elastolysis) [33] and toxA [34]. Thus, 

inhibition of P. aeruginosa QS had been proposed as the promising alternative to attenuate its 

virulence and biofilm formation [35–37]. Understanding the types of AHLs produced by P. aeruginosa, 

is a milestone bringing us closer to finding effective ways to treat P. aeruginosa infections. 

The spent culture of GB11 strain was analyzed using LC-MS/MS and this confirmed that P. 

aeruginosa GB11 produced four different types of AHL molecules which are N-butyryl-L-homoserine 

lactone (C4-HSL), N-hexanoyl-L-homoserine lactone (C6-HSL), N-octanoyl-L-homoserine lactone 

(C8-HSL) and N-(3-oxododecanoyl)-L-homoserine lactone (3-oxo-C12-HSL) (Figure 5). Of these 

detected AHLs, 3-oxo-C12-HSL is the most abundant AHL produced by P. aeruginosa GB11 and  

C8-HSL being the least produced AHL by this isolate. To our best knowledge, this is the first report on 

multiple production of these AHLs by P. aeruginosa. We believed that the investigation on AHL 

profile of P. aeruginosa GB11 would be important to understand the QS mechanism particularly 

virulent determinants regulation in this multidrug resistant clinical isolate.  
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Figure 4. Bacterial identification of strain GB11 using 16S rRNA gene phylogenetics 

analysis. Phylogeny tree shows the 16S rRNA gene of strain GB11 clustered closely with 

P. aeruginosa strains. All sequences data are obtained from NCBI database.  
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Figure 5. Mass spectrometry analysis of AHLs produced by Pseudomonas aeruginosa 

GB11. (a) C4-HSL (Retention time: 58.3 s; m/z: 172.0000 Abundance: 2565.42);  

(b) C6-HSL (Retention time: 2.4764 min; m/z: 200.1000; Abundance: 2855.4); (c) C8-HSL 

(Retention time: 5.254 min; m/z: 228.2000; Abundance: 1742.76); (d) 3-oxo-C12-HSL 

(Retention time: 8.522 min; m/z: 298.4000; Abundance: 288910.28). 

 
(a) 

 
(b) 

 
(c) 
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Figure 5. Cont. 

 
(d) 

4. Conclusions 

QS plays a vital role in bacteria by regulating their physiological activities so that they are able to 

adapt to the environment and threaten their hosts. This work illustrated the importance in expanding 

the research on AHL-producing pathogens isolated from human wounds.  
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