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Abstract: Theoretical analysis in this paper indicates that the accuracy of a silicon 

piezoresistive pressure sensor is mainly affected by thermal drift, and varies nonlinearly  

with the temperature. Here, a smart temperature compensation system to reduce its effect 

on accuracy is proposed. Firstly, an effective conditioning circuit for signal processing and 

data acquisition is designed. The hardware to implement the system is fabricated. Then, a 

program is developed on LabVIEW which incorporates an extreme learning machine 

(ELM) as the calibration algorithm for the pressure drift. The implementation of the 

algorithm was ported to a micro-control unit (MCU) after calibration in the computer. 

Practical pressure measurement experiments are carried out to verify the system’s 

performance. The temperature compensation is solved in the interval from −40 to 85 °C. 

The compensated sensor is aimed at providing pressure measurement in oil-gas pipelines. 

Compared with other algorithms, ELM acquires higher accuracy and is more suitable for 

batch compensation because of its higher generalization and faster learning speed. The 

accuracy, linearity, zero temperature coefficient and sensitivity temperature coefficient of 

the tested sensor are 2.57% FS, 2.49% FS, 8.1 × 10
−5

/°C and 29.5 × 10
−5

/°C before 

compensation, and are improved to 0.13%FS, 0.15%FS, 1.17 × 10
−5

/°C and 2.1 × 10
−5

/°C 

respectively, after compensation. The experimental results demonstrate that the proposed 

system is valid for the temperature compensation and high accuracy requirement of  

the sensor. 
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1. Introduction 

Pressure is an important monitored parameter in industrial fields for process control and safety, so 

there is a massive demand for suitable pressure sensors. Because of their good accuracy, high 

sensitivity and excellent linearity, silicon piezoresistive MEMS pressure sensors are one of most 

reported and developed micromachined devices [1], and are widely used in various systems like 

automobiles, biomedical and process control systems for their low cost, small size and mature 

fabrication technology [2]. However, thermal drift caused by the inherent cross temperature sensitivity 

of silicon sensors [3] has a significant impact on the sensor accuracy, sensitivity and linearity. In order 

to reduce the impact of thermal drift, various temperature compensation techniques have been 

proposed, which mainly include three techniques: Hardware compensation, software compensation and 

hybrid approaches [4]. In addition, some fabrication processes and novel designs have also been used 

for temperature compensation. 

Software methods have been widely applied as a digital approach for silicon sensor smart 

calibration systems because of their cost-effectiveness and high accuracy. Some calibration table 

methods based on look-up tables have been proposed as the simplest form of digital compensation [5]. 

However, the accuracy achieved by these methods is directly correlated to the used memory capacity. 

The IEEE1541.2 standard recommended a Taylor expansion as a general approach to describe sensor 

characteristics, but it requires a lot of calibration points for the temperature compensation. Šaponjić 

reported a microcontroller to ensure temperature compensation and linearization of the sensor using a 

second-order polynomial [6], which contributes to a better accuracy over a small measuring range. 

Zarnik et al. [7] used a rational polynomial approximation instead of Taylor expansion to represent the 

temperature variations of sensor characteristics by setting a seven-point calibration scenario. However, 

the accuracy the measured sensor achieved was about 0.4% FS in the compensation range 10 to75 °C. 

Meanwhile, several software schemes based on artificial neural networks (ANNs) have been proposed 

to reduce the temperature effect on the accuracy of the applied pressure readout. Patra et al. [8,9] 

developed two approaches for capacitor pressure sensor modeling based on a functional link artificial 

neural network (FLANN) and back propagation neural network (BP), respectively, which achieve a 

low accuracy 3% FS over a wide temperature range of −50 ~ 150 °C and a better accuracy of 1% FS in 

a temperature range of −20 ~ 70 °C. Pramanik described an intelligent scheme using BP that obtained 

an error reduction of approximately 98% in the pressure range of 0 ~ 1 bar and temperature range of  

25 ~ 80 °C [10]. Futane et al. [11] presented an CMOS analog ASIC design of a feed forward neural 

network for temperature drift compensation of a piezoresistive pressure sensor in which the error for 

compensated sensor was reduced to 0.1% in the temperature range of 0 ~ 70 °C. However, ANN-based 

approaches were not clarified in the performances and configuration of neural networks. 

Some hybrid approaches have also been reported, Chen presented a temperature compensation 

system which used a MAX1452 processor as the hardware compensation unit and a curve fitting 
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algorithm based on a cubic B-spline [12], but the system is unsuitable for batch compensation.  

A MLX90257 absolute integrated pressure sensor adopts analog signal conversion to adjust the offset 

and span of a sensor by setting operational amplifiers using a 3-point temperature and 2-point pressure 

calibration [13]. Though it is a cost-effective temperature compensation method, the achieved accuracy 

(±1%) is not satisfactory. Overall, despite various approaches explored for the thermal drift of silicon 

sensors, many problems still exist, such as high cost, low accuracy and so on. 

In this paper, a smart temperature compensation system is proposed to obtain high accuracy and 

facilitate batch fabrication, and a theoretical analysis of the relationship between the accuracy and 

thermal drift is conducted. An effective conditioning circuit is designed to process signals and acquire 

data. The hardware for implementing the system is fabricated, and a digital thermometer is integrated 

to sense ambient temperature. A program is developed on LabVIEW which incorporates an extreme 

learning machine (ELM) as the calibration algorithm for the pressure drift. Experiments, which take a 

microfabricated silicon pressure sensor as the compensated subject, are carried out to validate the 

effectiveness of designed system. Comparisons are done to evaluate the performances of the proposed 

ELM with other compensation algorithms. The compensated sensor aims at providing the pressure 

measurement of oil-gas pipelines to oil and gas fields within certain temperature range. 

2. Temperature Effects and Temperature Compensation 

2.1. Analysis of Temperature Effects on Accuracy 

The piezoresistive pressure sensor design is based on piezoresistive effects which can convert 

physical signal into electrical signal. Generally, the piezoresistive pressure sensor consists of four 

piezoresistors (R1 = R2 = R3 = R4 = R) placed on the stress concentration regions in a Wheatstone 

bridge configuration. The equivalent circuit model of the pressure sensor is shown in Figure 1. 

Figure 1. Schematic of the piezoresistive pressure sensor. 

 

When the pressure sensor is driven by a constant current source Icurrent and the four resistances 

satisfy the four conditions (see [14]), the output voltage of sensor can be expressed as: 
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where, ΔR is resistance change of every of four piezoresistors, π is the piezoresistive coefficient of 

silicon, and σ is the stress applied on silicon. 

It is found that there is a linear relationship between Vout and σ from Equation (1) when both the 

piezoresistors R and piezoresistive coefficient π are constants. However, the change of ambient 

temperature has a great influence on the arm resistance of the Wheatstone bridge and the piezoresistive 

coefficient of silicon. The resistance and piezoresistive coefficient are defined as follows: 

0
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where R0, π0 are the resistance of piezoresistors and piezoresistive coefficient of silicon at room 

temperature respectively, α and β are the temperature coefficient of piezoresistors and piezoresistive 

coefficient of silicon respectively, and ΔT is the variable temperature.  

At the same time, a strain generates between the supporting beam and the substrate of pressure 

sensor due to the temperature variation. The variable quantity of residual stress can be represented  

as [15]: 
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where αs, αg are the thermal expansion coefficients of silicon and glass respectively, E0 is the 

temperature coefficient of silicon at Kelvin temperature. Substituting Equations (2) and (3) into 

Equation (1) yields: 
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In practical situation, Equation (4) needs to add the offset component θ caused by the error of 

fabrication process among the four resistors [16]. To express the output of sensor accurately, Equation (4) 

should be rewritten as follows: 
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From the above analysis, the sensor output Vout is not proportional to the temperature variation ΔT. 

Moreover it can be seen in Equation (5) that α and β are correlated with Vout. Both of them are the 

functions of doping concentration.

 2.2. Temperature Compensation Algorithm 

Almost all pressure sensors based on silicon have linearity errors and temperature drift due to the 

physical properties of silicon. ANN not only can be used to reduce the influence of temperature, but 

also compensate the zero drift and linearity errors. The single hidden layer feed forward neural 

network (SLFN) which can approximate any continuous function in theory is currently one of the 

widely used network structures. A relatively novel learning algorithm called ELM [17] for SLFN  

(see Figure 2) is selected as the temperature compensation algorithm. 

Figure 2. The structure of ELM. 

 

In this paper, the input variables are the digital signals of pressure and temperature corresponding to 

two neurons of input layer, and the output variable is pressure compensated by network. The 

relationship between the output tj and the input xj can be expressed using Equation (6): 

                       

  

   

 (6) 

where wi and βi are the weight vectors connecting input-hidden layer and hidden-output layer, 

respectively; bi is bias of ith hidden neuron,    is hidden node number, N is the number of sample, and f 

is a nonlinear activation function. 

In ELM, wi and bi are randomly generated in the range of 0 to 1, and βi is calculated with matrix 

operations using Equation (7): 

H T   (7) 

where                         is the hidden-layer output matrix,             ,  

               denotes the output of the ith hidden neuron with respect to xi, H
+
 is the Moore 

Penrose generalized inverse of the matrix H and             . To improve the generalization of 

ELM, the flowchart of ELM for temperature compensation is designed as shown in Figure 3. 
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Figure 3. The temperature compensation flowchart of ELM. (a) Temperature calibration 

flowchart using SLFN trained by ELM; (b) Temperature compensation flowchart using the 

trained SLFN. 

 

In the compensation process, the required number of hidden nodes can be determined by the 

flowchart of Figure 3a according to Theorem 2.2 in [17]. ELM learns faster with a higher generalization 

and operability than the traditional learning algorithms for SLFN such as gradient-based learning 

methods. In order to evaluate the effectiveness of ELM, other methods such as BP, radius basis function 

(RBF) neural network, support vector machine (SVM) [18], variable coefficient regression (VCR) [19] 

and the rational polynomial approximation algorithm (RPA) are selected to compare with ELM. 

3. Design of the Smart Temperature Compensation System 

According to the analysis discussed in Section 2, it is found that the relationship of Vout and ΔT is 

nonlinear. Considering the features mentioned above, the relationship between the accuracy and 
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temperature also is nonlinear. Therefore, a smart temperature compensation system is proposed here. 

In the system, a membrane type piezoresistive pressure sensor is adopted; the relevant designs and 

experiments are carried out for high accuracy. This proposed approach would be useful for other types 

of sensors such as resistance strain sensor, capacitive sensor, piezoelectric sensors, etc. 

3.1. Hardware Design of the System 

The hardware comprises following modules: pressure and temperature sensors, signal conditioning 

module, MCU, liquid crystal display (LCD), communication module, power supply module, as shown 

in Figure 4. 

Figure 4. Schematic of system hardware. 

 

In the circuit, the AD693 is selected as the front-end amplifier to replace the traditional discrete 

designs, which provide excitation current and output current signals of 4 ~ 20 mA for pressure sensor. 

Compared with the traditional amplification circuit design, the AD693 can make the design of  

signal conditioning easier. Its applied circuit diagram with 0 ~ 30 mV unipolar input and 4 ~ 20 mA 

output is shown in Figure 4. DS18B20 is selected as the digital thermometer. A C8051F020 chip  

developed by Silicon Lab (Austin, Texas, US) is selected as controller which is generally  

more than 10 times as fast as the 80C51 series in instruction execution speed, and integrates an  

analog-to-digital-converter (ADC) and digital-to-analog-converter (DAC). It has a peak throughput  

of 25 MIPS and 12-bit ADC with the power consumption of about 4 mW. These advantages meet  

the requirement of high accuracy and simplify the circuit at the same time. The RS485 interface  

circuit can output digital signal and communicate with a personal computer (PC). Figure 5 shows the  

system hardware. 

  



Sensors 2014, 14 12181 

 

 

Figure 5. Hardware components of system. 

 

3.2. Software Design of the System 

LabVIEW 9.0 is used to design graphical user interface (GUI) of temperature compensation system and 

write digital data generated by calibration into the microcontroller via a USB-RS485 communication 

adapter. Figure 6 shows the flowchart of the pressure measurement system. The PC is used for 

temperature calibration, that is, determination of the number of hidden nodes and the output weights of 

SLFN trained by ELM. Then the trained SLFN is ported to the MCU. The MCU acquires the object 

pressure and ambient temperature, and calculates the compensated pressure using the ported SLFN. 

Finally, all the measured information is displayed on the LCD.  

Figure 6. The flowchart of the temperature compensation system. 
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4. Experimental Setup and Results 

4.1. Calibration Setup 

The specific steps of temperature compensation using ELM are as follows: 

Step 1 Normalize the sample data into the range [−1, 1], which is measured within a pressure range 

from 0 to 20 MPa within a temperature range from −40 to +85 °C; 

Step 2 Randomly divide the normalized sample data (voltage temperature, applied pressure) into 

training data and testing data with a ratio of 2 to 1; 

Step 3 Orderly select the number of hidden nodes from 1 to the number of training samples; 

Step 4 Initialize the input weights and and hidden layer biases randomly, input training data and 

compute the output weights of SLFN; 

Step 5 Based on weights and biases obtained by Step 4, compute the outputs of the testing data; 

Step 6 Repeat Steps 2–4, until a satisfactory compensation accuracy is obtained; 

Step 7 Write the weights and biases of SLFN into microprocessor, verify the algorithm within a 

pressure range from 0 to 20 MPa within −40 ~ 85 °C; 

Step 8 Calculate the real accuracy of calibrated sensor. 

The weights and biases of trained neural network for temperature compensation are programmed 

into the microcontroller. The number of calibration points and temperature stabilization time represent 

the limiting factor to calibration capacity. In order to test the calibration capacity sufficiently and select 

the suitable number of calibration points for high accuracy using ELM, three configurations of 

calibration points are designed as shown in Table 1. 

Table 1. The configurations of calibration points. 

Configuration Calibration Points 

3 × 3 
(−40, 22.5, 85) °C 

(0, 10, 20) MPa 

4 × 6 
(−40, 0, 40, 85) °C 

(0, 4, 8, 12, 16, 20) MPa 

5 × 11 
(−40, −10, 20, 50, 85) °C 

(0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20) MPa 

The experiment process of temperature compensation is shown in Figure 7, which comprises 24 V 

DC power, temperature test chamber and piston manometer. First, the system hardware is put into a 

temperature test chamber. The temperature test chamber is used to apply the specified temperature to 

the pressure sensor and keep the temperature stabilized for one hour. Then the piston manometer exerts 

different pressures on the pressure sensor according to the experiments. The computer is operated 

manually to read the pressure and temperature data from the MCU in a wired communication way 

when each pressure point exerted is stable. At last, the trained SLFN for temperature compensation is 

ported to the MCU after temperature calibration in the PC.  
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Figure 7. The experiment setting of the system. 

 

4.2. Calibration Results and Discussion 

In order to improve the sensor’s accuracy, the static pressure was measured within a pressure range 

of 0 ~ 20 MPa with a 2 MPa step within a temperature range of −40 ~ 85 °C with a 20 °C step. The 

experimental data is fitted using the least square method. The pressure error in percentage between 

linear fit and actual data is shown in Figure 8, which shows a poor linearity of 2.5% FS which is 

mainly caused by the thermal drift. 

Figure 8. Pressure error in percentage between linear fit and actual characteristics. 

 

The compensated pressure error was determined for all points at which pressure and temperature 

were measured. In this 3 × 3 configuration experiment, nine samples are used as the experimental data. 

Figure 9 shows the compensated error of algorithms on temperature at three pressure points using the  
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3 × 3 calibration. It is seen from Figure 9 that the compensated errors of all algorithms for three 

pressure of 0, 10 and 20 MPa are basically similar, in which the maximum error is about 0.8% FS due 

to the small samples. The experimental comparisons for VCR, RPA, BP, SVM, RBF and ELM are 

given in Table 2. From Table 2, the performances of sensor calibrated by algorithms are the same 

when considering the accuracy, linearity, zero temperature coefficient, and sensitivity temperature 

coefficient. The mean squared error (MSE) of ELM is 1.6 × 10
−3

 between the compensated pressure 

and actual pressure. These configured parameters of algorithms in 3 × 3 configuration are shown in Table 3. 

Figure 9. The compensated errors of algorithms at three pressure points on temperature 

using 3 × 3 calibration: (a) VCR; (b) RPA; (c) BP; (d) SVM; (e) RBF and (f) ELM. 

 

Table 2. Performances of sensor calibrated by algorithms using 3 × 3 calibration. 

Algorithms 
Accuracy 

A (%FS) 

Linearity  

δl (%FS) 
MSE 

Temperature Coefficient of 

Zero a0 (/°C) 

Temperature Coefficient of 

Sensitivity as (/°C) 

VCR 0.76 0.73 3.2 × 10−3 0.82 × 10−5 11.49 × 10−5 

RPA 0.78 0.74 3.5 × 10−3 1.03 × 10−5 11.67 × 10−5 

BP 0.78 0.67 4.8 × 10−3 1.65 × 10−5 6.40 × 10−5 

SVM 0.85 0.88 4.3 × 10−3 1.76 × 10−5 22.91 × 10−5 

RBF 0.76 0.86 3.7 × 10−3 0.76 × 10−5 11.42 × 10−5 

ELM 0.76 0.55 1.6 × 10−3 5.84 × 10−5 6.43 × 10−5 

Table 3. Configured parameters of algorithms using 3 × 3 calibration. 

Algorithms Configured Parameters 

VCR two second-order polynomials 

RPA two-dimensional rational 

BP structure: 2 × 4 × 1 

SVM '−c 1.3 −g 0.2 −s 4' 

RBF structure: 2 × 9 × 1; Spread: 7.5 

ELM structure: 2 × 9 × 1 
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In this 4 × 6 configuration experiment, 24 samples are used as the experimental data. Figure 10 

shows the compensated error at the three input pressure as a function of temperature within the full 

measurement range for compensated sensors. It can be found from Figure 10 that the compensated 

errors of VCR, RPA, BP, SVM, RBF and ELM are reduced remarkably compared with errors in 

Figure 9. VCR obtains the minimum compensated error 0.08% FS at three pressure inputs. However, 

the experimental comparisons for VCR, RPA, BP, SVM, RBF and ELM in Table 4 show the sensor 

compensated by ELM has better accuracy and nonlinearity. The accuracy and nonlinearity are 

improved to 0.23% FS and 0.3% FS in Table 4 using 4 × 6 calibration from 0.8% FS and 0.6% FS in 

Table 2 using 3 × 3 calibration. These configured parameters of algorithms in 4 × 6 configuration are 

shown in Table 5. VCR acquires the minimum MSE 1.5 × 10
−4

, which shows the fluctuation of errors 

is much less than in the other compensation results. These configured parameters of algorithms in  

4 × 6 configuration are shown in Table 5. 

Figure 10. The compensated errors of algorithms at three pressure points on temperature 

using 4 × 6 calibration: (a) VCR; (b) RPA; (c) BP; (d) SVM; (e) RBF and (f) ELM. 

 

Table 4. Performances of sensor calibrated by algorithms using 4 × 6 calibration. 

Algorithms 
Accuracy 

A (%FS) 

Linearity  

δl (%FS) 
MSE 

Temperature Coefficient 

of Zero a0 (/°C) 

Temperature Coefficient 

of Sensitivity as (/°C) 

VCR 0.32 0.29 1.5 × 10−4 0.83 × 10−5 2.91 × 10−5 

RPA 0.65 0.66 27 × 10−4 1.17 × 10−5 10.05 × 10−5 

BP 0.50 0.67 5.7 × 10−4 5.0 × 10−5 3.56 × 10−5 

SVM 0.40 0.39 9.0 × 10−4 5.57 × 10−5 5.47 × 10−5 

RBF 0.38 0.86 2.7 × 10−4 1.15 × 10−5 3.27 × 10−5 

ELM 0.23 0.23 3.4 × 10−4 2.49 × 10−5 3.34 × 10−5 
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Table 5. Configured parameters of algorithms using 4 × 6 calibration. 

Algorithms Configured Parameters 

VCR two third-order polynomials 

RPA two-dimensional rational  

BP structure: 2 × 5 × 1 

SVM '−c 1.7 −g 1.2 −s 4' 

RBF structure: 2 × 24 × 1; Spread: 6.5 

ELM structure: 2 × 11 × 1 

In this 5 × 11 configuration experiment, 55 samples are used as the experimental data. It can be 

found from Figure 11 that the compensated errors of ELM at three pressure points are reduced to 

0.13% FS. Although VCR has the minimum error 0.1% FS at three pressure points, the experimental 

comparisons of algorithm in Table 6 show the sensor compensated by ELM obtains the best accuracy, 

nonlinearity and MSE. The accuracy, nonlinearity and MSE are 0.13% FS, 0.15% FS and 0.85 × 10
−4

, 

respectively. These configured parameters of algorithms in 5 × 11 configuration are shown in Table 7. 

Figure 11. The compensated errors of algorithms at three pressure points on temperature 

using 5 × 11 calibration: (a) VCR; (b) RPA; (c) BP; (d) SVM; (e) RBF and (f) ELM. 

 

Table 6. Performances of sensor calibrated by algorithms using 5 × 11 calibration. 

Algorithms 
Accuracy 

A (%FS) 

Linearity  

δl (%FS) 
MSE 

Temperature Coefficient 

of Zero a0 (/°C) 

Temperature Coefficient 

of Sensitivity as (/°C) 

VCR 0.32 0.29 1.5 × 10−4 0.98 × 10−5 2.89 × 10−5 

RPA 0.60 0.62 24 × 10−4 1.36 × 10−5 8.98 × 10−5 

BP 0.28 0.25 1.7 × 10−4 1.55 × 10−5 2.49 × 10−5 

SVM 0.41 0.41 9.0 × 10−4 5.62 × 10−5 5.91 × 10−5 

RBF 0.22 0.21 0.88 × 10−4 1.21 × 10−5 2.23 × 10−5 

ELM 0.13 0.15 0.85 × 10−4 1.17 × 10−5 2.08 × 10−5 
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Table 7. Configured parameters of algorithms using 5 × 11 calibration. 

Algorithms Configured Parameters 

VCR two third-order polynomials 

RPA two-dimensional rational  

BP structure: 2 × 5 × 1 

SVM '−c 1.2 −g 0.6 −s 4' 

RBF structure: 2 × 37 × 1; Spread: 3.5 

ELM structure: 2 × 30 × 1 

Figure 12 compares the compensated error of ELM at full measurement range using different 

calibration configurations. It is obvious that the 5 × 11 calibration configuration has better performances 

as shown in Figure 12d. The compensated errors has smaller fluctuation on temperature in Figure 12d than 

others in Figure 12b,c. At the same time, the compensated error is about 2.5% FS before compensation, 

and is reduced to about 0.1% FS after ELM compensation. 

Figure 12. Compensated pressure errors of ELM: (a) before and (b) after compensation 

using 3 × 3 calibration; (c) after compensation using 4 × 6 calibration; (d) after compensation 

using 5 × 11 calibration. 

 

According to Equation (5) in Section 2.1, the relationship between voltage and temperature is a 

third-order polynomial under ideal conditions, so all compensation algorithms used in the paper can 

approximate the polynomial in theory. However, it is difficult to get the ideal expression because of 

the fabrication limitations. From Tables 2 and 3, it can be observed that VCR and RPA with their 

operability and fast computation capability are suitable for temperature compensation when a few 

samples are available, but they can’t provide as good accuracy as other algorithms. With the increase 

in sample numbers, the accuracy of sensor compensated by algorithms is improved which can be  

seen from Tables 2 and 6. It is deduced that sample number has a great influence on the algorithm 
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performance. It takes a lot of time to set the reasonable parameters for BP, RBF and SVM for 

compensation due to the lack of theoretical guidance, which makes it difficult to achieve high 

accuracy. Thus, BP, RBF and SVM are suboptimal solutions for compensation of silicon sensors. 

Compared with them, ELM can provide higher accuracy, and is more suitable for compensation due to 

its low computational complexity and single-parameter setting with theoretical guidance. 

5. Conclusions 

A smart temperature compensation system is presented in this study. The implemented circuitry is 

structurally simple and suitable for batch fabrication. ELM with its single-parameter setting and fast 

learning speed is selected as the temperature compensation algorithm for piezoresistive silicon sensors.  

In order to test the effectiveness of the system, experiments are performed within 0 ~ 20 MPa and  

−40 ~ 85 °C. Three calibration point configurations are designed for high accuracy. To compare the 

calibration performance of ELM, VCR, RPA, BP, SVM and RBF are chosen. The experimental results 

indicate that ELM is a better compensation algorithm in terms of higher accuracy when using a 5-point 

temperature and 11-point pressure calibration. ELM can find the suitable SLFN structure for temperature 

compensation without intervention during calibration. The accuracy, linearity, zero temperature 

coefficient and sensitivity temperature coefficient of sensor calibrated by ELM are improved from 

2.57% FS, 2.49% FS, 8.1 × 10
−5

/°C and 29.5 × 10
−5

/°C to 0.13% FS, 0.15% FS, 1.17 × 10
−5

/°C and  

2.1 × 10
−5

/°C, respectively. The compensated pressure sensors can be applied for the pressure 

measurement of pipelines in the oil and chemical industry. In future work, we will focus on the overall 

compensations for hysteresis and accuracy with the appropriate software algorithms. 
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