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Abstract: Metallic strip gratings (MSG) have different applications, ranging from printed 

circuits to filters in microwave domains. When they are under the influence of an 

electromagnetic field, evanescent and/or abnormal modes appear in the region between the 

traces, their utilization leading to the development of new electromagnetic nondestructive 

evaluation methods. This paper studies the behavior of MSGs in the sub-subwavelength 

regime when they are excited with TEz or TMz polarized plane waves and the slits are 

filled with different dielectrics. The appearance of propagating, evanescent and abnormal 

modes is emphasized using an electromagnetic sensor with metamaterials lens realized 

with two conical Swiss rolls, which allows the extraction of the information carried by the 

guided evanescent waves. The evanescent waves, manipulated by the electromagnetic 

sensor with metamaterial lenses, improve the electromagnetic images so that a better 

spatial resolution is obtained, exceeding the limit imposed by diffraction. Their theoretical 

and experimental confirmation opens the perspective for development of new types of 

sensors working in radio and microwave frequencies. 

Keywords: sub-subwavelength regime; sensors with metamaterials; metallic strip grating; 

evanescent modes 
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1. Introduction 

The metal strip grating is a periodic planar arrangement of parallel metal strips with infinite length 

and infinitesimal thickness. Metallic strip gratings have specific applications as filters or conductive 

strips or micro-strips, traces in rigid or flexible printed circuits. The interaction of electromagnetic 

fields with periodical metallic structures is interesting from both fundamental as well as practical 

points of view [1–4]. In subwavelength optics, the usual Huygens principle-based approaches fail [5], 

and the solutions for electromagnetic diffractions and transmission enhancement of electromagnetic 

waves by means of subwavelength metallic apertures are relatively complicated. Lord Rayleigh has 

advanced an approach to diffraction calculation in his solution to wave scattering from a reflecting 

grating [6] when the size or periodicity of diffracting object becomes comparable to or smaller than the 

wavelength of the incident electromagnetic wave. By expressing the wave as a superposition of  

plane-wave harmonics, he obtained the diffraction amplitudes through boundary conditions fitting at 

the grating surface. This yields to reasonable results for shallow gratings even when the periodicity is 

smaller than . However, when the ratio of grating depth to periodicity exceeds a small critical value, 

the method fails to converge [7]. A direct numerical solution of the wave equation in differential form 

is reported. This shows instabilities for good conductor strips, such as aluminium or silver [1]. The 

integral equation approach, on the other hand, is numerically more stable than the differential method 

but can display matrix ill-conditioning problems when grating depth becomes too large [1]. 

It became clear that the basic concept of the eigenmodes in wave-guiding structures, which qualifies 

the modes into propagating and evanescent, is not fully applicable to metal-based structures [8,9]. The 

case in which the incident field at metallic strip grating is TMz polarized [9–13] was intensively 

studied since the excitation of surface plasmon polaritons is possible [14,15]. The behavior of a 

metallic strip grating when the incident field is TEz polarized has been less studied [16]. 

In all these approaches, it is presumed that the dielectric from the slits is the air (with the 

electromagnetic properties of the vacuum 0, µ0), the metallic strip grating constant being smaller than 

the wavelength of the incident electromagnetic field. This case is defined as sub-wavelength regime. 

When the incident electromagnetic wave is a plane wave, TMz polarized; it has been demonstrated that 

a propagating mode and more evanescent and abnormal modes are generated in slits [9,17,18]. As 

specified in reference [19], when the constant of a metallic strip silver grating is 1 mm and the incident 

wave is TMz polarized, having a 0.6 m wavelength, in it has been shown that only a single evanescent 

mode appears in slits; this mode disappears when water is inserted in slits (water = 81) [20]. 

This paper proposes a theoretical and experimental study of the eigenmodes that appear in a 

metallic strip grating having thick metallic strips from silver, operating in sub-subwavelength regime; 

this implies the constant of strip grating much smaller than the wavelength of incident electromagnetic 

field. This approach is new for stratified structures (MSG, dielectrics and metamaterials) in subwavelength 

regime and can be integrated into a new class of sensors with performances able to open new domains 

of applications in electromagnetic evaluation of composite and nanocomposite materials.  

Both TEz and TMz polarized plane waves are used as incident to metallic strip grating. The 

“visualization” of eigenmodes is experimentally made using a transducer with metamaterials lens, 

when dielectric fluids with different dielectric constants are inserted in slits. These lenses allow the 

manipulation and focusing of evanescent waves that appears in the slits, leading to the spectacular 
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improvement of the spatial resolution, superior to those described in [19]. They offer the possibility to 

ameliorate the quality of the electromagnetic images using the evanescent waves [5] that appears  

in slits and their transfer at distance. The composite materials, CFRP type, due to carbon fibers 

conductivity, can be considered as strip grating conductive stratified structures. Nowadays, these 

composites have large usage and they require electromagnetic nondestructive evaluation methods with 

high sensitivity in order to detect moisture presence, fibers breaking, delaminations due low energy 

impacts, etc. A good agreement between theoretical and the experimental results is found. 

2. Basic Model 

Considering the semi-infinite periodic grating of metallic strips and slits filled with the dielectric as 

shown in Figure 1, the space above the grating (Region I) is assumed to be vacuum. The dielectric 

permittivity of the metal is m and of the dielectric in the slits is d. If the thickness of the metal strips, 

h, is at least three times the standard penetration depth of the incident electromagnetic field, the strip 

grating can be considered thick: 

3h   (1a) 

where: 

2


  (1b) 

 is the angular speed of the incident electromagnetic field,  and µ are the electrical conductivity and 

the magnetic permeability, respectively, of the metallic strips. 

In this case, the metallic strip grating can be considered occupying the entire semi-plane z > 0 

(Region II in Figure 1). 

Figure 1. Semi-infinite thick metallic strip grating. 

 

For a metallic strip grating excited with a plane wave TEz polarized, the electric field of the 
incident plane wave is parallel to the y axis, so that 0x zE E   and 0yE  . 

In the case of TMz polarization, the magnetic field of the incident plane wave is parallel to the y 
axis, so that 0x zH H   and 0yH  . For both polarizations, normal incidence will be taken  

into consideration. 
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In Region I, the electromagnetic field can be expressed as a Fourier series: 

     0 0
0

exp cos expI n n
n

ik z a nKx K z




      (2) 

where I  is the y component of the electric/magnetic field for the TEz/TMz polarized wave, 0  is the 

amplitude of the electric/magnetic incident field, an represents the amplitude of the scattered 

electric/magnetic field component, 0

2
k

c

 


  , 
0

2
K

x


 , 0 d mx x x   represents the strip grating 

constant, 1i    and 
0

2 2 2
nK n K k  . The other components of the electromagnetic field can be 

easily calculated using the Maxwell’s equations. 

In Region II, the field in the grating can be expressed as an expansion in the eigenmodes of the 

periodic structure: 

   
1

expII b x i z  


  




  (3) 

where II  is the y component of the electric/magnetic field in the period strips, b is the amplitude of  

eigenmodes,  x  is the y component of the electric/magnetic eigenmodes and   is the propagation 

constant with positive imaginary part for  eigenmodes:  

   
 

z

z

, for TE polarized incident electromagnetic field

, for TM polarized incident electromagnetic field

e x
x

h x






 


 (4) 

Using [7], the eigenmodes can be expressed as: 

 
 

0 0 0

sin sin ,
2 2 2

sin sin ,
2 2 2 2 2 2

m d d
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d d d
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

         
                                
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 (5) 
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
 (6) 

where: 

2 2
0

2 2
0

m m

d d

p k

p k





 

 

 

 
 (7) 

  



Sensors 2014, 14 11790 

 

 

3. Eigenmodes and Dispersion Equation 

3.1. Theoretical Development 

The metals used in fabrication of metallic strip grating (especially silver) have complex dielectric 

permittivity ' ''
m m mi     with large negative real part '

m  and a relatively small imaginary part ''
m  [21]. 

Using the continuity of the tangential field components together with the Bloch condition for the 

periodic structure, we can obtain the dispersion equation, which allows the determination of the 

eigenvalue . For the excitation of metallic strip grating with an electromagnetic planar wave TEz 

polarized, the dispersion equation becomes: 

       1
sin sin cos cos 1

2
d m

m m d d m m d d
m d

p p
p x p x p x p x

p p

 
   

 
 (8) 

and for excitation of metallic strip grating with an electromagnetic planar wave TMz polarized, the 

dispersion equation becomes: 

       1
sin sin cos cos 1

2
d m m d

m m d d m m d d
m d d m

p p
p x p x p x p x

p p

 
 

 
   

 
 (9) 

The dispersion Equations (8) and (9) are transcendental complex and can be only numerically 
solved. These equations provide the eigenvalues—the propagation constants  of different modes that 

are generated in slits for various excitations. 

The analytical solution of Maxwell’s equations in each of the two spatial regions (see Figure 1) 

allows to expand arbitrarily the wave field , as a superposition of eigenfunctions. The expansion 

coefficients through the boundary conditions at z = 0 can be calculated: 

   

   

, 0 , 0

, 0 , 0

I II

I II

x z x z

x z x z
z z

 

 

  

 
  

 

 (10) 

where II  is defined as: 

   

     
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1

z
1

exp , for TE polarization

1
exp for TM polarization

II
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  


  

















 






 (11) 

Applying the Fourier transform to the continuity Equation (10), the system of algebraic equations 

for the amplitudes of the field harmonics can be easily obtained. 

For the excitation of metallic strip grating with an electromagnetic planar wave TEz polarized, 

Equations (5), (10) and (11) lead to the algebraic system of equations: 

0

0

0

0 0

n n n

n n n n

a b e

ik iK a ib e

 

 

 

 

   
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 (12) 
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and: 

   cos
n

one period

e e x nKx dx    
(13) 

where  is the Kronecker symbol. 

For the excitation of the metallic strip grating with an electromagnetic planar wave TMz polarized, 

Equations (6), (10) and (11) lead to: 

00

0 0
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a b e

h
ik iK a ib
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 

 
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where: 

 2 2

2 2

( )
d d

m

d d

x x
x

x xd m

h xh h x
dx dx 

  





    (15) 

3.2. Numerical Results 

The case of a metallic strip grating made from silver strips having 10 µm thickness, the width of 

strips being xm = 0.6 mm and the width of slits being xd = 0.4 mm is analyzed, considering that the 

wavelength of the incident field is  = 0.6 m (corresponding to 500 MHz frequency). 

The electrical conductivity of silver is 76.2873 10Ag   S/m [22] such that the metallic strip grating 

is fulfilling the condition given by Equation 1a, as being infinitely thick. According to reference [22], 
at frequencies around 500 MHz, the dielectric permittivity of silver is 48.8 3.16m i     . 

Considering that the slits are filled with different liquid dielectrics, having the dielectric constant d 

indicated in Table 1 [23], the solutions of dispersion Equations (8) and (9) are quest having the form: 

' ''i     (16) 

where " 0  . The obtained results are presented in Table 1.  

Table 1 shows that for metallic strip grating excitation with electromagnetic planar waves TEz 

polarized, only one evanescent mode is generated in slits. The imaginary component of the 

propagation constant of these modes is increasing with the increase of dielectric constant of the liquid 

inserted in slits. 

For metallic strip grating excitation with electromagnetic planar waves TMz polarized, at relatively 

small values of dielectric constants, only evanescent modes are generated in slits, and when  

4.81d  , the case of chloroform, abnormal modes are generated in slits. Equation (9) admits pairs of 

solutions (there are abnormal modes) ' "i     and respectively ' "i     , that correspond to 

a modification of the phase in advance or retarded with same value, therefore these modes are 

equivalent due to the periodicity conditions. Knowing the eigenvalues for the propagation constant in 

the cases of both polarizations of the incident field, the form of eigenmodes can be calculated using  

Equations (5)–(7) and the data from Table 1. 
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Table 1. Eigenvalues for Equations (8) and (9) for slits filled with liquid dielectrics. 

No. Dielectric in Slits 
Dielectric 

Constant d 

 

Observations TEz 
Excitation 

TMz 
Excitation 

1 Air 1 0 + i·10.470 0 + i·16.875 
For both excitations in slits, only 
one evanescent mode appears 

2 
Carbon 

tetrachloride 
2.24 0 + i·15.670 0 + i·25.870 

For both excitations in slits, only 
one evanescent mode appears 

3 Benzene 2.27 0 + i·15.780 0 + i·25.900 
For both excitations in slits, only 
one evanescent mode appears 

4 Chloroform 4.81 0 + i·22.970 0.2 + i·39.000 

For TEz polarization in slits only 
one evanescent mode appears 
For TMz polarization there it is 
an abnormal mode 

5 Chlorobenzene 5.62 0 + i·24.830 0.3 + i·43.100 

For TEz polarization in slits only 
one evanescent mode appears 
For TMz polarization there it is 
an abnormal mode 

6 Tetrahydrofuran  7.58 0 + i·28.831 0.5 + i·52.100 

For TEz polarization in slits only 
one evanescent mode appears 
For TMz polarization there it is 
an abnormal mode 

7 Dichloromethane  8.93 0 + i·31.290 0.7 + i·58.035 

For TEz polarization in slits only 
one evanescent mode appears 
For TMz polarization there it is 
an abnormal mode 

8 o–Dichlorobenzene  9.93 0 + i·33.073 0.9 + i·62.511 

For TEz polarization in slits only 
one evanescent mode appears 
For TMz polarization there it is 
an abnormal mode 

9 Isopropyl alcohol  17.9 0 + i·44.342 4.2 + i·104.321 

For TEz polarization in slits only 
one evanescent mode appears 
For TMz polarization there it is 
an abnormal mode 

In Figure 2 are presented the evanescent modes generated in slits when the metallic strip grating is 

excited with a planar TEz polarized wave, and different dielectrics being inserted in slits. In Figure 3 

are presented the evanescent and the abnormal modes generated in slits when the metallic strip grating 

is excited with a planar TMz polarized wave, different dielectrics being inserted in slits. In both cases, 

the wavelength was 0.6 m. 
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Figure 2. Eigenmodes e(x) plotted as a function of x for one period of metallic strip 

grating. Numbers in legend correspond to the position in Table 1.  

 

Figure 3. Eigenmodes h(x) plotted as a function of x for one period of metallic strip 

grating. Numbers in legend correspond to the position in Table 1.  

 

Examining Figure 2, it can be observed that all the modes e, evanescent modes have a very 

pronounced minimum in the middle of the slits and a maximum on the flanks of the metallic strip 

grating, followed by a decay toward zero in the middle of metallic strip. The evanescent and h, 

abnormal modes, shown in Figure 3, have a minimum zone with almost constant amplitude in slits and 

maximum on the flank of metallic strips, followed by decreasing of amplitudes to middle of the 

metallic strips. Very closely to the interface grating — air (negative z near zero, Figure 1), the effect of 

evanescent and abnormal modes is felt, forming a near-field region. The near-field region is generally 

characterized as a region in space where the evanescent waves cannot be neglected and it is restricted 

to material boundaries; this makes evanescent wave-source decoupling impossible [24]. 
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A solution for manipulating the evanescent and abnormal modes is to use of lenses with 

metamaterials [25,26]. When the effective electrical permittivity eff, and the effective magnetic 

permeability, µeff, of a metamaterial slab are simultaneously −1, the refractive index of the slab is  

n=−1 [27]. The surface impedance of such metamaterial is Z = 1, therefore is no mismatch and 

consequently no reflection at the interface slab—air [26]. This metamaterial slab forms a perfect  

lens [25] and is focusing the electromagnetic field, and also the evanescent waves [25]. Due to 

experimental difficulties in obtaining a perfect lens, the manipulation of the evanescent modes can be 

made with this new type of electromagnetic transducer with metamaterials lens that have, at the 

operation frequency, either eff = −1 and electric evanescent modes can be manipulated, either µeff = −1, 

and the lens can focus magnetic evanescent modes [28]. 

As shown in reference [29,30], the electric evanescent modes can be manipulated with a transducer 

made from a special type of metamaterial, named conical Swiss rolls, functioning in a frequency range 

that assures that µeff is maximum. Working at frequencies that assure µeff = −1, the lens with conical 

Swiss rolls can manipulate the magnetic evanescent modes [19,30]. 

The principle of the lens transducer made from two conical Swiss rolls, used for manipulating the 

evanescent and abnormal modes generated in slits of metallic strip grating excited with 

electromagnetic waves, polarized TEz and respectively TMz is shown in Figure 4. 
The proper detection system is made from a lens transducer realized with two identical conical 

Swiss rolls having the large basis front to front. The focal distance of this lens is  f l , where l 

represents the height of a conical Swiss roll [29]. A conductive screen with a circular aperture having 

the diameter d <<  (Figure 4) is placed near the focal object point. A detection coil is placed in the 

focal image point, converting the localized energy into an electromagnetic force (e.m.f.). The sample is 

raster scanned, recording the energy image pixel or electromagnetic signature.  

Figure 4. Detection of evanescent and abnormal modes generated in the slits of a metallic 

strip grating using lens transducer: (a) scheme; (b) photo. 

(a) (b) 

Using the Fourier optics methods [5,31], an object O(x,y) that can represent the eigenmodes e or h 

in function of the polarization of incident electromagnetic field, has, while passing through the circular 

aperture and the lens, an image I(x’,y’) given by: 
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 (17) 

where P(x,y) is the pupil function defined as:  

 
2 2 21,

,
0, otherwise

x y d
P x y

  
 


 (18) 

O(x,y) is the object defined as: 

   
 

z

z

, for TE polarized incident waves
,

, for TM polarized incident waves

e x y
O x y

h x y




 


 (19) 

1d R l   the distance from the object to the center of the lens 

2d l  the distance from the center of the lens to the detection coil. 

Considering the lens transducer presented above in Figure 4, with f = l= 50 mm in front of which a 

conductive screen with a circular aperture having diameter d = 100 µm is placed, the effective medium 

of the lens presents a maximum for µeff at the frequency of 473.8 MHz and µeff = −1 at 476 MHz (see 

Section 4 for justification). The value of R is 75 µm, as shown in Figure 4. 

Two observations must be made: 

- Eigenvalues, values of , and respectively eigenmodes, e(x) and h(x) obtained by numerical 

calculation at the frequency of 500 MHz, insignificantly differ from the values obtained at 

frequency of 473.8 MHz for the case of TEz polarization and respectively at frequency of  

476 MHz for the case of TMz polarization 
-    ,e x y e x   - the electric modes have the same form and amplitude indifferent of y 

coordinates (Figure 1).    ,h x y h x  —the magnetic modes have the same form and 

amplitude indifferent of y coordinates (Figure 1) 

Figure 5 shows the images of the evanescent modes e emphasized in Figure 2, after the passing 

through transducer lens, with a scanning step of 1 µm. The electromagnetic waves incident to metallic 

strip grating are TEz polarized waves having the frequency of 473.8 MHz, which gives a  

maximum µeff. 

The analysis of curves from Figure 5 shows that the images of all e modes that are evanescent have 

a minimum in the middle of the slits as well as two symmetrical maxima at the distance of ±154 µm. 

The modes decrease toward zero on the flanks of metallic strip, and then, in the interior of the metallic 

strip, at the distance of ±249 µm, all the modes present other pair of maxima, followed by the 

decreasing of the amplitude toward the middle of metallic strips. 
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Figure 5. The image through transducer’s lens of evanescent modes e shown in Figure 2. 

The numbers in the legend correspond to the position from Table 1.  

 

Figure 6 shows the image of the h modes, previously emphasized in Figure 3 after the passing 

through transducer lens. The incident waves are TMz plane polarized having frequency of 476 MHz, 

which assures µeff = −1. 

Figure 6. Image through transducer’s lens of the evanescent modes h presented in  

Figure 3. The numbers from the legend correspond to position in Table 1.  

 

The analysis of data from Figure 6 shows that the image of all h modes has a region of maximum 

in central zone of slits followed by an accentuated decreasing on metallic strip’s flank that continues in 

the interior of the strips. This is followed by a region of increase, followed by a decrease towards zero 

on the middle of the metallic strip. The positions of minima as well as of maxima from the interior of 

metallic strips depend by the permittivity of dielectrics inserted in slits.  
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4. Samples; Experimental Set-Up 

Metallic strip gratings having conductive traces made of silver with 10 µm thickness and 0.6 mm 

width deposited on polyester support with relative permittivity 4.8 have been taken into study, the 

distance between traces is 0.4 mm. These are portions of a flexible printed circuit board, Figure 7. At 

frequencies around the value of 500 MHz, the permittivity of silver is 48.8 3.16m j      [22]. The 

studied metallic strip grating corresponds to those used in the numerical simulations. 

Figure 7. Metallic strip grating taken into study.  

 

The transducer’s lens has been realized with two conical Swiss rolls having the large basis face to 

face (see Figure 4). The diameter of large base is 20 mm, of small base is 3.2 mm and the height is  

50 mm. The conical Swiss rolls have been made by a foil of LONGLITETM 200, produced by 

Rogerscorp (Connecticut, CT, USA), having 18 µm thickness copper foil laminated adhesiveless with 

12 µm thickness polyimide foil, in order to reduce the losses. Each conical Swiss roll has 1.25 turns 

winded on a mandrel with 20° cone angle. 

The frequency dependency of lens’ effective magnetic permeability has been determined measuring 

the S parameters (S11 and S21) and applying the effective medium method [30,32,33]. The measurement 

of S parameters were made with a 4395A Network/Spectrum/Impedance Analyzer (Agilent 

Technologies, Santa Clara, CA, USA) coupled with S Parameter Test kit 87511A Agilent. The incident 

field is generated by one turn coil, having 16 mm average diameter from Cu wire with 1 mm diameter. 

The reception coil has one turn with 3 mm average diameter from Cu wire with 1 mm diameter. 

In Figure 8 is presented the dependence by frequency of effective magnetic permeability of the lens 

used for manipulation of evanescent and abnormal modes. It can be observed that the real component 

of the effective magnetic permeability reaches the maximum value at the frequency of 473.8 MHz and 

the value of −1 at frequency of 476 MHz, values for which the numerical simulations have been made 

in Section 3.2. 

A conductive screen made from LONGLITETM 200, connected to ground, having 0.1 mm diameter 

circular aperture, has been placed in front of the object focal point of the lens. A reception coil with 

one turn having average diameter of 1 mm made from Cu wire with 0.1 mm diameter, has been placed 

in the image focal point. 
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The TEz polarization of the incident field was created with a rectangular frame having one turn from 

1 mm diameter Cu wire. The frame having 35 × 70 mm dimensions was placed parallel with the 

surface of metallic strip grating at 3 mm height. The small side of the frame is placed parallel to the 

direction of metallic strips, the TEz polarization being obtained in the central region [34]. The working 

frequency was 473.8 MHz.  

Figure 8. The dependence by frequency of effective magnetic permeability of the lens. 

 

The TMz polarization was realized with the same frame, placed perpendicularly at the metallic strip 

grating, as it was shown in [19], the working frequency being 476 MHz. During the measurements, the 

excitation frame, in both configurations and the lens have been maintained in fixed position, the 

metallic strip grating being displaced with a motorized X-Y stage—Newmark Systems Inc.  

(Santa Margarita, CA, USA). The excitation frame and the reception coil are coupled with an Agilent 

4395A Network/Spectrum/Impedance Analyzer. The measurement system is commanded by a PC 

through RS 232 for X-Y motorized stage controller and IEEE 488.2 for the Analyzer 4395A. The 

programs for measurements and data storage are developed in Matlab R2011b. 

The electromotive force induced in the reception coil of the measurement system represents the 

average of 10 successive measurements in the same point, in order to reduce the effect of the white 

noise. The bandwidth of Analyzer 4395A was set-up at 10 Hz for diminishing the noise level. 

5. Experimental Results; Discussions 

Using the transducer lens described earlier, a region of 1 × 1 mm2 from metallic strip grating has 

been scanned with 10 µm steps in both directions. The scanning along x direction was made so that 

shall correspond to a period of the grating, x0. The same scanning parameters have been kept for the 

both polarizations of the incident electromagnetic field and for the two operation frequencies. 
In Figure 9a is presented the image of the electric evanescent mode generated in slits, in air, when 

metallic strip grating is excited with a TEz polarized wave at frequency of 473.8 MHz. When the slits 

are filled with air, the profile of evanescent waves e generated in slits at TEz polarized wave excitation 

is kept. Along y coordinate, the amplitude of the signal induced in the reception coil remains 

approximately constant, confirming the theoretical considerations    ,  x y xe e  . Along  
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x coordinate, for x0 period, are observed the same minima of the evanescent modes e, in the middle of 

the slits, the symmetrical maxima at ±155 µm, with decreasing towards the minimum value, but 

different by zero, on the strips flanks. In the interior of the strips, it can be observed other pair of 

maxima, at ±270 µm, followed by the decreasing towards zero on the middle of the strip. It can be 

noticed that the visualization of these modes can be improved using metamaterials lens in order to 

manipulate the evanescent waves that appear in slits. If the slits are filled with isopropyl alcohol, the 

image of the evanescent mode is modified, as can be seen in Figure 9b. 

Figure 9. The image of the evanescent modes generated in slits for TEz  

polarized excitation at 473.8 MHz frequency: (a) slits filled with air; (b) slits filled with 

isopropyl alcohol.  

 

(a) 

 

(b) 

It can be observed that the amplitude of the signal induced in the reception coil increases when a 

dielectric with high dielectric constant (isopropyl alcohol) is inserted in slits, fact that confirms the 

theoretical predictions presented in Figure 5. On the middle of slit (x = 0), as well as on the middle of 

the metallic strip (x = ±0.5 mm), the signal has minimum approximately equal to zero. Four maxima of 

e.m.f. induced in the reception coil appear, two located at the interface metallic strip—slits and other 

two located in the interior of metallic strip on the one side and on the other side of the slit. The images 
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present an increasing of the amplitude of the signal induced in the reception coil confirming the 

theoretical estimation of liquid dielectric effects over the evanescent waves from slits and constitutive 

parameters. The approach is original because emphasizes the propagation of evanescent waves through 

dielectric fluids that fill the slits. 

When a TMz polarized field having the frequency of 476 MHz acts over the metallic strip grating, 

scanning the same region of 1 × 1 mm2
 with 10 µm step on both directions, the detection being made 

with the same type of electromagnetic transducer, the image of the evanescent and abnormal modes 

created in slits is presented in Figure 10. 

When the slits are filled with air, according to Table 1, only one evanescent mode will be generated, 

the amplitude of the signal induced in the reception coil having the shape presented in Figure 10a. The 

amplitude presents a region of maximum in the central zone of the slit followed by an accentuated 

decreasing towards the flanks of metallic strips. In the metallic strips there are two secondary maxima, 

with amplitude smaller than the one in the central zone of the slit followed by a decreasing to zero to 

the middle of metallic strip. The existence of a single evanescent mode, theoretical foreseen in  

Figure 6, is experimentally confirmed by the existence of a local maximum in the middle zone of the 

slits, with maximum amplitude on the middle of the slits, followed by an accentuated decreasing, 

symmetrically on the flanks of the strips. In strips, at the distance of ±42 µm from the vertical wall of 

the strip, localized at ±0.2 mm, there are two secondary maxima with amplitudes smaller than those in 

the central zones with approximately 0.82 times. These results are in good accordance with  

theoretical estimations. 

It can be observed that in the case of excitation with TMz polarized wave, for large values of the 

liquid dielectric constants larger than 10, according to Table 1, when d = 17.9, (isopropyl alcohol ), in 

slits are generated abnormal modes.  

Because the real component of the propagation constant  for isopropyl alcohol is smaller than the 

imaginary component, abnormal modes will be generated in slits, the electromagnetic image of these 

modes shows a similar behavior like in the case of air in the slits. The amplitude of the signal is 

smaller and has a central maximum more flat (Figure 10b). 

For the case of modes excited by TMz polarized electromagnetic waves, their shape detected with 

transducer lens is also corresponding with those theoretically foreseen and presented in Figure 6. In the 

case in which the scanning step is increased at 0.1 mm, the shape of the mode presented in Figure 10a 

is close to the one previous presented [19]. 

This opens a large perspective for the use of transducer with metamaterials lens in  

sub-subwavelength regime as sensors (including biosensors based on the evanescent modes generated 

in slits and extremely low frequency plasmons). In the same time, due to the carbon fibers 

conductivity, the CFRP can be seen as stratified conductive strip gratings structure. Nowadays, CFRP 

are used in different domains, especially in aeronautics. This is justifying the development of new 

noninvasive electromagnetic testing methods with better sensitivity, in order to detect and evaluate 

delaminations, moisture presence, fibers breaking, etc.  
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Figure 10. Image of evanescent and abnormal modes generated in slits for TMz polarized 

excitation at frequency of 476 MHz: (a) slits filled with air; (b) slits filled with  

isopropyl alcohol. 

 

(a) 

 
(b) 

6. Conclusions 

The current paper proposes to study the eigenmodes that appear in metallic strip gratings made of 

silver, when both TEz and TMz incident waves are considered in sub-subwavelength regime. The TEz 

and TMz polarization of incident field have been created with a rectangular frame with the plane 

parallel for TEz and respectively perpendicular for TMz to metallic strip surface and it was fed with 

alternative current. 

An analytic model was developed in order to calculate the eigenmodes and respectively eigenvalue 

in a thick conductive strip grating, which shows that in a metallic strip grating having silver strip with 

geometrical dimension xm = 0.6 mm, xd = 0.4 mm, h = 10 μm, excited with a TMz and TEz polarized 

electromagnetic wave with 500 MHz frequency, abnormal and/or evanescent modes appear. It must be 

mentioned that the values obtained by numerical calculus at 500 MHz frequency, no significant differ 

from those obtained at 473.8 MHz for TEz polarization and 476 MHz for TMz polarization.  
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In order to detect and intensify of the abnormal and/or evanescent modes, a metamaterial lens has 

been developed using two conical Swiss rolls. The study focuses on the appearance of abnormal and/or 

evanescent modes for the cases where various dielectric fluids fill the gaps between the strips, from 

both an experimental and theoretical points of view. The experimental study confirms the theoretical 

findings according to which, when a TEz polarized wave is used, the amplitude of the signal induced in 

the reception coils is modified when a dielectric fluid with a high dielectric constant is used. When a 

TMz polarized wave is used, the existence of abnormal modes is experimentally confirmed, if the space 

between the metallic strip gratings is filled with a dielectric.  

Using the transducer and the procedure mentioned earlier, interruptions, short circuits of metallic 

strips of printed circuits boards as well as non-alignment of carbon fibers, lack of resin or voids, and 

delamination induced by low-energy impacts can be detected. 
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