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Abstract: “SmartMonitor” is an intelligent security system based on image analysis that
combines the advantages of alarm, video surveillance and home automation systems.
The system is a complete solution that automatically reacts to every learned situation in
a pre-specified way and has various applications, e.g., home and surrounding protection
against unauthorized intrusion, crime detection or supervision over ill persons. The software
is based on well-known and proven methods and algorithms for visual content analysis
(VCA) that were appropriately modified and adopted to fit specific needs and create a video
processing model which consists of foreground region detection and localization, candidate
object extraction, object classification and tracking. In this paper, the “SmartMonitor”
system is presented along with its architecture, employed methods and algorithms, and object
analysis approach. Some experimental results on system operation are also provided. In
the paper, focus is put on one of the aforementioned functionalities of the system, namely
supervision over ill persons.
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1. Introduction

“SmartMonitor” is an intelligent security system combining the advantages of an alarm system,
video surveillance, visual content analysis (VCA) algorithms and home automation. The central unit
of the system is built on the basis of electronic components specific to the personal computers (PCs)
and supports cameras, sensors and controlled devices. The system is a complete solution and has
various applications, e.g., protection against unauthorized intrusion, crime detection or supervision
over ill persons. It can be utilized both inside and outside the building to increase security in houses,
private apartments, nursing homes, small businesses or shops, as well as in backyards, gardens, parking
spaces, building surroundings, especially near entrances or windows. “SmartMonitor” has already been
described in literature [1–4].

There is a category of systems which has similar application to our supervision over ill persons
scenario, such as ContextCare [5], Maisons Vill’Age [6] or a multi-sensor surveillance system described
in [7]. These systems are intended to monitor ill or elderly people, however lack VCA functionality.
The main tasks addressed by VCA are object detection, recognition and tracking. Many systems of
such capabilities have been recently described in the literature, e.g., a system using dynamic saliency
map for object detection and boosted Gaussian Mixture Model with Adaboosting algorithm for object
classification [8], an automated surveillance system using omnidirectional camera and multiple object
tracking [9], a smart alarm surveillance system using improved multiple frame motion detection and
layered quantization compression technology for real-time surveillance with possibility of remote
viewing [10] or a real-time surveillance system using integrated local texture patterns [11]. There are also
some recent solutions combining both sensors and VCA. The authors of [12] presented an autonomous
monitoring system for detecting environmental accidents, e.g., a fire based on color and flame behavior.
The authors of [13] proposed an intelligent surveillance system for the identification of dangerous
intrusions based on information from video, audio and sensors. The literature review indicates also the
intelligent security systems based on different approaches. The authors of [14] proposed a system based
on wireless sensor network for guarding important utilities without human intervention. Liao and Su [15]
described an intelligent security system based on multiple communication interfaces, and intended for
home automation. In [16] a modular security system for home automation is proposed. Each module has
various interfaces and can be supervised directly or remotely.

The paper aims to present several aspects of the “SmartMonitor” system, especially the advantages of
combining video content analysis algorithms, sensors and controlled devices. We provide the system
characteristics and explain the approach which was implemented for the supervision of ill/elderly
persons. The goal of the research described in the paper was to develop a video processing model
for effective detection, classification and tracking of moving objects. The main implemented approaches
included in the model are adaptive background modeling based on Gaussian Mixture Models and various
color models, Haar and Histogram of Oriented Gradients (HOG) classifiers and Mean-Shift tracking.

The rest of the paper is organized as follows: the second section contains system characteristics
and architecture. The third section discusses methods and algorithms employed, as well as some
similar solutions that were considered. The fourth section describes the most important aspect of image
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analysis—the analysis of foreground objects, i.e., moving objects and their features. The fifth section
includes a description of experimental conditions and results. The last section concludes the paper.

2. System Characteristics and Architecture

2.1. System Characteristics

“SmartMonitor” has properties that are typical for traditional security solutions and monitoring
systems, but expands them with the capabilities of intelligent video processing based on the identification
of objects and events. This extends the functionality of the product by enabling moving object
discrimination before the alarm activation, which is impossible when simple motion detectors are used.
The system enables the design of individualized alarm responses which depend on the type of detected
object or event. An alarm can be triggered by both the result of image analysis or a specified type of
sensor, e.g., carbon monoxide detector, or a combination of various factors. A system response can be
a single action or a set of actions, including a phone call, a siren, an email, a text message, a message
played through a loudspeaker, a signal sent to the controlled device. The system offers remote access to
several functionalities, such as activation or deactivation of the protection status, live preview of images
from cameras or sending control signals to controlled devices to, for example, cut off the flow of current
in a given socket. It should be highlighted that the system reacts automatically to every learned situation
in a way that has been previously specified by the user.

The novelty of the system is expressed by the fact that we employ simple, yet effective methods that
do not have high computational overhead, e.g., we join Haar-like features and Histogram of Oriented
Gradients at the classification stage. Moreover, our solution is robust to environmental conditions and
enables the use of low-cost cameras—low resolution images are enough to perform the surveillance.
Furthermore, “SmartMonitor” belongs to the category of intelligent solutions. The intelligence of the
system lies in the manner in which the system operates and in its ability to react automatically to
the detected objects and events in a way pre-specified by a user. According to [17], the “intelligent
video surveillance” refers to the efficient extraction of information from the video data by the automatic
detection, tracking and recognition of objects of interest as well as the analysis and understanding of their
activities and related events. All of the mentioned functionalities are offered by the “SmartMonitor”
software and incorporated in its video processing model. The other aspect of the intelligence is the
automatic and autonomic system response—it means that the system performs an action in response to
an alarm, e.g., triggered by an object detected in the protected area, without any external interaction.
This does not require a qualified employee for instant monitoring, reporting and action. Thanks to the
use of wireless communication and controlled devices, “SmartMonitor” has the functionalities of home
automation system, or in other words—it can be used for the management and control of the building
and its nearest surrounding. This functionality may be activated directly or remotely by a user, or in a
result of the non-alarm action—an exemplary rule: when a person gets up (in a certain room and hours)
then turn on the kettle and rise the blinds. Therefore, the home automation using the “SmartMonitor”
system has a twofold purpose: first, a user defines events or a schedule and assigns certain actions to
them, which are performed automatically by the system, and second—a user connects to the system



Sensors 2014, 14 9925

directly or remotely and issue the command to the system, e.g., cut off the current flow in a given socket.
Examples are endless, depending mainly on the connected devices and user’s needs.

To our knowledge, “SmartMonitor” is the first intelligent security system which combines the
functionalities of different solutions, it is appropriate for home use and due to its price it is affordable for
individual users. Intelligent monitoring systems that use VCA are often applied in public spaces, e.g.,
airports, or other areas which require a high level of protection. This is associated with the need for very
specific, targeted and expensive infrastructure as well as the need to employ qualified employees who
will respond to system alerts. For instance, IVA 5.60 (Intelligent Video Analysis) by Bosch is a guard
assistant system based on intelligent video analysis. The system is able to detect, track and analyze
moving objects. This functionalities are built into cameras and encoders, which increases the cost of
installation. Bosch IVA is declared to be an industry solution [18,19]. AgentVi provides the another
solution for video analysis, which is based on open architecture approach and designed especially for
large installations. The software analyzing the video is distributed between an edge device (a camera
or encoder) and a server [20]. These both solutions are undoubtedly based on advanced video analytics
algorithms, however are not intended for home use. Their architectures also differs compared to the
“SmartMonitor” which has centralized processing unit and does not process any data on the edge devices.
Moreover, the mentioned systems do not enable the use of controlled devices. The other group of systems
with similar characteristics include solutions like ADT Pulse [21] or vivint [22], that generate alerts
based on various sensors. Their key features are: a use of wireless camera, home automation (e.g., door
locks) and remote access. These solutions combine advantages of home security and automation just
as our system, however require human intervention. Furthermore, they do not enable a differentiation
of dangerous situations or automatic response. There are also some very advanced solutions available
on the market which are meant for behavior recognition—one of them is AISight by BRS Labs [23].
This system autonomously builds a knowledge base and generates real-time alerts to support the security
team in transportation, critical infrastructure, law enforcement and homeland security, and city and urban
environments. It is able to analyze traffic, detect perimeter intrusion, secure facilities, generate transit
and manufacturing alerts, and identifies various events and activities with respect to a usual time of a day.
Compared to AISight, “SmartMonitor” system is not capable of self-learning, however, for the purposes
of “SmartMonitor”, such functionality is redundant and might increase the final price. Moreover, this
solution does not use controlled devices.

2.2. Logical and Physical Architecture

Logical and physical architectures reflect the system’s shape. There are several essential and crucial
elements which constitute a core of the system. The most important system components are: the
multi-interface module, graphical user interface module, signal receivers, control modules/converters,
encryption devices, identifying algorithm, repository of objects, contexts and patterns, recording module
and the system for the connection to the environment.

The multi-interface module is responsible for two-way communication with peripheral devices.
For example, it manages the sequence of messages to provide parameters required for each of the
connected devices and ensure appropriate times of delivery and reliable delivery. The graphical user
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interface (GUI) module is responsible for generating images in the user interface. The interface can be
operated via a web browser or mobile browser and offers multilingual features. Signal receivers include
driver modules that support receiver streams, such as WiFi or Bluetooth, and other dedicated devices
that receive analog signals. Control modules/converters support devices physically connected to the
system, such as wired cameras or wired sensors. Encryption devices are used in analog or digital direct
transmissions to protect transmitted data which are decoded in the multi-interface module. A crucial
part in video processing stage is the identifying algorithm—it analyses images and reports detected
parameters (e.g., an object’s size or velocity) and event features (e.g., a fall). Moreover, it enables parallel
processing of several video streams, while maintaining a relatively low use of computational resources
and high reliability. The repository is responsible for combining parameters and features detected by
the identifying algorithm into a definition of an object or event. The recording module is responsible
for registration and appropriate storage of video streams and data related to the identified objects and
events. The system for the connection to the environment is a secure interface, enabling communication
between the system and Internet or mobile network.

Figure 1. A simplified representation of the system core elements. The elements within light
blue area are embedded in the central unit of the system.

The simplified general scheme of the core system elements is depicted in Figure 1. The light blue area
reflects the elements embedded in the central unit of the system which is built of electronic components
characteristic to PCs. The diversity of peripheral devices, both those sending data to the central unit and
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receiving signals from the system, enables the user to define complex system responses to a combination
of many various factors. There are almost no restrictions on the choice of peripheral devices, such
as cameras or sensors, however some fundamental requirements have to be met, e.g., good image
quality or wireless transmission range. Emphasis was placed on the appropriate selection of electronic
components responsible for wireless transmission or signal sending and receiving in order to support
various peripherals. An example configuration of the “SmartMonitor” system is given below:

• Casing made of 1 mm thick metal sheet;
• Parameters of the PC-based components (central unit) are as follows: processor—Intel Core i5;

memory—16 GB; hard drive—256 GB; ports—2× USB 3.0, 6× USB 2.0, 2× RJ45; 2 audio
outputs; Bluetooth 3.0; 2 WiFi antennas; 2 antennas for control devices; operating system—64-bit
Windows 7; power consumption—95 W;

• Additional equipment includes: Internet Protocol camera (1–4 pcs, Day and Night option
required); Power over Ethernet (PoE) switch; additional Uninterruptible Power Supply (UPS);
remotely controlled sockets and remote controllers.

2.3. Software

The key part of the software concerns video content analysis, i.e., an automatic analysis of video that
aims mainly at detection, recognition and identification of objects and events present in the captured
images. There are six main system modules responsible for VCA and other tasks associated with video
processing and the interpretation of its results. Each module applies various methods and algorithms, but
not all modules are active at a particular moment—the video data is transmitted and processed serially.
The simplified scheme of the main system modules is depicted in Figure 2.

Figure 2. The simplified scheme of the main system modules.

Background modeling detects motion on the basis of the background subtraction process
(see Figure 3). As a result of this process, the foreground binary mask is obtained and only objects
larger than a pre-specified size are considered as objects of interest (OOIs) for the system. Extracted
objects are then tracked under the tracking module. The tracking process is based on the estimation of
an object’s positions in the subsequent frames. These positions create an object’s trajectory. Multiple
objects are additionally labeled to maintain the continuity of tracking. Trajectories can be compared
in order to recognize potentially dangerous behaviors. The artifacts removal module aims to remove
redundant areas from the foreground binary mask, i.e., regions which were mistakenly included in the
foreground image. The object classification module enables simple classification of objects on the basis
of their parameters or comparison with pre-defined templates. The event detection module focuses on
detecting object changes, especially changes in shape and motion. Depending on the user’s safety rules
or the system’s operational status, the system can react to sudden movement, shape change or the lack
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of movement. System response module determines the system’s reaction to the detected event according
to the rules set by the user.

Figure 3. A flowchart of the background subtraction process (based on [1]).

3. Key Methods and Algorithms Employed in the System for Video Processing Model

Each system module is associated with different actions and each scene environment implies different
system working conditions. In result, the system requires adaptation of various methods, algorithms and
parameters to be able to operate appropriately in various situations. The “SmartMonitor” system focuses
mainly on human silhouette analysis, therefore the most important issues are to build a good background
model, extract foreground objects without artifacts, track and classify them if necessary. The algorithms
that realize these tasks should be real-time solutions. An extensive body of literature has emerged in
the area of video content analysis and machine vision algorithms for recognition, identification and
classification of moving objects. This gave a wide selection of proven and reliable algorithms. Many of
them have been experimentally tested and some were ultimately chosen and adopted for the system.

The video processing model consists of several steps which are embedded into system modules.
The most important steps are associated with the first system module—background modeling—as it
influences the subsequent ones. Motion detection in video sequences is based mainly on the background
subtraction process which results in foreground mask extraction. Objects appearing in the foreground
area are defined as objects of interest for the system if they are coherent and larger than a specified size.
Smaller groups of pixels or single isolated pixels are considered as artifacts (false detections), even if
they refer to the actual moving object, the object may be located too far from the camera and information
about it is insufficient.

Background subtraction is a segmentation technique, hence it has to be resistant to changing weather
conditions, able to instantly react to environmental changes occurring in the scene, and detect all
foreground objects. Background models can be divided into three categories—static, averaged in time
and adaptive. Static background models are simple because the background image does not change over
the time. Therefore, foreground extraction involves the subtraction of the same background image from
every processed frame [24]. The main drawback of this approach is insensitivity to the variability of real
scenes which results in too large size of the extracted foregrounds. This problem is partially solved by the
background model averaged in time. A background image is created on the basis of an averaged group of
frames and updated periodically at a fixed time [25]. The third background subtraction approach is based
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on background modeling using Gaussian Mixture Models (GMM) which was proposed by Stauffer and
Grimson in [26] and can use both grayscale and color images. GMM models each pixel as a mixture
of Gaussian distributions and the background image is updated with every processed frame. In result,
it takes into account slow variations in lighting, repetitive background motion and long-term changes in
the scene [26].

Based on [26,27], the GMM can be defined as follows: let us assume that an input for the GMM
algorithm is the video sequence denoted as X1, . . . , Xt, where X is a single frame and t is a frame index.
M × N × K corresponds to frame size, where M and N are spatial resolutions and K is the number
of the component of RGB color space. Then the probability P of an occurrence of a particular pixel
xt(m,n) value can be defined using G Gaussian distributions and the following formula:

P (xt (m,n)) =
G∑
i=1

ωi,t ∗ η (xt (m,n) , µi,t,Σi,t) (1)

where:
µi,t—mean value of the ith Gaussian in the mixture at time t;
Σi,t—covariance matrix of the ith Gaussian in the mixture at time t;
ωi,t—estimate of the weight;
σ—standard deviation;
η—Gaussian probability density function.

The initial background image is iteratively adapted by means of the GMM algorithm. Each iteration
includes the analysis of every image from the processed frame and the modification of the background
model, which involves calculation of the distance d between a new pixel value xt(m,n) obtained from
Xt frame with the actual model:

d = |(xt (m,n)− µ)| (2)

If the distance value d > c · σ (c is a constant), a pixel does not belong to the background image.
In this case, the least probable distribution is replaced with another distribution which includes mean
value equal to a current pixel value. Otherwise, if d < c · σ, the model is adapted including new values
using formulas:

µt = (1− ρ)µt−1 + ρxt (m,n) (3)

σ2
t = (1− ρ) σ2

t−1 + ρ (xt (m,n)− µt)
T (xt (m,n)− µt) (4)

where ρ = αη (xt (m,n) |µt−1, σt−1) and α is a learning constant. Next, estimates of the weight in
particular distributions are modified:

ωt =

{
(1− α)ωt−1 + α if a new value is matched
(1− α)ωt−1 otherwise

The modeled distributions are sorted in descending order of the ω/σ ratio values and put on a list.
The distributions with the highest probability have a high weight and low standard deviation, and are
placed at the top of the list. The distributions which are at the bottom of the list are replaced with the
new ones. A new scene model is created using B first distributions which meet the below condition:
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B = argminb

(
b∑

k=1

ωk > T

)
(5)

where T is the proportion of the data that should be accounted by the background.
The GMM approach has been also modified and improved by many other researchers.

Kaewtrakulpong proposed a reinvestigation of the update equation in order to improve GMM
features [28]. Javed focused on performance improvement of the background models in real conditions
and proposed the use of color and gradient information to make background subtraction resistant to the
sudden changes in lighting [29]. Zivkovic proposed the use of recursive equations to constantly update
the parameters of the algorithms and to enable proper selection of components for each pixel [30].
One can ask, why the GMM has to be used for indoors since the majority of elements do not change
their positions, like walls, floor or furniture. The answer is simple—there are many smaller objects
that can change positions and various lighting conditions are likely to occur, especially sun shining
through the window or turning the light on and off. Moreover, there may be constant movements of
different origin—small pets or billowing curtains that cannot be taken into consideration by the system,
since human silhouettes are of main interest. In the case of frequently changing scenes, the monitored
region can additionally be limited to cover only the area in which there is a high probability of an
OOI occurrence.

The process of object tracking is defined as determination of an object’s position in the subsequent
frames [31]. This process consists of several main steps. An initially empty list of objects is created.
Currently detected foreground regions are matched to the already tracked objects based on the predicted
positions. For each successfully matched object, an algorithm updates its trajectory and predicts its future
position. If there are foreground regions not having a matched tracked object, the algorithm creates a
new object and adds it to the list. Objects that leave the currently processed frame are removed from the
list. Object labeling helps to keep the continuity of tracking especially in case of object occlusion while
multiple objects are tracked. Many algorithms for movement tracking assume smooth movement of
objects without sudden and unexpected changes in their trajectory or speed [32,33]. Such an assumption
simplifies this task, however it decreases the robustness of the algorithm to noise. The assumption of the
linearity of the object movement does not work for objects that have stopped or drastically changed their
directory. Other problems may arise due to the appearance of objects that move too fast in comparison
with the recorded and analyzed number of frames in a given unit of time.

The most important tracking algorithms considered for the application in the “SmartMonitor” system
were the Mean-Shift algorithm and Kalman filter. The Mean-Shift is an iterative, appearance-based
method which uses features defined by histograms, for instance detected edges or color based on the
HSV (Hue-Saturation-Value) color model. The algorithm starts with the selection of a template, i.e., the
region that contains a tracked object or a part of it. Then the middle pixel (initial estimate x) from the
template is selected and a particular feature of a template is calculated. A kernel function K(xi − x) is
defined. It determines the weight of nearby points used to re-estimate the mean. Function K is modeled
using Gaussian distributions:

K(xi − x) = exp∥xi−x2∥ (6)
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The weighted probability density distribution defined by K is calculated using a function m(x) given
by the following formula:

m(x) =

∑
xi∈N(x)

K(xi − x)xi∑
xi∈N(x)

K(xi − x)
(7)

where N(x) is the neighborhood of x and K(x) ̸= 0. The weighted value of m(x) is assigned to x and
the algorithm repeats this until convergence is reached [32,34].

In turn, the Kalman filter uses a set of mathematical equations that implement a predictor-corrector
type estimator to estimate future positions of each tracked object. The algorithm predicts future values
based on noise measurements, corrects the last prediction based on current measurements and updates
the estimator state. Because the Kalman filter works well only for linear systems, it requires the
simplification of object movement and assuming that objects cannot suddenly change their speed or
direction [33]. While in the “SmartMonitor” system focus is placed on event detection, such as faints or
falls, the application of Mean-Shift tracking has been selected for the system. Compared to the Kalman
filter it preserved the continuity of object tracking even in case when an object changed its movement
direction or speed.

The occurrence of false detections is associated with the environment present in the scene and the
color model chosen for background modeling, especially when grayscale images are used. The authors
of [29] distinguished four types of false detections: sudden illumination changes, background
movements, background initialization with foreground objects and moving object shadows. Sudden
illumination change can be caused by sunrays passing through the window, a camera flash or turning
the light on and off. It increases the difference between the model and the current frame, because the
background model is not able to adapt to the changes in a short time and, therefore, large areas of false
detections are visible on the background image. Background movement is the relocation of part of
the background resulting in changes within newly acquired position and the previous one, and the new
region is mistakenly accounted for as a foreground. As a result, the foreground image becomes very
noisy. The shadow of a moving object is a rather coherent region that is connected to the actual OOI and
moves together with it. Background model initialization in the presence of moving objects causes that
these objects are incorporated into the background and occlude part of it.

Each false detection enlarges the overall area of the foreground region and can have a size that
varies from single isolated pixels to large coherent groups of pixels connected with an actual OOI.
The process of artifacts removal is important for the object analysis, classification and identification
based on shape features. As regards the drawbacks and limitations of the GMM algorithm and the types
of false detections, the artifact removal process, which uses the foreground binary mask as input has
been developed. Single pixels or small groups of several pixels scattered randomly on the foreground
image plane can be eliminated using morphological operations, such as erosion and dilation [27].
Particular attention was paid to shadow elimination, because it can significantly increase the area of
the foreground object and makes it difficult to separate an actual OOI from its shadow area. The authors
of [28] described a method for shadow detection based on the color model. The proposed algorithm
is capable of separating information about chrominance and intensity of each pixel. Localization of
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shadows is performed through the comparison of pixels not belonging to the background with pixels
in the background model. If the difference between the pixel intensity and chrominance falls within
a pre-defined range, an analyzed pixel is considered as belonging to the shadow area [28]. As stated
in [35], a moving shadow causes minor changes in chromaticity. For this reason, many background
modeling methods use normalized color which is less sensitive to minor illumination changes caused by
shadows than the RGB model [35].

Taking advantage of chrominance information, a method proposed in [36] was used for shadow
elimination. It is based on the fact that shadow darkens the regions, while the chrominance of the shaded
areas does not vary from the chrominance of the background areas. This method requires the preparation
of two background models—one based on the luminance and the other on chromaticity (H component
of the HSV color model). In effect the shadow is eliminated by the multiplication of two foreground
images using an entrywise product. Moreover, in the final step of the artifacts removal process, objects
smaller than a pre-defined size are ignored. The remaining objects are subjected to further processing.
The problem of initial model calibration with foreground objects present in the scene occurs when a
model is initialized with the first frame from the video stream. In this case an initial background image
has to contain random values and be adapted using a group of frames.

In more complex surveillance situations, object localization and extraction is insufficient and human
silhouette detection has to be performed. Here the difficulty lies in the need of distinguishing people from
other moving objects. Human silhouettes can be detected using the Histogram of Oriented Gradients
(HOG) descriptor, which detects objects using predefined patterns and feature vectors. The HOG
representation is based on the dominant edge orientations and is derived by calculating the frequency
of directional gradients for each of the image blocks. The HOG representation is invariant to translation
within the image plane—this means that in the case of an object’s position change its directional gradients
and histogram remain the same. The HOG algorithm starts with a gamma and color normalization of an
image, and subsequently calculates oriented gradients using various directional filters. It detects vertical
edges using a filter mask in the form of [−1, 0, 1], and for horizontal edges it uses [1, 0,−1]′. The length
of the gradient vector is calculated by means of the formula:

|G| =
√
I2x + I2y (8)

where Ix is a matrix representing an image with the detected vertical edges, and Iy analogously for
horizontal edges. A gradient orientation of a grayscale image is derived as follows:

θ = arctan
Iy
Ix

(9)

Afterwards, the algorithm divides an image into cells and calculates frequencies of oriented gradients
for each cell—the frequencies are later presented on histograms. Cells are grouped into larger blocks
that overlap each other and are separately normalized. A block can be square or rectangular, or located
in the polar-logarithmic coordinate system. Oriented histograms of all of the cells are concatenated in
order to obtain the final HOG descriptor representation [37]. Having divided the image into blocks, the
process of object extraction can be performed. It consists of several steps which aim to: determine the
template, select the frame size that matches the template, scan the input image and match the template
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with each block using descriptors, and ultimately produce the matching result and verify it using, e.g.,
specified threshold values. The result has the form of a greyscale image, in which the darker the region,
the greater the similarity to the template.

The second classifier uses Haar-like features [38], as well as the AdaBoost machine learning technique
which selects the most appropriate features and correct threshold values. During classification, a cascade
built of the Haar-like features is used. It is designed in such a way as to calculate subsequent features
of an object only if the answer of the previous feature matches the learned value. Moreover, negative
objects are rejected at the earliest stage of recognition [39].

In this section the most important methods and algorithms selected for the “SmartMonitor” system
have been briefly described. They were combined into a video processing model to provide reliable and
efficient solution consisting of background modeling, foreground extraction, artifacts removal, tracking
and object classification. These tasks are realized by the background modeling module, tracking module,
artifacts removal module and object classification module. Two other modules are responsible for event
detection and system response and they are explained in the fourth section, with a special focus on the
feature enabling supervision over ill persons.

4. An Analysis of Moving Objects for Faint/Fall Detection

Due to the fact that this paper focuses on the supervision over ill persons, this section deals with the
analysis of human silhouettes moving indoors for events detection, particularly faints or falls. In the
fall detection scenario we employ a mixture of three commonly used measures, namely: bounding box
representing the person [40–42] in the image, its area (denoted in pixels) and a relative speed in the image
plane. This method works even if the camera is placed sideways and it does not depend strongly on the
camera mounting height (i.e., [43,44]). In contrary to Lee and Mihailidis [43] we detect falls without
setting special thresholds for usual inactivity zones like the bed or the sofa. It seems also not necessary
to calculate more detailed silhouettes, like in work of Nait-Charif and McKenna [44]. According to our
observations, it is also not justified to employ more sophisticated calculations, like large human shape
deformation during a fall [45,46] or the three-demensional (3D) vertical velocity [47,48]. The most
important is the set of rules that join simple, yet effective geometrical measures. The successful human
being identification depends, then, on a rather simple calculations.

The most meaningful feature of an object is its shape, which, in many cases, enables the discrimination
of various types of objects. A moving object in a video sequence is in fact a two-dimensional projection
of a three-dimensional model. Moreover, cameras capture objects from different angles, what leads
to producing many projections of one model. During extensive research, shape analysis based on
the template matching approach has been performed. Various shape descriptors have been used to
prepare shape representations, for instance simple shape measures and ratios, Fourier-based descriptors,
moment-based descriptors or shape descriptors utilizing transformation to the polar coordinate system.
However, a detailed shape analysis turned out to be redundant during faint/fall detection. Instead,
attention was afforded to the detection and recognition of a change itself and, more specifically, to the
change in an object’s shape and movement. Moreover, time is also considered as it is crucial for the
determination of the duration of a change and the moment in which a change occurred.
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Table 1. Initial system parameters. HOG: Histogram of Oriented Gradients.

Parameter Value

Frame spatial resolution 640× 360 pixels

Scaling factor 0.5—320 × 180 pixel frames
are processed

Learning mode for background model 40 frames without any movements are
used for learning (the model calibrates
within 2–3 s)

Morphological operations Median filter and double erosion using
foreground binary mask

The size of the area subjected to the further classification Minimum 60 pixels

Proportions of object’s bounding box that is classified as a human 2:1 (height to width)

Minimum object’s size for the Haar classifier 24× 12 pixels

Minimum object’s size for the HOG classifier 96× 48 pixels

The area on which the tracked object is searched for using the
Mean-Shift algorithm

Half of the minimum object’s size
(width, height)

Based on the above considerations, two spatiotemporal parameters were determined. Parameter P
defines the proportion of an object’s bounding box, i.e., its aspect ratio (the ratio of width to height).
Parameter K defines the maximum number of frames, i.e., the time in which a person stays in the
protected area or does not move. These parameters are associated with threshold values that determine
the moment of an event detection and alarm activation. In other words, when a threshold of a particular
parameter is exceeded it means that an event was detected and the alarm is triggered. During the
experiments, the suggested threshold values of parameters P and K were estimated. For parameter
P , an object’s aspect ratio should be between 0.7 and 1.2. In turn, parameter K should be between 50
and 150 frames that represent 2–10 s for 15 fps. In order to detect a faint or fall during supervision over
an ill person, the system performs several steps. The initial system parameters’ values are provided in
Table 1. The main and the most important steps of the video processing model for faint/fall detection are
listed below:

Step 1. Set initial parameters and threshold values;

Step 2. Open input file (video sequence);

Step 3. Build a background model;

Step 4. Retrieve current video frame;

Step 5. Localize foreground areas in each processed frame;

Step 6. Perform Haar and HOG classification for each detected object;

Step 7. If the classification step gives a positive result, go to Step 8. Otherwise perform Mean-Shift
tracking for the recently detected object;
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Step 8. Check predefined thresholds for each scenario: check object’s position—if the object’s
position does not change for more than K frames and its proportions do not change to exceed P ,
then start the alarm;

Step 9. If the end of the video sequence is not reached, go to step 4. Otherwise terminate
the processing.

The problem of faint/fall detection, especially informing about this event and helping a person, can
also be supported by home automation functionalities. The main actions which may be performed in
response to a faint/fall are: to make a phone call to a responsible person or emergency number, to send
images captured by the camera to an email or a mobile phone. Other actions may include, e.g., to start
the siren or light signal; turning a light on or rising the blinds to make a room brighter—it would make it
easier to stand up or find a thing which was dropped in result of a fall (e.g., glasses); opening a window
or turning on ventilation would give a fresh air. However, regardless of whether it was a fall or a fainting
of short duration, an immediate reaction is essential. Even a harmless-looking fall can have serious
consequences, especially in case of elderly people.

5. Experimental Conditions and Results

During the experiments, various video sequences simulating the situation of a fall were used.
The position of the human body after the fall in relation to the eye of the camera differs. The video
processing model along with the initial system parameters are provided in the fourth section. The
input files were retrieved on a sequential read, i.e., at a particular moment only an individual frame
was available. It was assumed that the aspect ratio of a standing person’s bounding box is close to
0.5. When the aspect ratio rapidly exceeds this threshold and is larger than 0.7, it means that a fall has
occurred. The aspect ratio of a bounding box is calculated over several frames, which may represent
from 1 to 2 s, depending on the fps. For the second parameter, P , a change of the object’s centroid
position is verified. If the centroid position does not change significantly during a specified period of
time, the alarm is triggered. The area of the object’s bounding box is also considered during the analysis
of the video sequences.

5.1. Datasets

In our experiments we used two datasets, each one consisting of several video streams captured
in real environment. The first dataset (“SM”—SmartMonitor) is our own benchmark, and consists of
four sequences of humans who walk and faint in the small room. The second dataset (“chute”) comes
from a technical report coming from Universite de Montreal (UdM), presented in [49]. It consist of
multiple sequences, each one presenting different events where the fall is only one of them. This dataset
contains 24 sequences recorded with 8 IP video cameras. Sample frames from the benchmark datasets are
presented in Figures 4–6. The video sequences contain typical difficulties which can lead to segmentation
errors like:

• high video compression MPEG4 (Moving Picture Experts Group) which can give artifacts in
the image;
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• shadows and reflections (causing false detections);

• slightly variable illumination level (influencing the background subtraction);

• disturbing events (entering or leaving field of view).

Figure 4. Benchmark video No. 1 (SmartMonitor (“SM”) dataset).

Figure 5. Benchmark video No. 2 (Universite de Montreal (UdM) dataset, scenario 7, camera 3).

Figure 6. Benchmark video No. 3 (Universite de Montreal (UdM) dataset, scenario 8, camera 5).

5.2. Parameters Used for Fall Detection

The main measure responsible for fall detection is the aspect ratio and dimensions of a bounding box
representing observed person. It is rather easy to discriminate between standing person and a one falling
or laying on the floor. In Table 2, one can observe extracted image areas representing observed person.
Then, the bounding box is evaluated and its aspect ratio is calculated. It is defined as a proportion of
object’s height to its width. As it can be seen, the objects with the aspect ratio higher than 0.8–0.9 can
be considered as people falling down. When the aspect ratio reaches a value greater than 1.1–1.2, it is
possible that a person is lying on the floor.
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Table 2. Aspect ratios of bounding boxes created for different human silhouettes detected in
the exemplary video streams.

seq. 1 0.43 0.45 1.43 1.61

seq. 2 0.48 0.66 1.04 1.39 1.30

seq. 3 0.52 0.51 0.87 1.32 0.91

seq. 4 0.46 0.75 1.46 1.45

seq. 5 0.62 0.53 0.84 3.12 1.22

seq. 6 0.50 0.48 0.63 2.28 1.92
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The other measure that suggests a possible fall event is the area of the bounding box. If it changed,
there is a possibility that the object changed its orientation, and together with the above discussed aspect
ratio, it points to a fall. The last measure is the speed of object’s movement. Although, we do not estimate
its direction, we are interested in its general value calculated as a proportion of distance between centers
of bounding boxes in successive frames. If the speed is small enough, there is a possibility that a person
is lying on the floor.

5.3. Experimental Results—Examples of Falls

In this subsection the experimental results based on two exemplary video sequences are discussed and
presented in the figures containing a sample frame before an alarm activation, a sample frame after the
alarm activation and plots representing object trajectory as XY position of an object’s centroid, aspect
ratio and area of an object’s bounding box in pixels.

In the first video sequence a person enters the scene in frame No. 495. The background modeling
module detects a moving object and Haar classifier classifies it correctly despite the incompleteness of
an object’s shape. A person is correctly tracked on the subsequent frames. Around a frame No. 560 a
person falls (Figure 7). In frame No. 571, the system marks the person lying on the ground with a red
rectangle (Figure 8), because the threshold value of parameter P (object’s bounding box aspect ratio) is
exceeded, and the alarm is triggered.

Figure 7. The analysis of an exemplary video sequence—before a fall of a person
(“sm_sequence02”).

The change in the object’s proportions is smooth which is caused by the specificity of the Mean-Shift
algorithm. However, thanks to parameter K, which corresponds to the duration of a change, the alarm
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is triggered properly. A person remains lying still to the end of the sequence and the system constantly
informs about the detected event. The exemplary frame with a person lying on the ground is provided in
Figure 9. Shape changes are visible on the plots (Figure 8 in accordance to Figure 9).

Figure 8. The analysis of an exemplary video sequence—a falling person (“sm_sequence02”).

Figure 9. The analysis of an exemplary video sequence—after a fall of a person
(“sm_sequence02”).
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In the second video sequence, a person appears around frame No. 300 and is correctly detected by
the background modeling module. A moving object is correctly classified and tracked despite the fact
that only part of it is visible (Figure 10). In frame No. 425, a person falls (Figure 11) and remains lying
still until the end of the video sequence is reached. A sample frame containing a person after a fall is
depicted in Figure 12.

Figure 10. The analysis of an exemplary video sequence—the foreground object is detected,
before a fall (“sm_sequence03”).

Figure 11. The analysis of another exemplary video sequence—a falling person
(“sm_sequence03”).
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Figure 12. The analysis of another exemplary video sequence—after a fall
(“sm_sequence03”).

5.4. Experimental Results—The Analysis of Parameters for the Whole Sequences

The results of fall detection for four sequences are presented in this subsection in a form of charts
showing the variability of parameters values. In Figure 13 one can observe that the fall occurs around
frame No. 600. The aspect ratio stays constant while the area is smaller than the original object. At the
same time the speed of movement is close to zero. If all of these values are constant during a predefined
number of frames (time), the alarm is triggered.

Figure 13. Parameters of moving object evaluated at the action classification stage, for
“sm_sequence02”.
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In Figure 14 there is a situation, when a person falls around frame No. 500 but moves slightly
till frame No. 1200. The alarm is triggered around frame No. 1200, when the speed of movement
drops down.

Figure 14. Parameters of moving object evaluated at the action classification stage, for
“sm_sequence03”.

In Figure 15 a person enters the field of view around frame No. 350 and moves around till frame
No. 500, when a fall is detected. The alarm is triggered around frame No. 550, when the speed of
movement drops down. The person moves slightly after that.

Figure 15. Parameters of moving object evaluated at the action classification stage, for
“chute07_cam3”.

There is a situation in Figure 16 when a person enters the field of view around frame No. 140 and
moves around till frame No. 400, when a fall is detected. The alarm is triggered around frame No. 400,
when the speed of movement drops down. The person moves slightly after that, and around frame
No. 600 gets up and moves normally.
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Figure 16. Parameters of moving object evaluated at the action classification stage, for
“chute08_cam5”.

5.5. Performance Evaluation

Proposed solution works as a prototype system programmed in a heterogeneous environment. The
framework is developed in Matlab, while the specific functions—like background model based on
Gaussian Mixture Models, image pre-processing (filtering), noise removal, object labeling and object
classifier—work as pre-compiled mex-files programmed in C++ and OpenCV Library. In order to
estimate the computational overhead, we performed several test runs on video streams in different spatial
resolutions. The computer environment consisted of a PC-based notebook equipped with i7 2-core
processor, 8 GB of RAM working under 64-bit Windows 7 Professional. The results are presented
in Table 3. The base resolution was 720× 360 pixels and it was downscaled by factors 0.5 and 0.25. As
it can be seen, the classifier uses the most of the processing time. It is also interesting that its overhead
depends strongly on the number of humans tracked in the video stream. In the idle mode, the processing
is not very time consuming. The analysis of these results shows that it is possible to develop such a
system for rather low-end computers. Its performance is estimated to 2–5 frames per second, which is
sufficient for safe operation.

Table 3. Performance evaluation.

Stage of processing Scale 1.0 Scale 0.5 Scale 0.25

Background model 210 ms 50 ms 12 ms
Image Processing 110 ms 60 ms 35 ms
Classifier (mean) 640 ms 460 ms 200 ms

Classifier (idle mode) 20 ms 20 ms 10 ms
Classifier (per 1 human/object) 230 ms 300 ms 110 ms

6. Conclusions

The “SmartMonitor” is a solution that takes advantage of video surveillance, alarm and home
automation systems and combines them into one multifunctional system. It is based on video
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content analysis algorithms and aims to protect individual users and their properties in small areas.
Another advantage of the system is its customizability and diversity of applications. “SmartMonitor” is
also an autonomous solution because human interaction is required only for the system calibration, not
during its operation.

In the paper, a general overview of the “SmartMonitor” system was presented. Attention has been
focused on how the system operates in supervising ill persons and in the situation of event detection,
particularly a fall. This task requires the analysis of an object’s shape, mainly how it changes over
time. Therefore, two parameters associated with event detection have been established—parameter P ,
which defines an object’s bounding box aspect ratio, and parameter K associated with the duration of an
object’s change. The threshold values of these parameters determine the moment in which the alarm is
triggered and system response is activated. Experimental results have confirmed the effectiveness of the
approach. The developed video processing model appropriately detected, tracked and classified moving
objects. The paper also described the logical and physical architecture of the system.
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An approach to simple, intelligent and affordable visual surveillance system. In Lecture Notes
in Computer Science; Bolc, L., Wojciechowski, K., Tadeusiewicz, R., Chmielewski, L.J., Eds.;
Springer: Berlin, Germany, 2012; Volume 7594, pp. 726–734.
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