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Abstract: For high resolution imaging of a non-cooperative moving target, this

paper proposes a sparse fusion imaging method. The imaging system contains two

radar stations, which are separated by a certain bistatic angle and configured in a

transmitter/receiver-receiver (T/R-R) manner. Consequently, two synthetic apertures are

obtained at the same time from different aspect angles. By coherently fusing the echoes

of the two radars, a virtual aperture spanned by these two sub-apertures can be constructed,

which is larger than either of the sub-apertures; thus, the cross-range resolution of the image

is enhanced. Moreover, the fusion of the echoes is realized by exploiting the sparse scattering

property of the target. Then, based on the maximum a posteriori (MAP) criterion, the T/R-R

fusion imaging problem is converted into a sparse signal recovery problem with unknown

parameters. Finally, it is solved in an iterative manner, which contains two steps, i.e., sparse

imaging and parameter estimation. Simulation results show that the proposed sparse fusion

imaging method can improve the cross-range resolution significantly compared to inverse

synthetic aperture radar (ISAR) within the same coherent processing interval (CPI).

Keywords: sparse imaging; fusion imaging; T/R-R configuration; ISAR; bistatic ISAR;

resolution improvement; moving target imaging
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1. Introduction

Microwave radar imaging is one of the major techniques for non-cooperative moving target

recognition (NCTR). Compared to optical or infrared imaging, it has the ability to work under all

weather, all time and long-range conditions. Therefore, it plays an important role in both defense and

civilian applications [1–4].

Inverse synthetic aperture radar (ISAR) is the traditional microwave imaging method for a moving

target [5–8]. In ISAR imaging, the target is mapped onto a slant range and cross-range plane, where

the slant range resolution is determined by the bandwidth of the transmitted signal and the cross-range

resolution is obtained by exploiting the motion of the target. Usually, the motion is decomposed into a

translational and a rotational component [5]. After the translational motion is compensated, the rotational

motion forms a synthetic aperture with size being ∆θ = ωT , where ω is the rotational angular speed and

T is the coherent processing interval (CPI). Since the cross-range resolution is inversely proportional

to ∆θ and ω is determined by the non-cooperative motion of the target, a long CPI time is required in

order to obtain high-cross resolution. However, a long CPI time will make the motion compensation

difficult [5–8]. As a variant of monostatic ISAR, bistatic ISAR (B-ISAR) has also been studied

recently [9–12], where the transmitter and the receiver are separated by a bistatic angle. Although it

can overcome some geometry limitations existing in monostatic ISAR, high cross-range resolution also

cannot be guaranteed, due to the same reasons in ISAR.

Figure 1. Imaging configuration.
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For the purpose of high resolution imaging with short CPI time, this paper proposes a sparse fusion

imaging method by combining the monostatic ISAR and B-ISAR together. As shown in Figure 1, the

imaging system consists of only two radar stations, which are separated by a certain bistatic angle

and configured in a transmitter/receiver-receiver (T/R-R) manner. Consequently, two sets of echoes

are received by Radar 1 and Radar 2, each of which corresponds to a sub-aperture located at different

aspect angles. The interval between the two sub-apertures is equal to half the bistatic angle [9,10]. Under

the condition of short CPI, usually, the half bistatic angle is larger than the sizes of the sub-apertures; in

other words, there is an aperture gap between them. Therefore, by coherently fusing the received data, a

virtual aperture spanned by these two sub-apertures can be constructed, which is much larger than either

of the sub-apertures. As a result, the cross-range resolution will be improved significantly.

In the echoes fusion procedure, due to relatively large aperture gap and short CPI, traditional

Fourier-based sub-aperture fusion methods will suffer from high side lobes, and the spectrum
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estimation-based gaped-data fusion methods [13,14] will also get performance degradation. In addition,

three parameters (the rotational speeds of target relative to Radar 1 and Radar 2 and the bistatic angle)

are required in order to fuse the echoes coherently. However, it is difficult to obtain accurate estimations

directly from the return signals, due to short CPI time [15–17]. Here, we propose a new fusion imaging

method by exploiting the sparse scattering property of the target. Based on the maximum a posteriori

(MAP) criterion, the data fusion and the parameter estimation are combined together and converted into

a joint optimization problem. Then, it is solved in an iterative manner by alternating two steps: sparse

imaging and parameter estimation, where the first step is a sparse signal recovery (SSR) problem [18–22]

and the second step can be solved by a linear search method.

The remainder of the paper is organized as follows: Section 2 gives the imaging geometry and the

return signal models. The basic idea of the imaging system and the sparse fusion imaging method are

presented in Section 3. Then, the imaging algorithm is described in Section 4, and the numerical results

are shown in Section 5 to validate the proposed method. Finally, Section 6 is the conclusion.

2. Return Signal Modeling

The imaging geometry is shown in Figure 2. Radar 1 transmits the signal and then receives the

reflected signal, while Radar 2 works only as a receiver. For simplicity, we assume that the trajectory

of the target is on the plane spanned by the line of sights (LOSs) of Radar 1 and Radar 2 during the

short CPI time. It is worth noticing that the return signal model and imaging method introduced in

this paper can be easily generalized to the case where the motion of the target is not parallel to that

plane [23,24]. Let tm ∈ [−Tm/2, Tm/2] be the slow time (snapshot time) and Tm be the CPI. Figure 2

shows two instants of the target at tm = 0 and tm > 0, where the target is represented with a dashed line

and a solid line, respectively, and R1(tm) and R2(tm) are the LOSs of Radar 1 and Radar 2.

Figure 2. Imaging geometry.
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The space coordinate xOy is established with respect to the target by fixing the coordinate origin on

the center of the target and setting R1(0) (the LOS of Radar 1 at the snapshot time tm = 0) as the y-axis.

According to the manner of ISAR, we define the y-axis as the slant range direction and the x-axis as the

cross-range direction.



Sensors 2014, 14 10667

Let β1(tm) and β2(tm) be the angles of the two radars’ LOSs with respect to the y-axis. Referring to

our previous study [9], we treat the motions of the target relative to Radar 1 and Radar 2 separately and

decompose each of the relative motions into a translational and a rotational component. During the short

CPI time, the rotational motions of the target relative to Radar 1 and Radar 2 are approximately uniform

rotations. Suppose the two rotational speeds are ω1 and ω2, respectively; then β1(tm) and β2(tm) can be

expressed as follows:

β1(tm) = ω1tm, β2(tm) = β02 − ω2tm (1)

where β02 is the abbreviation of β2(0), which is the bistatic angle of Radar 2 at tm = 0.

First we give the return signal model of Radar 2, because that of Radar 1 is the special case of Radar

2. According to the high-frequency scattering mechanism, the target can be modeled as a set of dominant

point scatterers [25–30]. Therefore, for the ith point scatterer located at ri = (xi, yi), under the condition

of far field approximation, we can obtain the delay time at snapshot time tm as Equation (2):

τ2(tm; xi, yi) ≈
1

c
[|R1(tm)|+ |R2(tm)|+ yi − xisinβ02

+yicosβ02 + xiω1tm + xiω2tmcosβ02 + yiω2tmsinβ02] (2)

According to linear scattering theory, the return signal of Radar 2 is the superposition of the signals

reflected from all of the scatterers. After matched filtering and translational motion compensation, the

return signal of Radar 2 can be written as:

s2(t̂, tm) =
∑

i

a2(xi, yi, t̂, tm)σi + e2(t̂, tm) (3)

where t̂ ∈ [0, Tp] is the fast time, Tp is the pulse repetition period, σi is the scattering coefficient of the

ith point scatterer, e2 is the additive white Gaussian noise (AWGN) and a2 is:

a2
(

xi, yi, t̂, tm
)

= sinc

{

πB

[

t̂−
1

c
(yi − xi sin β02 + yi cos β02)

]}

×e−j2π
f0
c
(yi−xi sinβ02+yi cos β02+xiω1tm+xiω2tm cos β02+yiω2tm sinβ02) (4)

where f0 is the carrier frequency, B is the bandwidth and the migration through the range resolution cell

is not considered.

Then, we translate the return signal into its discrete form. Uniformly dividing the imaging scene

into K × L spatial positions along x and y directions with grid sizes being dx and dy, respectively. As

a result, the scattering coefficients of the imaging area can be expressed as a matrix Ξ = [σk,l]K×L.

Suppose that there are N samples in fast time and M samples in slow time; we use n to express the

discretized fast time and m to represent the discretized snapshot time. Then, the return signal of Radar 2

can be expressed as an N ×M matrix:

S2 =
K
∑

k=1

L
∑

l=1

A
k,l
2 σk,l + E2 k = 1, ..., K, l = 1, ..., L (5)



Sensors 2014, 14 10668

where A
k,l
2 = [ak,l2,n,m]N×M is the observing matrix with respect to the point scatterer located at (k, l) and

E2 is the N ×M noise matrix.

Next, we express Equation (5) in its vector form: First let s2 = vec(S2), where vec(·) refers to the

vectorization operation (i.e., stacking the columns of a matrix on top of each other) [22]. Then, define

the observing matrix of Radar 2 as:

A2 =





vec
(

A
1,1
2

)

, vec
(

A
2,1
2

)

, ..., vec
(

A
K,1
2

)

, vec
(

A
1,2
2

)

, vec
(

A
2,2
2

)

, ..., vec
(

A
K,2
2

)

,

..., vec
(

A
1,L
2

)

, vec
(

A
2,L
2

)

, ..., vec
(

A
K,L
2

)



 (6)

Furthermore, let σ = vec (Ξ) and e2 = vec(E2). In this way, the return signal of Radar 2 can be

expressed in the following compact form:

s2 = A2σ + e2 (7)

The return signal of Radar 1 is the special case of that of Radar 2. Let β02 = 0 and replace ω2 with

ω1, we can obtain:

s1 = A1σ + e1 (8)

where A1 is the observing matrix of Radar 1 and e1 is an AWGN vector.

3. Sparse Fusion Imaging in T/R-R Configuration

Figure 3 shows the basic idea of the proposed imaging method from the perspective of synthetic

aperture, where ∆θ1 and ∆θ2 are the apertures of Radar 1 and Radar 2, respectively. In a T/R-R imaging

system, the two radars receive return signals from different viewing directions, so ∆θ1 and ∆θ2 are

obtained at the same time and located at different aspect angles. Suppose the interval between them is

dθ; then, according to the theory of ISAR and B-ISAR [5,9–11], we can obtain that:

∆θ1 = Tmω1

∆θ2 = Tm (ω1 + ω2 cos β02) /2

dθ = β02/2 (9)

Figure 3. Schematic diagram of the synthetic apertures of the transmitter/receiver-receiver

(T/R-R) imaging system.
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As is well known, large synthetic aperture is required in order to improve the cross-range resolution

of the image. In this paper, we will try to construct the large virtual aperture ∆θ by coherently fusing the
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echoes s1 and s2. As shown in Figure 3, this virtual aperture spanned by the sub-apertures ∆θ1 and ∆θ2

has a size of:

∆θ = (∆θ1 +∆θ2) /2 + dθ (10)

Because dθ = β02/2 > 0, ∆θ is larger than either of ∆θ1 and ∆θ2. Specifically, we consider two cases:

(1) when 0 < dθ ≤ (∆θ1 +∆θ2) /2, ∆θ1 and ∆θ2 will overlap with each other partially, and we

can obtain that (∆θ1 +∆θ2) /2 < ∆θ ≤ (∆θ1 +∆θ2). In this case, the cross-range resolution can be

improved by fusing s1 and s2, but the improvement factor will be less than two.

(2) when dθ > (∆θ1 +∆θ2) /2, the two sub-apertures will be separated without overlapping; in

other words, there will be an aperture gap between them, as shown in Figure 3. Especially under the

condition of short CPI and a relatively large bistatic angle, the aperture gap will be much larger than the

sub-apertures themselves. As a result, ∆θ will become much larger than (∆θ1+∆θ2). If this virtual large

aperture can be obtained, then the cross-range resolution will be improved significantly. Furthermore,

note that in order to obtain ∆θ by coherently fusing s1 and s2, the scattering properties of the target with

respect to the LOSs of Radar 1 and Radar 2 must be approximately the same. Therefore, generally, the

bistatic angle β02 is constrained to be less than 10o [31].

For the first case, the spanned aperture can be obtained by traditional sub-aperture fusion

methods [23,24]. This paper will focus on the second case, which is more likely to occur in T/R-R

fusion imaging for non-cooperative moving target with short CPI. Above all, based on the return signal

models (7) and (8), we combine them together and construct a fusion model as follows:

s = Aσ + e (11)

where:

s =

(

s1

s2

)

, A =

(

A1

A2

)

, e =

(

e1

e2

)

(12)

s is the combined return signal vector; A is the corresponding observing matrix, and e is the noise vector.

Suppose e1 and e2 are independent and identically distributed AWGN vectors; then, e is also an AWGN

vector with the mean being zero and the covariance matrix being ηI, where η is the power of the noise,

which is an unknown parameter to be estimated.

According to Equations (4) and (11), A is determined by three unknown parameters ω1, ω2 and β02.

To fuse s1 and s2 coherently, these three parameters must be estimated. However, due to the short CPI

time, it is difficult to obtain accurate estimations of the parameters directly from the return signals in

advance [15–17]. In this paper, we combine the fusion imaging procedure, as well as parameter

estimation together and treat the scattering coefficients vector σ also as an unknown parameter. Then,

there are a total of five unknown parameters in Equation (11), i.e., σ, η, ω1, ω2 and β02. Therefore,

the fusion imaging problem (11) can be seen as a multi-parameters estimation problem. Assuming that

the parameters σ, η, ω1, ω2 and β02 are uncorrelated, then according to the MAP criterion [32], we can

obtain these parameters by the following joint optimization problem:
(

σ̂, η̂, ω̂1, ω̂2, β̂02

)

= arg max
σ,η,ω1,ω2,β02

f (σ, η, ω1, ω2, β02 |s)

∝ arg max
σ,η,ω1,ω2,β02

f (s |σ, η, ω1, ω2, β02 ) f (σ) f (η) f (ω1) f (ω2) f (β02)
(13)
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where σ̂, η̂, ω̂1, ω̂2, β̂02 are the estimations of σ, η, ω1, ω2 and β02, respectively.

Because e is an AWGN vector, the conditional probability density function of s is:

f (s |σ, η, ω1, ω2, β02 ) = CN (Aσ, ηI) (14)

where CN represents the complex Gaussian distribution.

As there is no a priori knowledge about η, ω1, ω2 and β02, thus we use the non-informative prior [33]

as their distributions according to Bayesian statistics:

f (η) f(ω1)f(ω2)f(β02) ∝ 1, η ∈ [0, ηmax], ω1 ∈ [0, ω1,max], ω2 ∈ [0, ω2,max], β02 ∈ [0, β02,max] (15)

where ηmax, ω1,max, ω2,max and β02,max are the maximums of η, ω1, ω2 and β02, respectively.

If we suppose σ also as a non-informative variable, Equation (13) will become a traditional minimum

mean square error (MMSE) estimation problem [32]. In this case, the solution of σ will suffer from high

side lobes and low resolution due to the relatively large aperture gap and short CPI [34], even if η, ω1,

ω2 and β02 are accurately known, not to mention that they are actually unknown parameters. In order

to solve Equation (13) efficiently, here, we exploit the sparse scattering property of the target under the

condition of high-frequency scattering, and then, assume the sparse a priori distribution of σ as [22]:

f(σ) ∝
K
∏

k=1

L
∏

l=1

e−
2

q (|σk,l|
q
−1) (16)

where q ∈ (0, 1] is a user parameter. When q → 0, the peak of f(σ) at σ = 0 becomes infinite. This

means that σ will be equal to zero with a high probability, namely σ will have a sparse solution in

Bayesian inference.

Substituting Equations (14)–(16) into Equation (13) and taking the negative logarithm form of

Equation (13), we can obtain:

(

σ̂, η̂, ω̂1, ω̂2, β̂02

)

= arg min
σ,η,ω1,ω2,β02

C (σ, η, ω1, ω2, β02)

= arg min
σ,η,ω1,ω2,β02

{

MN log η + 1
η
‖s−A (ω1, ω2, β02)σ‖

2
2 +

K
∑

k=1

L
∑

l=1

2
q
(|σk,l|

q − 1)

} (17)

where C represents the cost function and ‖·‖2 denotes the Euclidean norm of a vector.

Therefore, based on the MAP criterion and the sparse scattering property of the target, we have

converted the T/R-R fusion imaging problem (11) into a joint optimization problem (17). The algorithm

of Equation (17) will be discussed in the following section.

4. Imaging Algorithm

The purpose of Equation (17) is to find the sparse solution of σ; hence, it is an SSR problem about σ.

In the traditional SSR problem, the observing matrix A usually is known in advance, and all of the efforts

are focused on the recovery of the sparse solution [22]. However, in Equation (17), the observing matrix

A contains three unknown parameters. According to [25,35], here, we propose a cyclic optimization

method to solve Equation (17), which recovers the sparse solution, as well as estimates the parameters in

an iterative manner. Firstly, we fix the three parameters, and then, Equation (17) becomes the usual SSR
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problem, which can be solved by sparse learning via the iterative minimization (SLIM) method proposed

in [22]. Secondly, we fix σ and η, and estimate ω1, ω2 and β02 by minimizing the cost function C. Then,

repeat the two steps until the solution converges. The details are described as follows.

4.1. Algorithm Description

The initial values are set as follows: σ̂0 is set as traditional range-Doppler (RD) imaging result [10];

ω̂0
1 , ω̂0

2 and β̂0
02 are estimated roughly by imaging geometry and the motion of the target; and

η̂0 = 1
MN

∥

∥s−A
0
σ̂

0
∥

∥

2

2
. We assume that σ̂i, η̂i, ω̂i

1, ω̂
i
2 and β̂i

02 are the estimated values after the ith

iteration; then, the (i+ 1)th iteration is shown as follows:

Step 1: Sparse Imaging [22]:

The purpose of this step is to estimate σ̂
i+1 and η̂i+1 while fixing ω̂i

1, ω̂
i
2 and β̂i

02. By using these

three fixed parameters, the observing matrix A
i(ω̂i

1, ω̂
i
2, β̂

i
02) can be determined. Then, the optimization

problem (17) becomes:

(

σ̂
i+1, η̂i+1

)

= argmin
σ,η

C (σ, η) (18)

which has the same form as the usual SSR problem. It can be solved by the SLIM algorithm [22], which

is also a cyclic optimization procedure. When the SLIM algorithm converges, we obtain σ̂
i+1 and η̂i+1.

Step 2: Parameter Estimation:

In this step, we try to estimate ω̂i+1
1 , ω̂i+1

2 and β̂i+1
02 by fixing σ̂

i+1 and η̂i+1. Removing the terms

which have nothing to do with these three parameters, then the optimization problem (17) becomes:

(

ω̂i+1
1 , ω̂i+1

2 , β̂i+1
02

)

= arg min
ω1,ω2,β02

Cp (ω1, ω2, β02)

= arg min
ω1,ω2,β02

∥

∥s−A (ω1, ω2, β02) σ̂
i+1
∥

∥

2

2

(19)

where A (ω1, ω2, β02) σ̂
i+1 is the estimation of the return signal based on σ̂

i+1. The cost function Cp is

the error between A (ω1, ω2, β02) σ̂
i+1 and s. According to our study, Cp (ω1, ω2, β02) is a non-convex

function, so we propose a three-dimensional linear search method to solve Equation (19).

First, we define the discrete search space as Λ:

Λ = {(ω1, ω2, β02) |ω1 ∈ lin (Ω1,∆1) , ω2 ∈ lin (Ω2,∆2) , β02 ∈ lin (Ω02,∆02)} (20)

where Ω1, Ω2 and Ω02 represent the search range of ω1, ω2 and β02, ∆1, ∆2 and ∆02 are their

corresponding step sizes, function lin (Ω,∆) generates a linear discrete space, whose range is Ω and

step size is ∆. Then, by searching the minimum of Cp (ω1, ω2, β02) on Λ, we will obtain the optimal

estimations of these three parameters.
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Step 3: Convergence Judgment:

After Step 1 and Step 2, we can obtain σ̂
i+1, η̂i+1, ω̂i+1

1 , ω̂i+1
2 and β̂i+1

02 . Then, iteratively operate the

two steps until reaching the stop criterion:

∥

∥

σ̂
i+1 − σ̂

i
∥

∥

2
/
∥

∥

σ̂
i+1
∥

∥

2
< γσ (21)

where γσ is a small positive number.

4.2. Some Discussions about the Algorithm

In this subsection, we will give some discussions in terms of fast implementation, computational

complexity and convergence.

(1) Methods to decrease the computational burden: Because σ̂ is a sparse solution, this means that

most elements of σ̂ are zero or close to zero. Therefore, in Step 2, we only select the large elements of σ̂

to calculate the cost function C. In this way, the computational burden of Equation (19) will be reduced

significantly.

(2) Computational complexity: According to [22] the major computation of Step 1 comes from the

matrix vector product (MVP). Obviously, in Step 2, the major computation of Equation (19) is also

contributed by the MVP. Therefore, MVP is the main computation of the whole algorithm, and the

computational complexity is O(MNKL).

(3) Convergence of the algorithm: In order to guarantee the convergence of the proposed algorithm, in

this paper, we adopt two measures. First, the SLIM algorithm [22] is exploited in Step 1. SLIM belongs

to the Bayesian compressive sensing (CS) method, which is relatively robust against noise. Second, in

Step 2, only the strong scatterers are selected to calculate the cost function C, which can reduce the

impact of noise on the convergence of the algorithm to a certain degree. Although, it is difficult to prove

the convergence of the algorithm directly. However, by the above two measures, we can ensure that the

cost function will decrease after every iteration. Moreover, according to the simulation results, usually

the cost function will converge after only a few iterations.

5. Simulation Results

In this section, we demonstrate some simulation results to verify the effectiveness of the proposed

T/R-R fusion imaging method. The simulation conditions are as follows: the target shown in Figure 4

is modeled as a set of dominant point scatterers with different scattering coefficients. During the short

CPI, it is moving along the x-axis at the speed of v = 300 m/s. Assume that the bistatic angle is

β02 = 4.3o at tm = 0 and the distances between the target and Radar 1 and Radar 2 are

R1 (0) = 10 km and R2 (0) = 12 km, respectively. Then, according to the theory of ISAR and

B-ISAR, we can calculate that the truth-values of the rotational speeds are ω1 = 0.030 rad/s and

ω2 = 0.025 rad/s. The signal-to-noise ratio (SNR) of the return signal is 15 dB. More details about

the simulation conditions are given in Table 1, and the user parameter q in Equation (16) is chosen as 0.6
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(in fact, we found not much of a difference of the various values of q < 1). In the simulation, the initial

values of ω1, ω2 and β02 are set to 0.04 rad/s, 0.04 rad/s and 6o, respectively.

Before imaging simulation, we calculate the theoretical resolutions of Radar 1, Radar 2 and the

T/R-R fusion system according to the theory of ISAR and B-ISAR. In the slant range direction, the

resolutions are determined by the bandwidth of the transmitted signal and the bistatic angle, as shown in

Table 2. Because β02 = 4.3o is small, they have approximately the same slant range resolutions

as 0.38 m. The cross-range resolutions are inversely proportional to the sizes of the apertures ∆θ1,

∆θ2 and ∆θ. These apertures can be obtained by substituting the truth-values of ω1, ω2 and β02 into

Equations (9) and (10), where Tm = 0.25 s. Then, the cross-range resolutions are calculated and shown

in Table 2, where λ = 0.03 m is the wavelength corresponding to the carrier frequency. We can see that

if Radar 1 and Radar 2 are considered separately, their cross-range resolutions are 2.00 m and 2.20 m,

respectively, which are very poor compared to their slant range resolutions. The proposed T/R-R fusion

imaging system constructed a large spanned aperture with the size being 2.56o, which is much larger

than ∆θ1 and ∆θ2. Thus, the cross-range resolution is improved to 0.34 m, which is more than five-times

better than either Radar 1 or Radar 2.

Figure 4. Target model.

Cross Range (m)

Sl
an

t R
an

ge
 (

m
)

 

 

-5 0 5

-2

-1

0

1

2

-25dB

-20dB

-15dB

-10dB

-5dB 

0dB  

Table 1. Simulation Conditions.

System Parameter Value

Carrier frequency of the signal f0 10 GHz

Bandwidth of the transmitted signal B 400 MHz

Pulse repetition frequency PRF 80 Hz

Numbers of samples of fast-time and slow-time N = 30 M = 20

Image size Length = 12 m,W idth = 6 m

Separations between cross- and slant range bins dx = 0.2 m, dy = 0.2 m

Numbers of cross- and slant range bins K = 60, L = 30
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Table 2. Aperture sizes and theoretical resolutions.

Slant Range Resolution Aperture Size Cross-Range Resolution

Radar 1 ρsr,1 =
c
2B = 0.38 m ∆θ1 = 0.43o ρcr,1 =

λ
2∆θ1

= 2.00 m

Radar 2 ρsr,2 =
c

2Bcos2(β02/2)
≈ 0.38 m ∆θ2 = 0.39o ρcr,2 =

λ
2∆θ2

= 2.20 m

T/R-R ρsr =
c

2Bcos2(β02/4)
≈ 0.38 m ∆θ = 2.56o ρcr =

λ
2∆θ = 0.34 m

5.1. Imaging Simulation

The proposed sparse fusion imaging method is utilized to reconstruct the image of the target. For

the purpose of comparison, the images obtained by Radar 1 and Radar 2 separately are also given.

Furthermore, all of these three kinds of images are reconstructed both by the traditional RD method and

the SSR method. The imaging results are shown in Figure 5.

Figure 5. Imaging results. In (a)-(e), the parameters ω1, ω2 and β02 are set to be

the truth-values in advance, because the range-Doppler (RD) method or the sparse signal

recovery (SSR) method with the short coherent processing interval (CPI) does not have the

ability to estimate the parameters accurately, while in (f), the parameters are estimated during

the imaging iteration by our method.
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(a)Image of Radar 1 by the RD method.
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(b)Image of Radar 2 by the RD method.
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(c)Image of T/R-R by the RD method.
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(d)Image of Radar 1 by the SSR

method.
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(e)Image of Radar 2 by the SSR

method.
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(f)Image of the proposed method.

Figure 5a shows the image of Radar 1 by the RD method. One can see that in slant range direction,

it has the ability to distinguish the point scatterers, because of the sufficient signal bandwidth. However,

in cross-range direction, its resolution is too poor to distinguish the point scatterers. Figure 5d is

the SSR result corresponding to Figure 5a. In this figure, only a small part of the point scatterers
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are recovered with accurate locations and amplitudes; many scatterers are recovered with errors in

locations or amplitudes, and the others are missed. That is because the aperture of Radar 1 is

so small that even the SSR method cannot recover the image correctly. The images of Radar 2

obtained by the RD and SSR method are shown as Figure 5b,e, respectively. Similar to Radar 1,

neither of the methods can reconstruct the image correctly, due to the small aperture. Figure 5c

shows the image obtained by directly solving the fusion model (11) with the RD method, where

the parameters are set to be their truth-values. It shows that although the cross-range resolution

is enough to distinguish the point scatterers; the image suffers from very high sidelobes, due to

the large aperture gap between the two sub-apertures. Finally, the image obtained by the proposed

sparse fusion imaging method is shown in Figure 5f. Compared to the true target model shown in

Figure 4, we can see that the image is well focused with high resolution and low side lobes; both the

locations and amplitudes of all the scatterers are recovered correctly. Therefore, it proves that our method

has the ability to reconstruct a high resolution image with a very short CPI time.

5.2. Algorithm Performance Simulation

The convergence, as well as the parameter estimation performance of the algorithm are assessed

by 60 Monte-Carlo trials. Figure 6a shows the convergence performance of the cost function under

different SNR conditions. We can see that when SNR = 0 dB, the cost function cannot converge, due

to the strong noise, but when SNR ≥ 5 dB, the cost function will converge after only a few iterations.

Moreover, with the increase of the SNR, the convergence rate becomes faster. In order to represent the

recovery performance of the proposed method under different SNR conditions, we define the normalized

root mean square error (NRMSE) between the imaging result and the original target model as follows:

NRMSE =‖σ̂m − σ‖2/‖σ‖2 (22)

where ‖·‖2 denotes the Euclidean norm, σ is the scattering coefficient vector of the target model and

σ̂m is the average estimation of σ over 60 Monte-Carlo trials. NRMSE demonstrates the recovery

performance of the imaging method; a smaller NRMSE means better recovery performance. Figure 6b

shows the values of NRMSE versus SNR. It shows that with the increase of the SNR, the values of

NRMSE decrease, i.e., the recovery performance becomes better. When SNR ≥ 5 dB, the NRMSE is

close to zero, which means that under this condition, the imaging result is substantially the same as the

original target model.

Figure 7 shows the parameter estimation accuracy, Figure 7a,b is the means of ω1, ω2 and β02 versus

SNR, and Figure 7c,d is their variances. It shows that when SNR ≥ 5 dB, the average estimations of ω1,

ω2 and β02 are very close to their truth-values: 0.030 rad/s, 0.025 rad/s and 4.3o, respectively, and the

variances of the estimations are fairly small. This indicates that the proposed method has high parameter

estimation accuracy.
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Figure 6. (a) Convergence performance of the algorithm under different SNR;

(b) normalized root mean square error (NRMSE) of the images versus SNR.
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Figure 7. Parameter estimation accuracy versus SNR: (a) means of ω1 and ω2; (b) mean of

β02; (c) variances of ω1 and ω2; (d) variance of β02.
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6. Conclusions

This paper has proposed a sparsity-based fusing imaging method for a moving target in T/R-R

configuration. Based on the idea of coherently fusing two widely separated apertures into a large aperture

and by exploiting the sparse scattering property of the target, the cross-range resolution of the image is

improved significantly. The details of the method, as well as its corresponding algorithm are presented.

We also give some comments on the fast implementation and the convergence of the algorithm. Finally,

some simulation results are given to validate the proposed method. They show that the proposed sparse

fusion imaging method has the ability to reconstruct a high resolution image with a very short CPI time,

and the algorithm can converge within a few iterations.
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