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Abstract: Multimodal image registration is a difficult task, due to the significant intensity
variations between the images. A common approach is to use sophisticated similarity
measures, such as mutual information, that are robust to those intensity variations. However,
these similarity measures are computationally expensive and, moreover, often fail to capture
the geometry and the associated dynamics linked with the images. Another approach is
the transformation of the images into a common space where modalities can be directly
compared. Within this approach, we propose to register multimodal images by using
diffusion maps to describe the geometric and spectral properties of the data. Through
diffusion maps, the multimodal data is transformed into a new set of canonical coordinates
that reflect its geometry uniformly across modalities, so that meaningful correspondences can
be established between them. Images in this new representation can then be registered using
a simple Euclidean distance as a similarity measure. Registration accuracy was evaluated on
both real and simulated brain images with known ground-truth for both rigid and non-rigid
registration. Results showed that the proposed approach achieved higher accuracy than the
conventional approach using mutual information.
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1. Introduction

Feature modeling, as well as dimensionality reduction for image representation is important in fields,
such as image analysis and computer vision. In particular, when dealing with multimodal imaging,
a main challenge is to obtain a unified representation of the heterogeneous image data, so that meaningful
comparisons and effective combinations can be performed.



Sensors 2014, 14 10563

In this paper, we propose to apply diffusion maps [1] to represent heterogeneous images for
multimodal medical image registration. The motivation for using diffusion maps comes from the fact
that the resulting embedding captures the intrinsic geometry of the underlying manifold independently
of the sampling density and image modality.

The purpose of multimodal image registration is to identify the geometric transformation that maps the
coordinate system of one modality into another. Multimodal images have significant variations in their
intensities, which makes it difficult to capture their structural similarities, thus increasing the difficulty of
achieving accurate registration. As an illustration, Figure 1 shows corresponding slices of 3D multimodal
images of a human head. While a T1 magnetic resonance (MR) image shows better anatomical detail
(Figure 1a), T2 MR highlights pathological changes better (Figure 1b).

Figure 1. Example of multimodal images: T1 MR (a) and T2 MR (b) scans of a brain with
a tumor.

(a) (b)

Image registration methods can be broadly divided into feature-based and intensity-based
techniques [2]. Feature-based methods rely on the extraction and matching of image features, such
as points, contours or surfaces. Such methods are often more efficient to compute, but they are usually
not effective for multimodal image registration, because the great variation in the intensity values makes
it difficult to find enough accurately corresponding features. Intensity-based methods, in contrast, use the
intensity values to measure the similarity between corresponding images. For multimodal registration,
the current standard is to use mutual information (MI) as the intensity-based image similarity measure
due to its ability to handle large intensity variations. However, MI is computationally expensive, because
it requires the estimation of probability density functions based on joint histograms. This is further
aggravated when jointly analyzing several images.

Structural image representations have gained great interest for multimodal registration. They rely
on the assumption that similar internal self-similarities exist across modalities, and hence, once the
images are transformed into such representations, efficient monomodal similarity measures (e.g.,
Euclidean distance) can be used. For example, local gradient orientation has been employed to
find correspondences between images [3,4]. However, gradient estimation is problematic for points
where more than two regions meet [5]. A more robust approach is the use of local entropy [6] or
the multidimensional representation based on local patch distances [7–9]. Nonetheless, all of these
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approaches rely only on local neighborhoods, and moreover, the local self-similarity pattern itself can
be significantly different between corresponding points in the images [10]. Furthermore, not all of these
approaches are invariant to rigid deformations.

Recently, manifold learning techniques have begun to be applied for image registration [11], although
most of the reported methods deal with monomodal data. The most common approach is to apply
manifold learning to a population of monomodal images to extract information on the neighborhood
structure of the data set (i.e., which images are close to each other) and, hence, confine the search of
anatomically plausible transformations [12,13]. There are also a few works where a manifold learning
method has been applied to each individual image separately in order to obtain a new representation,
which can help in finding image correspondences. For example, Xu et al. [14,15] use Isomap or PCA to
extract features, which are then passed to a neural network, whose outputs are the affine transformation
parameters. Furthermore, in the context of rigid (but multimodal) registration, Wachinger et al. [6]
employ Laplacian eigenmaps to generate a new set of features, which allows the use of monomodal
similarity measures. This is justified because the Laplacian eigenmap can be considered a structural
image descriptor, and hence, its appearance across modalities is similar. Nonetheless, there are cases
for which the large intensity variations across the original images result in too different eigenmaps
preventing from direct comparison. This is illustrated in Figure 2a,b. Other drawbacks are that Laplacian
eigenmaps heavily depend on the density of the samples [16] and that an additional step of manifold
alignment is required to ensure that the representations of image intensities are comparable across
manifolds [6].

Figure 2. Example of Laplacian eigenmap embeddings for images in Figure 1: Laplacian
images for T1 (a) and for T2 (b). They were obtained by taking the first eigenvector of the
graph Laplacian of the original images.

(a) (b)

Closely related to manifold learning and structural image representations are spectral decomposition
methods. Such methods exploit both the local and global structure of the data in the form of
distance measures and a kernel, respectively. They have been used extensively in computer vision
for locating correspondences between feature point sets [17–20]. The strategy is to embed the point
sets into a common eigenspace through an eigendecomposition of a point affinity matrix and to find
correspondences by the closest point matching in this space. Spectral methods, however, have been
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hardly used for dense image registration. Recently, Lombaert et al. [21] extended the log demon
registration framework [22] to include spectral representations in the nearest-neighbor searches of
finding point correspondences between monomodal images. As in [6], they use Laplacian eigenmaps
for the spectral embedding. The resulting scheme is shown to capture large and complex deformations
in monomodal image registration. This approach would not work on multimodal registration; on the one
hand, because log demons cannot deal with multiple modalities, and on the other hand, because of the
aforementioned drawbacks of using the Laplacian eigenmaps directly as structural representations.

We propose to use diffusion mappings [1] to obtain a unified representation of multimodal images
corresponding to the same underlying object (e.g., the same organ in medical imaging). Diffusion
mapping is a Laplacian-based spectral embedding method based on defining a random walk on the
graph of the data. It constructs a discrete density-independent approximation of the Laplace-Beltrami
operator, providing an embedding that captures the intrinsic geometry while taking into account the
density of samples and the fact that data structures may occur at different scales. Diffusion maps
have been shown to robustly represent image features [1,23]. Therefore, we propose to estimate local
deformation between images by matching their corresponding diffusion maps. In this way, multimodal
registration is performed in the Laplace–Beltrami spectral domain instead of the usual image spatial
domain. In addition, since the Laplace–Beltrami spectrum is an isometric invariant, diffusion map
embeddings are invariant under isometric deformations, such as rotations and translations [24]. While
diffusion maps have been used for various applications, they have not been used, to the best of our
knowledge, for multimodal image registration.

The remainder of this paper is structured as follows: The next section reviews diffusion
map embedding and describes how it can be used for multimodal registration. Details of the
algorithm implementation are presented, which reduce the computational complexity of the embedding
construction. Section 3 shows an evaluation of robustness and the accuracy of the proposed method for
both rigid and non-rigid registration. Finally, results are discussed and future work directions are given.

2. Methods

We use diffusion maps to transform the multimodal data into a new set of canonical coordinates that
reflect its geometry uniformly across modalities and different parameters (e.g., time, acquisition view or
subject). That is, we look for structure invariants in the data in order to be able to establish meaningful
correspondences between different realizations of the data.

In this section, we first review the diffusion framework and its extension to changing data and then
explain how we use it for multimodal image registration.

2.1. The Diffusion Framework

The diffusion maps framework introduced in [1] gives a multiscale organization of the data revealing
different geometric structures at different scales. At each scale, diffusion mapping embeds the data into
a particular Euclidean space in which the usual Euclidean distance corresponds to the diffusion distance
on the data at that scale. Since diffusion maps are able to capture the main structures of the data in a
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few dimensions, the embedded Euclidean space can be truncated to a lower dimensional space, hence
achieving dimensionality reduction.

LetX = {xi}ni=1, xi ∈ IRd, be a (possibly high-dimensional) set of data points. A weighted symmetric
graph is constructed in which each data point xi corresponds to a node, and the weights of the edges
connecting two nodes are a measure of the similarity between them. A popular choice is to weight the
edge between data points xi and xj by using a Gaussian kernel, w(xi, xj) = exp(−‖xi − xj‖2/2σ2),
where σ > 0 is the kernel bandwidth. The normalized kernel

p(xi, xj) =
w(xi, xj)∑

xj∈X
w(xi, xj)

encodes the probability of transition from xi to xj , measuring the influence of these points with the
rest of the graph. Therefore, matrix P ∈ Rn×n with p(·, ·) as its entries is a Markov transition matrix.
Taking powers of P amounts to running the Markov chain forward in time, revealing geometric structures
of X at different scales. That is, if P t is the t-th power of matrix P , then its corresponding kernel
pt(xi, xj) represents the probability of transition from xi to xj in t time steps. Increasing t corresponds
to propagating the local influence of each point with its neighbors, which means that t can be seen as a
scale parameter.

Using spectral theory, it can be shown that kernel pt has the following eigendecomposition:

pt(xi, xj) =
∑
k≥0

λtkψk(xi)φk(xj) (1)

where {λk} is the decreasing eigenspectrum of P and {ψk}, {φk} are the corresponding biorthogonal
right and left eigenvectors. One can then define a metric on the data, known as the diffusion distance,
that measures the amount of connectivity between any two points xi and xj:

D2
t (xi, xj) =

∑
xk∈X

(
pt(xi, xk)− pt(xk, xj)

)2

φ0(xk)
(2)

Combining Equations (1) and (2), together with biorthogonality properties, the diffusion distance can
also be expressed as:

D2
t (xi, xj) =

∑
k≥1

λ2t
k

(
ψk(xi)− ψk(xj)

)2 (3)

where ψ0 has been omitted in the sum above, because it is a constant vector. Hence, {λkψk} can be used
as a new set of coordinates for the set X . The diffusion map is therefore defined as the embedding of the
data set X into the Euclidean space IRl:

Ψ : X 7→ IRl , Ψ(xi) = (λ1ψ1(xi), . . . , λlψl(xi))
T

With this definition, the diffusion distance between xi and xj ∈ X is equal to the Euclidean distance
between diffusion coordinates Ψ(xi) and Ψ(xj), when using all l = n− 1 eigenvectors:

D2
t (xi, xj) = ‖Ψ(xi)−Ψ(xj)‖2
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Furthermore, because of the spectrum decay of the eigenvalues, the diffusion distance can be
approximated by the embedded samples in low dimensions (i.e., setting l to a small value).

As proposed in [23], a completely density invariant Markov chain can be built by re-weighting the
kernel as:

w̃(xi, xj) =
w(xi, xj)∑

xj∈X
w(xi, xj)

∑
xi∈X

w(xi, xj)

Then, the entries of the transition probability matrix become:

p(xi, xj) =
w̃(xi, xj)∑

xj∈X
w̃(xi, xj)

In this way, one can recover the geometry of the manifold independently of the data density.
Moreover, it can be shown that, assuming that the points of X lie in a manifold of IRd, P generates a
diffusion matrix that approximates the Laplace–Beltrami operator [1]. The Euclidean distance between
two samples in the embedded coordinate system (i.e., the diffusion distance) is dependent not only
upon the original pairwise similarity between them, but also upon all the pairwise similarities that each
sample has with the remainder of the population. This makes diffusion distance a more robust metric
than individual pairwise measures of similarity, which can be susceptible to noise.

2.2. Diffusion Maps for Changing Data

The diffusion mapping provides a new representation of data sets reflecting their intrinsic geometry.
This new representation is based on the neighbor relationship between points (i.e., geometry information)
and not on their original feature representation (e.g., pixel intensities). As a consequence, when dealing
with various data sets that need to be put into correspondence, it can be more effective to compare their
embeddings instead of the original data sets.

However, in some scenarios, a direct comparison between embeddings from data obtained in different
conditions may not provide meaningful connections. This issue is addressed in [25], where the authors
generalize diffusion maps for data sets that evolve over time or that change depending on some input
parameters (e.g., data obtained under different conditions or sensors). The extension consists mainly of
a mapping between the embeddings of the different data sets.

Let P be some parameter space, X α the data that depends on parameter α ∈ P and
Ψα(·) =

(
λαkψ

α
k (·)
)
k≥1

its corresponding diffusion map (where we have dropped subindex t for the

simplicity of notation). For different parameters α1, α2 ∈ P , diffusion mapping may take X α1 ,X α2 into
different Euclidean spaces, thus meaning that the standard Euclidean distance between the elements of
these spaces is not meaningful. Since {ψαk }k≥1 is a basis for the embedding of X α, one can use a change
of basis operator to map one embedding into another, i.e.,

Oα2→α1Ψα2 =
(∑
j≥1

Ψα2
j 〈ψ

α1
k , ψ

α2
j 〉
)
k≥1

(4)

where 〈·, ·〉 denotes the inner product and Ψj = λjψj . In this way, Ψα1 and Oα2→α1Ψα2 bring their
corresponding data sets X α1 and X α2 to the same Euclidean space. This generalizes the diffusion
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distance from within a data set to between data sets and allows computing distances between any
xi ∈ X α1 and x′j ∈ X α2 .

2.3. Application to Multimodal Image Registration

For each parameter α (e.g., modality or time), let Iα : Ω 7→ IRm be the corresponding image,
where Ω ⊆ IR2 denotes the image domain and Iα(u) represents the intensity level at pixel u ∈ Ω

(or the intensity values within a patch centered at u). The associated data X α is the set of
points {xi = X α(ui) =

(
βui, I

α(ui)
)
}ni=1, ui ∈ Ω, with β being a constant controlling the influence of

spatial locality.
For each X α, we compute the Gaussian kernel with bandwidth σ selected as the median pairwise

distance between data points, as proposed in [26]:

σ2 = median{‖xi − xj‖2}i,j=1,...,n

where ‖ · ‖ is the Euclidean distance. For the scale parameter t, which determines the strength of the
diffusion, we combine the information at all scales into one single description. Hence, instead of using
a fixed scale t to compute Dt, we compute the diffusion map by considering diffusion distances Dt at
all scales:

D̃2(xi, xj) =
∞∑
t=1

D2
t (xi, xj)

=
∞∑
t=1

∑
k≥1

λ2t
k

(
ψk(xi)− ψk(xj)

)2

=
∑
k≥1

λ̃2t
k

(
ψk(xi)− ψk(xj)

)2 (5)

where λ̃2 =
∞∑
t=1

λ2t = λ2

1−λ2 .

For ensuring meaningful comparisons between images derived from different conditions, we map
each embedding Ψα into a common Euclidean space using Equation (4). From this new diffusion map
embedding, we build an image by assigning to each pixel a vector with the l firsts coordinates of the
embedding. We refer to this image as the diffusion-map image. In an abuse of notation, we use the same
letter Ψ for both the embedding and its image representation.

The diffusion-map images are the input images for a registration algorithm. The goal of image
registration is to find a suitable transformation ϕ that aligns one image to another. This can be done
by minimizing the cost function that measures the distance between the involved images:

min
ϕ
DΨ
(

Ψγ,α,Ψγ,α′ ◦ ϕ
)

where Ψγ,α = Oα→γΨα, Ψγ,α′
= Oα′→γΨα′ are the diffusion-map images (in the Euclidean space

spanned by Ψγ), and DΨ : IRl × IRl 7→ IR is chosen to be the Euclidean distance. Since the Euclidean
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distance on the diffusion-map images is equivalent (up to some accuracy) to the diffusion distance on the
original image:

DΨ
(

Ψγ,α,Ψγ,α′ ◦ ϕ
)2

=
n∑
i=1

‖Oα→γΨα
(
X α(ui)

)
−Oα′→γΨα′

(
X α′(

ϕ(ui)
))
‖2 (6)

'
n∑
i=1

D̃
(
X α(ui),X α′(

ϕ(ui)
))2 .

= DX
(
X α,X α′ ◦ ϕ

)2

where D̃ is the diffusion distance defined in Equation (5) and DX : Ω × Ω 7→ IR is the global
diffusion distance between the images (represented here by the intensity values of pixels and their
spatial coordinates).

2.4. Implementation

In our implementation, we set β = 1 (i.e., x =
(
u, Iα(u)

)
for all u ∈ Ω and, to compensate for the

different scalings of the intensity values, each image was initially rescaled, so that its range fitted the
range of the coordinate values. To reduce the computational cost, the diffusion map was constructed
using the coarsest level of a Gaussian pyramid representation of the image. The embedding coordinates
were then extended to all samples in the original image using the multiscale Laplacian pyramid [26].
Furthermore, for simplicity, diffusion-map images were constructed using the first (l = 1) coordinate
(thus, we only deal with scalar diffusion-map images). This was enough for our purposes, since the
decay rate of the spectrum was high and l = 1 captured the most relevant features.

For the non-rigid registration, the transformation was modeled by a B-spline free form deformation
(FFD) with a control point spacing of 4 pixels. A gradient-based optimization strategy was used.

The algorithms were implemented in MATLAB and ran on a Linux machine with a dual quad-core
Intel Xeon (1.6 GHz CPU, 4 GB RAM). The average computation time when using the proposed
approach for rigid and non-rigid registration was about 5 min (for images of size 181× 217), the burden
of the computation being on the construction of the diffusion maps. In contrast, the average time for
rigid and non-rigid registration using mutual information was 2 and 44 min, respectively.

3. Experimental Results

We evaluated the proposed framework on both simulated and real data sets obtained from
the Simulated Brain Database (BrainWeb [27] and the Brain Tumor Segmentation (BRATS)
challenge [28], respectively.

Images from BrainWeb were simulated with a slice thickness of 1 mm, a noise level of 3% and an
intensity non-uniformity of 20%. A total of eight data sets were generated comprising T1-, T2- and
proton density (PD)-weighted MR simulated images of the normal brain. The data sets of BRATS
comprised T1, T2, FLAIR and post-Gadolinium T1c MR images of 15 patients with glioma (1-mm
isotropic resolution). For both databases, the ground-truth alignment was provided. Figures 3 and 4
show axial slices of the original and diffusion-map images.
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Figure 3. Example of multimodal images from BrainWeb data set (top row) and their
corresponding diffusion-map images (bottom row).

(a) T1 (b) T2 (c) PD

(d) DM T1 (e) DM T2 (f) DM PD

Figure 4. Example of multimodal images from the Brain Tumor Segmentation (BRATS)
data set (top row) and their corresponding diffusion-map images (bottom row).

(a) T1 (b) T2 (c) FLAIR (d) T1c

(e) DM T1 (f) DM T2 (g) DM FLAIR (h) DM T1c
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We distinguished between two cases depending on whether modality is considered or not as a
changing parameter of the data. In the first case, each image modality is taken as a different data set, and
the purpose is to find the correspondence between pairs of modalities that are not aligned. In the second
case, all (co-registered) modalities form a multichannel image, and the purpose is to find the matching
between pairs of non-aligned multichannel images.

We assessed the registration accuracy when using as similarity measures the Euclidean distance (L2)
on the original images, the mutual information (MI) on the original images and the Euclidean distance
on the diffusion-map images obtained as described in Section 2.3.

3.1. Separate Modality Analysis

In this section, we apply the proposed methodology to each image modality independently of the
others. Each modality is considered as a different parameter α. Hence, X α corresponds to a single
image modality with data points x =

(
u, Iα(u)

)
∈ IR3 being the concatenation of the position

and (single-value) intensity of each pixel. For each modality, we computed its diffusion-map image.
We chose the common Euclidean space to be the one corresponding to the T1-weighted modality.

First, we performed pairwise rigid registration for the various combinations of multimodal images. A
total of 100 transformations were randomly generated in the±10 mm range for each translation axis and
the ±10◦ range for each rotation axis. Tables 1 and 2 show the mean registration error for the BrainWeb
and BRATS data sets, respectively. We obtained a significantly lower error with diffusion distance in
comparison to MI and L2 on the original images. As expected, using L2 on the original images resulted
in a higher error than using MI or the diffusion distance (i.e., L2 on the diffusion-map images).

Table 1. Mean (rigid) registration error for BrainWeb data sets. Rotation errors r are in
degrees, and translation errors t are in mm. PD, proton density; MI, mutual information.

Similarity
T1-T2 T1-PD T2-PD

r t r t r t

L2 62.941 60.250 48.238 53.092 0.294 0.142
MI 0.105 0.112 0.175 0.123 0.147 0.107

Diffusion 0.009 0.056 0.048 0.053 0.021 0.043

Table 2. Mean (rigid) registration error for BRATS data sets. Rotation errors r are in degrees,
and translation errors t are in mm.

Similarity
T1-T2 T1-FLAIR T1-T1c T2-FLAIR T2-T1c FLAIR-T1c

r t r t r t r t r t r t

L2 5.870 0.757 0.705 0.154 0.223 0.069 6.008 1.662 8.998 0.628 0.152 0.095
MI 0.264 0.216 0.278 0.096 0.304 0.205 0.360 0.186 0.242 0.139 0.287 0.102

Diffusion 0.033 0.093 0.157 0.107 0.162 0.069 0.155 0.079 0.096 0.084 0.111 0.096

Second, we considered non-rigid pairwise registration. We deformed one of the two images with
five known deformations (maximum displacement of 7.2 mm). These ground-truth transformations were
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generated randomly by using a linear combination of radial basis functions. Next, we performed the
registration with the deformed image as the reference image. The error of the registration was computed
as the mean Euclidean difference between the ground-truth deformation and the estimated one. Tables 3
and 4 show the results. Again, the lowest errors were obtained with diffusion distance. Errors using L2
distance on the original images were significantly much higher and were not included in the tables.

Table 3. Mean (non-rigid) registration error for BrainWeb data sets. Errors (mean± standard
deviation) are in mm.

Similarity T1-T2 T1-PD T2-PD

MI 0.667± 0.531 0.842± 0.403 0.936± 0.329

Diffusion 0.554± 0.183 0.509± 0.068 0.679± 0.367

Table 4. Mean (non-rigid) registration error for BRATS data sets. Errors (mean ± standard
deviation) are in mm.

Similarity T1-T2 T1-FLAIR T1-T1c T2-FLAIR T2-T1c FLAIR-T1c

MI 3.054± 1.004 2.975± 0.735 1.078± 0.290 2.506± 0.849 2.393± 1.248 2.654± 0.683

Diffusion 2.285± 1.221 2.954± 1.001 0.987± 0.229 1.556± 0.507 1.166± 0.111 1.787± 0.786

The distribution of errors is summarized in Figures 5 and 6 for both the rigid and non-rigid cases.
For the rigid case, we have considered a 1-mm error equal to a 1◦ error to quantify the translational
and rotational displacement from the ground-truth in a single value. In each box, the central mark is the
median; the edges of the box are the first and third quartiles, and the whiskers extend to the most extreme
data values.

Figure 5. Boxplots of the root mean squared registration errors (in mm) for the BrainWeb
data sets. For each pair of modalities, the left-most (blue) boxplots correspond to using MI,
while the right-most (green) ones correspond to diffusion distance. Red crosses indicate
outliers. (a) Rigid registration; (b) non-rigid registration.
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Figure 6. Boxplots of the root mean squared registration errors (in mm) for the BRATS
data sets. For each pair of modalities, left-most (blue) boxplots correspond to using MI,
while right-most (green) ones correspond to diffusion distance. Red crosses indicate outliers.
(a) Rigid registration; (b) non-rigid registration.
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3.2. Joint Modality Analysis

In this section, we apply our registration approach to multichannel images in which each pixel is an
m-dimensional vector, m being the number of modalities (i.e., m = 3 for the BrainWeb data sets and
m = 4 for the BRATS ones). Thus, X α consists of data points x =

(
u, Iα(u)

)
∈ IR2+m. The goal is to

perform a unified joint registration using the information of all m modalities.
We applied the same deformation schemes as before, and for each multichannel image, a single

diffusion-map image encoding the joint spectral geometry was obtained. We chose the common
Euclidean space to be the one corresponding to the non-deformed multichannel image.

Registration errors (see Table 5) revealed an increase of at least 14% in accuracy with respect to the
separate modality analysis approach.

Table 5. Mean registration error when using multichannel images. Errors (mean ± standard
deviation) are in mm.

Data Set Rigid Non-Rigid

BrainWeb 0.040± 0.012 0.401± 0.104

BRATS 0.123± 0.048 0.844± 0.504

4. Discussion

For both rigid and non-rigid registration, errors were smaller when using the L2 distance on the
diffusion-map images than when using standard MI or L2 on the original images. Mean and median
registration error are measures of the accuracy of the method, while standard deviation and interquartile
ranges are indicators of its robustness. With the original images, the large registration errors obtained
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for L2 indicate that some registrations failed, while large values of dispersion for MI suggest that some
registrations did not converge correctly. Compared to the lower errors and deviations obtained for the
diffusion distance, we conclude that registration is more accurate and robust when using diffusion-map
images. Furthermore, the better performance of the joint modality approach suggests that using
diffusion maps to merge information from different modalities can help in achieving a higher accuracy
in registration.

Our approach illustrates the feasibility of dense registering multimodal images. We restricted
ourselves to a simple FFD transformation model and applied the proposed scheme to multimodal
brain image registration. The framework, however, generalizes to other transformation models (e.g.,
diffeomorphisms), and it could be useful, also, in other registration scenarios. In particular, diffusion
maps can be useful for representing data of the same underlying phenomena, but acquired with different
devices or sensors, possibly at various sampling rates and at different times.

As any other spectral method, the core of diffusion maps lies in the construction of a kernel
quantifying the connections between the data samples. We chose the Gaussian kernel with the Euclidean
distance to capture these connections. This choice was geometrically motivated, since it has locality
properties, and furthermore, it is related to the heat kernel for which the Laplace–Beltrami operator is
a generator. However, other application-oriented kernels may be used. It remains a challenge how to
automatically determine the optimal kernel and its parameters. For example, when using a Gaussian
kernel, the choice of the kernel bandwidth σ affects the shape and topological properties of the resulting
manifold. Setting σ too small results in a disconnected graph, where many points are only connected
to themselves, while setting σ too large results in all points of the graph being connected. Finding the
appropriate bandwidth parameter is dependent upon how much local information is needed. As described
in Section 2.3, we selected σ as proposed in [26]. Alternatively, one could have used an adaptive σ as
suggested by Zelnik-Manor et al. [29]. Furthermore, the Euclidean distance in the kernel could have
been replaced by any other metric.

Related to the choice of kernel and metric is the choice of input feature space. We constructed the
diffusion maps using as features both the position and intensity of the pixels in the image. An interesting
direction to explore would be to use richer features, such as contours and texture descriptors.

Another limitation of our implementation is that we used l = 1 to speed up the calculations. The first
diffusion coordinates represent the coarse (i.e., low-frequency) intrinsic geometry of the image, while
higher ones represent the finer (high-frequency) geometric details. These higher frequency components
may reveal important geometric features for registration. It is expected that as the number of retained
terms increases, better results can be obtained, although with a significantly higher computational cost.

5. Conclusions

We have described a multimodal registration framework that uses diffusion maps for the structural
representation of the images to be registered. The new embeddings are all mapped into a common
space, allowing one to establish correspondences between them. In this common space, using the
Euclidean distance as a similarity measure is equivalent to using the diffusion distance in the space
of the original images.
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The proposed approach was validated using both synthetic and real brain images. Results showed
that the diffusion distance metric improves the registration accuracy and robustness as compared with
the classical formulation of MI.

Future work will aim at investigating the use of features, such as textures or contours, when
constructing the diffusion maps. We will also investigate the use of parallel computing using GPU
accelerators to reduce the computational burden of the spectral decomposition.
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