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Abstract: Occupancy grid map is a popular tool for representing the surrounding
environments of mobile robots/intelligent vehicles. Its applications can be dated back to the
1980s, when researchers utilized sonar or LiDAR to illustrate environments by occupancy
grids. However, in the literature, research on vision-based occupancy grid mapping is
scant. Furthermore, when moving in a real dynamic world, traditional occupancy grid
mapping is required not only with the ability to detect occupied areas, but also with the
capability to understand dynamic environments. The paper addresses this issue by presenting
a stereo-vision-based framework to create a dynamic occupancy grid map, which is applied
in an intelligent vehicle driving in an urban scenario. Besides representing the surroundings
as occupancy grids, dynamic occupancy grid mapping could provide the motion information
of the grids. The proposed framework consists of two components. The first is motion
estimation for the moving vehicle itself and independent moving objects. The second is
dynamic occupancy grid mapping, which is based on the estimated motion information
and the dense disparity map. The main benefit of the proposed framework is the ability of
mapping occupied areas and moving objects at the same time. This is very practical in real
applications. The proposed method is evaluated using real data acquired by our intelligent
vehicle platform “SeTCar” in urban environments.
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1. Introduction

In the field of intelligent vehicles, many tasks, such as localization, collision avoidance and path
planning, are usually performed based on well-represented maps [1,2]. The occupancy grid map
(OGP) [3,4] is one of the most popular environmental representation tools. It maps the environment
around a vehicle as a field of uniformly-distributed binary/ternary variables indicating the status of cells
(occupied, free or undetected). Besides, as a practical instrument for environmental understanding, the
occupancy grid map is very useful for integrating different sensor measurements (radar, LiDAR, vision
system) into a unified representation.

In the literature, range sensors, such as LiDAR and radar, are usually used for creating occupancy
grid maps. The characteristic of measuring distance directly makes occupancy grid mapping easily
performed. Usually, under a given sensor measurement model (such as the inverse sensor model [4]),
probabilistic occupancy grid mapping is able to be quickly calculated with the measurements. However,
in contrast to pervasive applications of visual systems in intelligent vehicles, occupancy grid mapping by
visual systems is not well researched. In addition, in previous research [3,4], occupancy grid mapping
is served by a static environment. After the map is generated, it is stored for future usage, whereas the
situation changes in applications of intelligent vehicles. In our applications, an intelligent vehicle has
to drive by itself in a dynamic, unknown urban area. Therefore, the subsequent change emphasizes the
ability of mapping in dynamic environments in real time without prior information.

This paper proposes a framework of stereo-vision-based dynamic occupancy grid mapping in urban
environments. The dynamic occupancy grid map models real environments by evenly distributed
rectangle grids, which contain both occupancy and motion information. The proposed framework
mainly comprises two components (motion analysis for the vehicle itself and independent moving objects
and dynamic occupancy grid mapping) within two parallel processes (sparse feature points processing
between two consecutive stereo image pairs and dense stereo processing). Figure 1 visualizes the whole
framework. For every incoming stereo image pair, sparse image feature points are extracted and tracked
in a circular manner [5] between the current and previous image pairs. The successfully tracked feature
points are used to estimate the ego-motion of the vehicle itself and the independent motions of the
surrounding moving objects. Meanwhile, dense stereo disparity is calculated from each stereo image
pair. A pixel-wise moving object segmentation is performed in a U-disparity map. Finally, the dense
stereo information, together with the moving information, is used to create a dynamic occupancy grid
map. This paper is extended from our previous publication [6] in adding a comparison of image features
within our application background and more detailed descriptions and experiments. The contributions
of this paper are:

• A detailed comparison of different kinds of image feature points in the application of motion
estimation. In this paper, we evaluate and compare at length the performances of various kinds of
image feature point-in-motion estimation, as well as the advantages and disadvantages of feature
matching and tracking.
• A novel independent moving object segmentation method based on a U-disparity map. From

sparse independent moving feature points, we utilize the U-disparity map to achieve pixel-wise
moving object segmentation in a disparity map.
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• Improved dynamic occupancy grid mapping method. Based on previous work in [6], we propose
a dynamic occupancy grid mapping method with consideration for the pitch angle between the
stereo-vision system and the ground plane.

Figure 1. The flow diagram of the proposed method.
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This paper is organized as follows. Section 2 reviews several research works in motion analysis
from a moving platform and visual-based occupancy grid mapping. In Section 3, we explain the
foundations of the sensor model for our stereoscopic system and the definition of the dynamic occupancy
grid map. Approaches to compute the disparity map and its variations, U-V disparity maps, are
described in Section 4. In Section 5, a sparse feature point-based motion analyzing method and an
independent moving objects segmentation method in the disparity domain are presented. Section 6
presents a probabilistic occupancy grid mapping technique representing both obstacles and moving
objects. Section 7 shows experimental results with real data sets. Section 8 summaries this paper and
provides prospects for future improvements.

2. Related Works

2.1. Motion Analysis from a Moving Vision System

Motion analysis from a moving platform consists of ego-motion estimation and independent moving
estimation. Ego-motion estimation from a moving vision system is also coined as visual odometry. Here,
we only review stereo-based visual odometry.

Visual odometry from stereo images was initialized by Moravec [7] and later developed by
Matthies [8]. Consequent refinements were mainly focused on establishing accurate and robust pairwise
correspondences, such as [9] (introducing RANSAC [10]) and [11] (introducing sliding window bundle
adjustment). Improvements have been developed also around different motion estimation mechanisms,
such as [12] (using 3D-3D point registration) and [13] (using a 2D-2D quadrifocal constraint).
Improvements have continued until the successful real-time application in the Mars Exploration
Rover [14], which is a milestone for the success of visual odometry. In recent years, [5] has contributed
to an open source visual odometry library, LibVISO2. To sum up, a general procedure for stereo visual
odometry can be roughly summarized as: first, establishing point-to-point correspondences through
subsequent stereo images; second, estimating ego-motion from 2D-2D [13] 3D-3D [12] or 3D-2D [5]
point constraints.

As for the independent detection of a moving object or the segmentation from moving vision systems,
this is a classic, but still open research area. The proposed approaches could be roughly divided into two
categories. The first one uses global motion compensation to generate a background model as utilized
in motion detection in static camera cases [15]. This method suffers from severe limitations in the
assumption of the homography transform between consecutive images. Although several improvements
have been introduced in [16,17], it is still unable to deal with complex environments. The second
category of approaches is based on analyzing displacements of pixels in the image plane (optical
flow) [18,19] or in the 3D real world (scene flow) [20,21]. This kind of method usually involves the
joint estimation of ego-motion, as well as object movement. The benefits of the second category are
no assumptions for specific environments and the ability to estimate motions at the same time. The
proposed method in this paper belongs to the second category. It is able to easily be integrated into the
framework of visual odometry. Due to the sparse nature of the proposed method, it is not stable enough
in comparison to dense approaches.
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2.2. Vision-Based Occupancy Grid Mapping

In [22], the authors regard a stereo sensor as a range finder, taking the first encountered object in each
column as an occupied cell. Braillon et al. [23] firstly estimated the ground plane in front of a stereo
camera, then clustered the detected points above the plane as occupied cells. Three different types of
occupancy grid maps are analyzed and compared at length in [24], which furthermore proposes three
kinds of occupancy likelihood functions modeled by Gaussian distribution. Quite similar to [24], the
method proposed in [2] introduces an inverse sensor model for a stereo camera. In [25], the occupancy
grid map is generated from a digital elevation map after filtering out road and isle cells according to
height information.

In [26], the authors directly calculate occupancy grids by several effective probabilistic occupancy
grid models in an obstacle U-disparity image. In addition, this method requires a pre-performed
road-obstacle separation. Compared to the existing methods, the main differences of the proposed
framework lie in: firstly, we improve the occupancy grid mapping results by ground plane analysis
based on the V-disparity image. Secondly, we extend the original occupancy grid mapping scheme to a
dynamic occupancy grid mapping framework, which is able to label the moving objects in the local map.

3. Basics

3.1. Platform and Sensor Model

Our platform, the SetCar, in UTBMis an electric vehicle equipped with multiple sensors, such as a
laser range finder, a stereo vision system, a fish-eye camera, GPS, IMU, etc, as shown in Figure 2a. This
platform is developed as a prototype of an intelligent vehicle aimed at being capable of autonomously
driving in urban environments.

In our platform, a binocular stereo vision sensor (Bumblebee XB3) (seen in the lower picture of
Figure 2a) is mounted on top of the vehicle. The stereoscopic system was previously calibrated and
rectified by [27]. Therefore, the left and right cameras are viewed as the same and modeled by the
classic pinhole model (f, cu, cv), where f is the focal length, (cu, cv) is the position of the principal
point. Furthermore, the baseline length b is calculated from extrinsic stereo calibration. As shown in
Figure 2b, the ground is assumed to be a flat plane under the stereo vision system. The stereoscopic
coordinate system is assumed to be originated from Os, the middle point of the baseline. The world
coordinate system is set as originated from the point Ow, the projection of Os in the ground. The left
and right camera frames are assumed to have the same pitch angle θ with regard to the ground plane.
x-y-z directions are illustrated, as well, in Figure 2b. Therefore, the 3D position of a point (Xs, Ys, Zs)

in the stereoscopic coordinate system can be triangulated from its projections (ul, vl) and (ur, vr) in the
left and right image planes as: Xs

Ys

Zs

 =

(ul − cu) · b/∆− b/2
(vl − cv) · b/∆

b · f/∆

 (1)
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where ∆ is the disparity. Since there is a pitch angle from the stereoscopic system to the ground, the
corresponding coordinate in the world coordinate system has to be corrected as:Xw

Yw

Zw

 =

1 0 0

0 cosθ −sinθ
0 sinθ cosθ


Xs

Ys

Zs

 +

0

h

0

 (2)

where θ is the pitch angle and h is the height between the stereoscopic system and the ground plane.

Figure 2. The platform and geometric model. (a) Our platform, SetCar, and the equipped
sensors; (b) geometric model of the stereo vision system.
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3.2. Definition of Dynamic Occupancy Grid Map

A dynamic occupancy grid map M is defined as an evenly distributed rectangular array with
predefined cover area S. The size of each cell Ci,j in the map is also set as SC , where i and j are
indices of a cell in the grid map. Every cell Ci,j holds a two-dimensional state vector [Oi,j,Mi,j], where
Oi,j is a ternary occupancy indicator consisting of three states, and Mi,j is a binary moving indicator
comprising two states:

Oi,j =


undetected

occupied

free

and Mi,j =

dynamicstatic
(3)

4. Creating Disparity Map and U-V Disparity Maps

In parallel with sparse feature processing, a dense stereo vision processing is performed for further
independent moving object segmentation and dynamic occupancy grid mapping. Because of the good
performances in both accuracy and speed, the semi-global block matching (SGBM) algorithm [28] is
employed to compute dense disparity image I∆. Figure 3b shows a disparity image calculated from
Figure 3a by the SGBM algorithm.

Figure 3. Stereo measurements. (a) An image of a road scene; (b) the dense disparity map
and U-V disparity maps.
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Furthermore, U-V disparity maps ([29–31]) are calculated for scene understanding. In the field
of intelligent vehicles, U-V disparity images are helpful and practical tools for the aim of scene
understanding (obstacle detection, ground plane detection, etc.). As a transformation of the dense
disparity image, U-V disparity images are generated by accumulatively projecting dense disparity images
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into the rows/columns. Specifically, the U-disparity image is built by accumulating the pixels with the
same disparity in I∆ in each column (u-axis). Hence, the intensity I∆ means that there are I∆ pixels in the
u-th column that have the same disparity value ∆. The V-disparity image is calculated symmetrically.
Examples are shown in Figure 3b. Actually, the U-disparity image could be viewed as a bird’s view
disparity image of the scene, while in the V-disparity image, the ground plane is mapped to a quasi-line
(marked as a red line in Figure 3b). In our framework, the U-disparity image will be used for moving
object detection and segmentation, while the V-disparity image will be used for estimating the ground
pitch angle and then correcting the 3D reconstruction.

5. Motion Analysis from Moving Stereo Vision Platform

Motion estimation from sparse feature points usually demands establishing point-to-point
correspondences between extracted feature points in multiple images. In this section, we firstly review
several kinds of image feature detectors and approaches to establish such point-to-point correspondences.
Next, we introduce a method of ego-motion estimation. At last, independent moving objects are detected
and segmented based on the U-disparity map.

5.1. Ego-Motion Estimation

5.1.1. Feature Points Detection

In the literature of computer vision, interest point detection is aimed at extracting interest points or
image patterns that differ from their neighborhoods.

• Corner detectors hold a large part of the interest point detectors, such as the famous Harris corner
detector [32], which derives a “corner strength” from a second-order moment image gradient
matrix. Shi and Tomasi [33] developed this method in the “Good Feature To Track” (GFTT)
by using the smallest eigenvalue of the auto-correlation matrix as the corner strength function.
The GFTT is proven to be stable in feature point optical flow tracking. The FAST detector [34]
considerably speeds up the detection time by comparing pixels on a circle of fixed radius around
the potential feature point.
• As for blob detectors, the famous SIFT detector [35] achieves scale and rotation invariance by

extracting the local extrema of an image filtered with differences of Gaussians (DoG). Similar
to SIFT, the SURFdetector [36] uses a fast Hessian to improve the detection speed. The SURF
detector is also invariable to scale and rotation change to some extent. The STAR [37] introduces
a suite of scale-invariant center-surround detectors to improve stability and accuracy.

s For more discussion about feature point detectors, a comprehensive overview can be found in [38].
Generally speaking, corner-like detectors (Harris, GFTT, FAST) are fast to compute, but less distinctive,
whereas blob detectors (SIFT, SURF, STAR) are more distinctive in scale and affine change, but slow in
detection. In addition, corner-like detectors usually perform more accurate localization. Hence, selecting
a suitable feature detector should depend on the requirements of real applications.

In our framework, we choose STAR as the feature detector after an overall consideration. An
evaluation of various feature detectors in real urban environments is given in Section 7.
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5.1.2. Establishing Point-to-Point Correspondence

After extracting sparse interest feature points, there are two strategies to build point-to-point
correspondences between those points through subsequent frames. The first one tracks detected features
in all of the candidate images. This approach is appropriate when appearance changes between
subsequent frames are small, which means that the subsequent images are acquired at nearby positions.
One typical method is the “Kanade–Lucas–Tomasi” (KLT) feature tracker [33].

An alternative to tracking features is to detect feature points in all candidate images, next extracting
a compact feature descriptor for each feature point and, then, finding corresponding features by
matching the feature descriptors. Although the sum of squared differences (SSD) or the normalized
cross-correlation (NCC) around a feature point can be utilized as feature descriptors for feature matching,
they are not invariant to the changes of scale, viewpoint and orientation. One of the most popular
descriptors is SIFT [35], which is a 128-element descriptor vector about the histogram of local gradient
orientations. SIFT is capable of being against changes in illumination, rotation and scale to a certain
degree. However, its computing speed is slow. SURF [36] is proposed as a faster alternative to SIFT, by
adopting efficient box filters instead of the computationally expensive Gaussian filters. In recent years,
several binary descriptors, BRIEF [39], ORB [40], BRISK [41] and FREAK [42], have attracted much
attention for high computation speeds and prospects in mobile applications. Those methods use pairwise
intensity comparisons in a patch around a keypoint to achieve rapid calculation.

In the proposed framework, we choose a KLT feature tracker to establish feature point
correspondences. The STAR feature points are detected in the current left image and, then, tracked
in a circular manner (a point tracker starts from the left image in time t, across the right image in time
t and t − 1, reaches the left image in time t − 1 and, finally, back to the starting image). The circular
tracking process is shown in Figure 4. A refining process is applied after the tracking procedure to filter
out some obvious inaccurate trackers. The advantages and disadvantages about feature tracking and
matching are discussed at length in Section 7.

Figure 4. Circular feature tracking between two subsequent stereo image pairs after a
refine process.
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5.1.3. Motion Calculation

After the above two steps, sparse feature points are extracted, and correspondences are established
through four images [5], which are the left and right images acquired at two consecutive times. Hence,
for each consecutive stereo image pair, we have a tuple of feature points as: {(utl , vtl ) ↔ (utr, v

t
r) ↔

(ut−1
l , vt−1

l ) ↔ (ut−1
r , vt−1

r )}, where (utl , v
t
l ) and (utr, v

t
r) are feature points in the left and right images

captured at time t, respectively. The 3D positions of the selected feature points are calculated by
Equation (1). Due to the well-known big errors of point triangulation at long distance, we set a region of
interest (ROI) and filter out matched feature points far away from the stereo camera.

Here, the 3D-2D constraint [5] is utilized to estimate ego-motion. Let the left image frame be the
reference coordinate system. Assuming the motions of all corresponding feature points are caused by
ego-motion, the motion parameters (rotation/translation parameters), the 3D positions of a feature point
P t−1 in time t− 1 and its image coordinates pt at time t are related by:

p̃t = P · (
[
Rt−1|Tt−1

]
· P̃ t−1) (4)

where the notation ·̃ denotes homogeneous coordinates, P denotes the 3× 4 projection matrix of the left
camera and Rt−1 and Tt−1 are the movement parameters of the left camera within the interval [t− 1 : t].
Let (P t

i , i = 1, ..., N) denote the 3D positions of matched feature points within an ROI at time t. The
ego-motion parameters are estimated by the Gaussian–Newton method to achieve minimization:

min
N∑
i=1

‖P · (P̃ t
i − [Rt−1|Tt−1] · P̃ t−1

i )‖2 (5)

However, in real urban environments, many movements of corresponding feature points are caused
by independent moving objects or tracking/matching noises. A robust statistic method, RANSAC,
in cooperation with the Gaussian–Newton method, is used to identify the inliers and outliers and,
meanwhile, to estimate the ego-motion parameters. The inliers are points following the movement of
our experimental platform, while the outliers are points consisting of independent moving objects and
noises. The detected inliers/outliers are shown in Figure 5a,c (Detecting ROI is set to a maximum of
20 m in distance and a maximum of 3 m in height).

Figure 5. Motion analyzing from feature correspondences and the U-disparity image.
(a) Inlier feature points after grouping; (b) corresponding U-disparity image; (c) outlier
feature points after grouping; (d) the U-disparity image after intensity adjustment;
(e) moving object segmentation; (f) outliers projected into the U-disparity map.

(a) (b)
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Figure 5. Cont.

(c) (d)

(e) (f)

5.2. Independent Moving Objects Segmentation in the U-Disparity Map

As introduced in Section 4, the U-disparity map is a projection of pixels in the dense disparity
map along the columns. The intensity of a pixel in U-disparity map Iu(u,∆) represents the number
of pixels with the same disparity ∆ in column u in the dense disparity map. Since in most cases in urban
environments, an intelligent vehicle drives on a flat ground plane with a certain pitch angle, the intensity
value of a pixel in the U-disparity map indicates whether it belongs to an obstacle or not. Furthermore,
one of the most important attributes of U-disparity used for obstacle segmentation is that, = an obstacle
on the ground is projected as a “bright’ line in U-disparity, as shown in Figure 5b. This attribute of the
U-disparity image provides an efficient way to detect or segment obstacles in urban environments.

In the proposed framework, independent moving object segmentation in a dense disparity image
is achieved based on U-disparity image segmentation. Noticing that the “outlier” feature points as
by-products in ego-motion estimation originate from independent moving objects or noises. When
projecting these outliers into the U-disparity image, they are always located in the “bright line” in
the U-disparity map. Therefore, it is intuitive to take those outliers as seeds and use a flood-fill [43]
segmentation method to segment independent moving objects in the U-disparity map.

However, before performing flood-fill segmentation in the U-disparity map, an issue should be
correctly addressed. In practice, an object close to the stereo vision system would be always captured
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in more pixels than an object far from the system. This means that in the U-disparity map, the objects
with large disparities are always “brighter” than the objects with small disparities, as in Figure 5b. This
phenomenon would cause segmentation faults. To even out the gray value distribution in the U-disparity
map, we employ an intensity adjustment. A modified sigmoid logistic function S(·) [44] is used to adjust
the intensity of the U-disparity map:

I ′u = Iu · S(∆) = Iu ·
r

1 + e∆·c (6)

where Iu and I ′u are the intensities of a pixel in the U-disparity map before and after adjustment,
respectively. r and c represent control coefficients. ∆ is the row in the U-disparity map. The sigmoid
function is able to smoothly restrain the intensity of areas near the stereo vision system and to amplify the
intensity of the areas far away. Noticing that ∆ is bigger when an object is closer, an illustrative example
is in Figure 6, where three modified sigmoid functions with different parameters are given. With tuned
parameters, an example of the U-disparity map after intensity adjustment is shown in Figure 5d. We
can see that the intensities of all potential objects are adjusted similarly to each other, regardless of
the distance.

Figure 6. Modified sigmoid functions for intensity adjustment.

Based on the corresponding feature points and adjusted U-disparity map, we segment the independent
moving objects in a stereo image pair acquired at time t as follows:

1. Project all of the outliers into the adjusted U-disparity map according to their disparities, as shown
in Figure 5f.

2. Take the new locations of outliers in the adjusted U-disparity map as seeds. Then, a flood fill
segmentation algorithm is performed to segment image patches with similar intensities to the seeds.
All of the candidate segments are stored for further refinement.

3. After obtaining all of the candidate segmentation patches, a merging process merges all of the
segments that are mutually overlapped.

4. Since the outliers comprise inaccurate tracked feature points appearing in static obstacles or noises,
incorrect segments would lie in candidate segments. To overcome this problem, a double-phase
post-processing refinement is applied. In the first phase, if any candidate segment contains an inlier
projection in the U-disparity map, it is rejected. In the second phase, the surviving segments are
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compared to stored candidate segments in previous time t − 1. If a segment has an overlapped
region with a previous segment, it passes the refinement and is confirmed as an independent
moving object in U-disparity. The left candidate segments are stored for usage in the next frame.

5. At last, confirmed segments in the U-disparity map are back projected to the dense disparity map
to get independent moving objects in the dense disparity map. An example is shown in Figure 5e.

6. Building Dynamic Occupancy Grid Map

To build a dynamic occupancy grid map, a dense 3D point cloud is triangulated from the stereo
image pair by Equation (1) and corrected by the pitch angle of the stereo vision system at first. The
reconstructed 3D points are within the coordinate system of stereoscopic system Os, as shown in
Figure 2 and described in Section 3.1. Then, the reconstructed 3D points are assigned to each cell
with a predefined resolution. Noticing the assumption that all obstacles are perpendicular to the planar
ground, the greater the number of points a cell holds, the greater the probability of it being occupied.
Similarly, the higher the average height of the points a cell holds, the more probable it to be occupied.
Consequently, we separately compute the occupancy probabilities P (O|num) and P (O|height) for
each grid. Then, we take the weighted average of the two values as the final occupancy probability.
A motion indicator M of a cell is decided by counting the numbers of 3D points from independent
moving segments.

6.1. Preprocessing: Correcting 3D Points

Most of the existing stereo-based occupancy grid mapping methods [2,24,26] assume that the
stereoscopic system is parallel to the ground. In our work, we rectify reconstructed 3D measurements
by estimating the pitch angle between the stereoscopic system and ground plane. We will show that this
correction improves the quality of the occupancy grid map.

One attribute of V-disparity is that the ground plane is projected into a line, as the red line drawn in
Figure 3b. Let the equation of the ground’s projection in the V-disparity plane be: V = α∆ + vc, where
α is the slope, ∆ is the disparity and vc is the value when ∆ = 0. It can be inferred that a plane with
equation Z = aY + d in the world coordinate system is projected in V-disparity as [30]:

∆ =
b

αh− d
(v − cv)(a sin θ + cos θ) +

b

αh− d
f(a cos θ − sin θ) (7)

where h, θ are the height of the camera coordinate system to the ground plane and pitch angle,
respectively. For planar ground, the pitch angle can be deduced as [30]:

θ = arctan(
cv − vc
f

) (8)

In real environments, the ground plane is projected to a quasi-line in the V-disparity image. Hence,
we use the Hough transform to extract this line and calculate the pitch angle by Equation (8). After
estimating the pitch angle, all of the reconstructed points acquired by triangulation are corrected
according to Equation (2). The benefit of correction is illustrated in Figure 7a,b. Figure 7a is a bird’s
view of the reconstructed 3D point cloud of Figure 3a before correction. The more points within one



Sensors 2014, 14 10467

area, the higher intensity it has. From Figure 7b, the result after correction, it is clear to see that the
regions belonging to the vehicle (in yellow box) become “brighter” after correction. This is because
after correction, the reconstructed 3D points located on the surface of the vehicle become more vertical
to the ground.

Figure 7. The effect of pitch angle correction. (a) A scene consisting of two pedestrians
and obstacles; (b) 3D reconstruction from the disparity image; (c) projection of all of the 3D
points to the ground before pitch angle correction; (d) projection of all of the 3D points to
the ground after pitch angle correction.

(a) (b)

(c) (d)

6.2. Occupancy and Motion Indicator

The corrected 3D points are assigned to cells with pre-defined sizes with respect to their positions.
In each cell C(i, j), the number of assigned points ni,j is counted. In addition, the number of 3D points
extracted from the independent moving segmentation calculated in Section 5.2 is counted as ndi,j . When
trying to compute a cell’s occupancy probability with respect to the number of 3D points it holds, a
similar problem is encountered again as in Section 5.2. Looking at Figure 7a, the cells on the ground
near the stereoscopic system always hold more points than the grids far away. Directly estimating the
occupancy probability from the absolute number of points would always lead to a faulty decision. In
the literature, [2,24] do not mention this problem, while [25,26] avoid it by a previous separation of
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road pixels. In our method, this problem is overcome also by sigmoid function-based adjustment. The
absolute number of points for cell C(i, j) is adjusted as:

n′i,j = ni,j · S(di,j) = ni,j ·
r

1 + edi,j∗c
(9)

where ni,j and n′i,j are the absolute and adjusted number of points in cell C(i, j), respectively. di,j is
the distance from the stereo vision system to the grid. r and c are control coefficients. The occupancy
probability with respect to number of points is modeled as:

Pi,j(O|num) = 1− e−(n′
i.j/δn) (10)

where δn is a scale factor. Equation (10) means that the greater the number of points in a cell, the
greater the probability of it being occupied. This probability model is similar to [26]. However, it is
not convenient to directly use the probability in decision-making. The log-odds of the probability are
then adopted:

li,j(O|num) = log(
Pi,j(O|num)

1− Pi,j(O|num)
) (11)

The average height h̄i,j of 3D points in a cell C(i, j) could be helpful when an obstacle is not
perpendicular to the ground. The probability and corresponding log-odds are similar to Equations (10)
and (11).

Pi,j(O|height) = 1− e−(h̄i,j/δh̄) (12)

l(O|height) = log(
P (O|h̄)

1− P (O|h̄)
) (13)

where δh̄ is a scale factor. Similarly, Equation (12) means that the higher the average height of points in
a cell, the greater the probability of it being occupied. The final log-odds of occupancy for a cell are set
as a weighted average of the two log-odds in Equations (11) and (13):

li,j(O) = wnli,j(O|num) + wh̄li,j(O|height) (14)

where wn and wh̄ are the weights with wn +wh̄ = 1. Based on the two log-odds of each cell C(i, j), the
occupancy indicator Oi,j is decided as:

Oi,j =


undetected if n′i,j < nt

occupied if li,j(O) ≥ lt

free if li,j(O) < lt

(15)

where nt and lt are thresholds manually set for making a decision.
For the motion indicator Mi,j , this is decided by comparing ndi,j , the number of 3D points from

independent moving segmentations, with nsi,j , the number of 3D points from the static image region.

Mi,j =

dynamic if ndi,j > nsi,j

static otherwise
(16)
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7. Experiments in a Real Environment

7.1. Implementation

The proposed framework is evaluated by our experimental vehicle, SetCar (Figure 2), introduced in
Section 3.1. The installed stereo vision system (Bumblebee XB3) observes the surroundings by stereo
image pairs (with a resolution of 640 × 480) in a frame-rate of 10 fps with baseline length of 0.24 m.
The whole framework is implemented in C++, based on the OpenCV library http://opencv.org/, without
any acceleration technique. A desktop computer with a CPU Intel i7-3770 quad core 3.40 GHz running
Linux is used to run the software. We will firstly discuss the performances of sparse feature point-based
motion analysis and, then, evaluate the dynamic grid mapping results. The data set contains more than
4000 images acquired by our SetCar platform when driving in the city of Belfort, France.

7.2. Evaluating Sparse Feature Point-Based Motion Estimation

In Sections 5.1.1 and 5.1.2, we have reviewed several image feature detectors and descriptors. Here,
we will evaluate their performances for motion analysis in our application. The evaluated feature
detectors are: GFTT, FAST, SIFT, SURF, ORB, STAR and BRISK; and the feature descriptors are:
SIFT, SURF, ORB and BRISK. For a fair comparison, all of the feature detectors and descriptors use
default parameters implemented in OpenCV.

7.2.1. Experiments in Feature Detectors

Several general criteria used for evaluating the feature detector are given in [38,45]. Being different
from applications, such as object recognition, which usually have prominent scale or viewpoint changes,
in our applications, the detectors are used to establish point correspondences between consecutive video
frames. Therefore, the scale and viewpoint changes are too small to be evaluated in our application. The
performances of feature point detectors in our application are evaluated from 3 aspects: repeatability,
uniformity and speed.

• Repeatability: Given two images of the same scene acquired in different conditions, the percentage
of features that could be found in both images (the reference image and the image after
transformation) is defined as repeatability. The repeatability score is defined as: Sr = f−/f ∗,
where f− is the number of features found in both images and f ∗ is the number of features detected
in the reference image.
• Uniformity: To precisely estimate motion in dynamic scenes, the detected features should be

distributed as uniformly as possible. To evaluate uniformity, we divide the 640 × 480 image
into nu disjoint identical cells. If the number of feature points located in one grid reaches is more
than 2, it would be marked as “filled”. The uniformity score is: Su = n−u /nu, where n−u is the
number of “filled” cells.

Ten typical and different images from the database are selected for testing the feature detectors.
To evaluate repeatability, we use a similar method as [45], by converting an image by a homography
transformation. The homography provides a ground truth to find corresponding features in new image.
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For the uniformity, the original image is divided into 192 cells with a size of 40× 40. The repeatability
and uniformity are calculated as stated above. The performances are shown in Figure 8. All of the
tested values are the average of the samples. For the repeatability, STAR performs the best, attaining 0.9,
followed by GFTT (0.8), and FAST performs the worst (0.64). For the uniformity, FAST performs the
best with a uniformity score of 0.67, followed by STAR, SURF, GFTT and SIFT, and ORB performs the
worst. While for the speed, FAST is much more faster than the other detectors, GFTT, ORB and STAR
are almost 10-times slower than FAST, and SIFT is more than 100-times slower than FAST.

Figure 8. Performances of the feature detectors. (a) Repeatability performance; (b)
uniformity performance; (c) speed performance.
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7.2.2. Experiments in Establishing Point-to-Point Correspondences

To evaluate the process of building point-to-point correspondences through four images, two
approaches (KLT tracker-based and feature descriptor matching-based) are considered. Since feature
descriptors can be applied in most kinds of detectors, we consider only original detector-descriptor
combinations: “SIFT detector + SIFT descriptor”, “SURF + SURF descriptor”, “ORB detector + ORB
descriptor” and “BIRSK detector + BRISK descriptor”. The nearest neighbor matching method [35] is
used when matching feature descriptors. The KLT tracker is used for the detectors of GFTT, FAST and
STAR. To evaluate performances, we propose two criteria:

• Survival rate: Both the KLT tracker and feature matching method would lose a part of the feature
points because of inaccurate tracking or matching. When tracking or matching through four
images, this phenomenon could be amplified and cause severe problems. The survival rate is
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calculated by survivalrate =
nleft

nwhole
, where nwhole is the number of whole detected features and

nleft is the number of successfully tracked or matched features.
• Accuracy: The accuracy of established point-to-point correspondences can be evaluated from the

ratio between inliers and the whole features when applying RANSAC for ego-motion estimation.
The accuracy factor is: ninlier

nwhole
. To exclude distractions of independent moving objects, we only use

images without moving objects.

Figure 9. Evaluating the process of circular building point-to-point correspondences.
(a) Survival rate; (b) accuracy factor; (c) speed performance.
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Forty images (10 groups of consecutive stereo image pairs) are selected from the image database.
For a fair comparison, we control the number of detected feature points between 400–500. The
evaluation results of survival rate, accuracy, as well as speed are shown in Figure 9. In the survival
rate, STAR achieves the best performance, and BRISK gets the worst. Moreover, all of the KLT feature
tracking-based methods perform better than the nearest neighbor feature matching method. This is
because the KLT tracker-based method only detects features once, while matching-based methods have
to detect feature points in all four images. The repeatability evaluated in Figure 8 significantly reduces
the number of finally matched feature points. For accuracy, all of the KLT tracker-based methods
perform better than the feature matching-based methods again. This means that the noises in the KLT
tracker-based methods are less. This could be explained by the merit of corner-like features in terms
of accurate localization in images. As for the speed, although binary descriptors prominently reduce
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the matching time, KLT tracker-based methods still perform much better than all of the matching-based
methods. In fact, the feature descriptors are usually applied in fields, such as object recognition or image
stitching or registration, where the changes between different images are big and complex (scale, affine
transform). In such situations, the KLT tracker will fail. However, in our application of small image
changes, the KLT tracker is proven to perform the best. Therefore, we choose the STAR feature detector
and the KLT tracker to establish point correspondences.

7.3. Experiments in Dynamic Occupancy Grid Mapping

The region of interest (ROI) for the grid map is set to 20 m × 20 m, with a maximum height
of 3 m. The parameters used to calculate the occupancy indicator are set as: β = 0.01, δn = 0.2,

δh̄ = 0.1, wn = wh̄ = 0.5, nt = 1.5, lt = 7, r = 8, c = 0.02 (all of the parameters are tuned manually).
The resolution of the map is set to 200× 200; hence, the size of each cell is 10 cm × 10 cm

Figures 10 and 11 show the performances of the proposed method in 4 typical video sequences.
The corresponding dynamic occupancy grid mapping results are shown under the sequences. Dynamic
occupied areas are labeled in red, the white and gray cells represent occupied static areas and free space,
respectively, while black cells are undetected areas. The Table 1 represents the precision evaluation
of the proposed independent moving objects segmentation method in the 4 sequences. “TP” and “FP”
are short for “true positive” (detecting and segment moving objects successfully) and “false positive”
(taking static objects as dynamic objects; this is usually caused by noisy matched feature points). From
the results, we could see that the proposed framework performs well when there are moving vehicles in
the scenario. However, the performance degenerates when pedestrians appear. The major reason is that
a moving pedestrian is slower than a moving vehicle. Hence, several detected feature points in a moving
pedestrian are classified as static. This problem would cause a moving pedestrian to not be detected.
At last, the whole computation time including motion analysis and dynamic occupancy grid mapping is
0.5 s on average (SGBM disparity calculation (0̃.25 s), visual odometry (0̃.1 s), moving object detection
and segmentation (0̃.1 s), dynamic occupancy grid mapping (0̃.05 s)).

Figure 10. Experimental results of the dynamic occupancy grid map: independent moving
objects (red), static occluded areas (white), free areas (gray) and undetected areas (black).
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Figure 10. Cont.



Sensors 2014, 14 10474

Figure 11. More experimental results of the dynamic occupancy grid map: independent
moving objects (red), static occluded areas (white), free areas (gray) and undetected areas
(black).

Table 1. Quantitative analysis in 4 sequences acquired by our platform.

True Positive False Positive Sequence Length

Sequence 1 97.5% 2.0% 221
Sequence 2 95.5% 3.5% 235
Sequence 3 93.4% 4.4% 217
Sequence 4 89.4% 9.6% 202

8. Conclusions and Future Works

In this paper, we present a framework of a dynamic occupancy grid mapping technique. The
framework mainly consists of motion analyzing and dynamic occupancy mapping. The motion
estimation is achieved based on circularly-tracked feature points. A U-V disparity map-based
independent moving object segmentation is also presented. The dynamic occupancy grid mapping is
performed with a 3D reconstructed point cloud. The combination of the segmentation of a moving
object and the occupancy probability estimation results in the final dynamic occupancy grid map. For
future works, we are planning to improve the performance when many pedestrians appear, to make
dynamic occupancy grid mapping smoother and to integrate LiDAR measurements within the data
fusion framework.
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