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Abstract: In this paper, efficient managing particle swarm optimization (EMPSO) for high 

dimension problem is proposed to estimate defect profile from magnetic flux leakage 

(MFL) signal. In the proposed EMPSO, in order to strengthen exchange of information 

among particles, particle pair model was built. For more efficient searching when facing 

different landscapes of problems, velocity updating scheme including three velocity 

updating models was also proposed. In addition, for more chances to search optimum 

solution out, automatic particle selection for re-initialization was implemented. The 

optimization results of six benchmark functions show EMPSO performs well when 

optimizing 100-D problems. The defect simulation results demonstrate that the inversing 

technique based on EMPSO outperforms the one based on self-learning particle swarm 

optimizer (SLPSO), and the estimated profiles are still close to the desired profiles with the 

presence of low noise in MFL signal. The results estimated from real MFL signal by 

EMPSO-based inversing technique also indicate that the algorithm is capable of providing 

an accurate solution of the defect profile with real signal. Both the simulation results and 

experiment results show the computing time of the EMPSO-based inversing technique is 

reduced by 20%–30% than that of the SLPSO-based inversing technique. 
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1. Introduction 

As one of the nondestructive testing techniques [1–3], magnetic flux leakage (MFL) is widely 

applied to the inspection of defects in oil and gas pipelines and aboveground storage tanks made of 

ferromagnetic material. In the MFL testing, MFL signal are acquired by an array of hall-effect sensors 

closely disposed above the surface of measured object when the object is magnetically saturated by 

strong permanent magnets shown in Figure 1. By processing MFL signal with a certain signal 

processing method, the corresponding defect profile or parameters of the defect shape can be estimated [4]. 

Figure 1. Magnetic flux leakage testing method for object without defect (left) and object 

with defect (right).  
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Due to the possible situation that different defects generate similar magnetic field distributions and 

the uneven distribution of the defect’s leakage magnetic field, if the magnetic field is given, there may 

be several defect profiles. So the results are always morbid; that is to say, they are lack of uniqueness 

and continuity, provided that directly using MFL signal to estimate defect profile. For these reasons, 

inversing techniques became the most commonly used methods and have been of utmost interest in the 

community where the chosen solution minimizes the sum of the squared differences between the 

measured MFL signal and the signal predicted by the forward model [5]. The framework of inversing 

techniques for MFL inspection is presented in Figure 2. 

Figure 2. The framework of inversing techniques. 
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For a well-performed inversing technique to estimate defect profile, suitable forward model and 

iterative procedure are indispensable. A physical model is usually employed as the forward model 



Sensors 2014, 14 10363 

 

 

which mainly involve three classes: heuristic models (e.g., artificial neural network [6,7]), analytical 

models (e.g., dipole model [8,9]), and numerical models (e.g., finite element method [10,11]). 

Compared with numerical models and analytical models, the heuristic models are faster but less 

accurate. In heuristic models, radial-basis function neural network (RBFNN) has been successfully 

used to profile estimation.  

An inversing procedure is often regarded as solving an optimization problem, and many 

optimization algorithms have been applied to the inversing techniques, such as gradient descent 

algorithm [6,7] and genetic algorithm (GA) [12,13]. It’s proved that the efficiency of the iterative 

approach applied to solve optimization problem determines the computing time and solution accuracy 

of inversing technique. 

Particle swarm optimization (PSO), firstly proposed by Eberhart and Kennedy in 1995 [14], is one 

of the most important swarm intelligence algorithm. As PSO uses a relatively simple mechanism that 

mimics swarm behaviors such as fish in a school, birds in a flock to adaptively guide the particles to 

search for globally optimal solution, it has been actively studied and applied for many academic and 

real world problems with promising results [15–17]. 

Similar to other optimized algorithm based on swarm intelligence such as GA, the standard PSO 

algorithm begins with a random initialization of each particle in the solution space, and then each 

particle iteratively searches the solution space according to only a single learning pattern by using the 

new velocity and the previous location which can save time and computing resources. However, due to 

the particles’ searching strategy, the standard PSO may be lack of intelligence to cope with different 

complex situations. Many experiments have shown that the standard PSO may easily get trapped in a 

local optimum when solving complex multimodal problems [18]. In this paper, for enhancing the 

performance of PSO, a new variant of PSO, called efficient managing PSO (EMPSO) is proposed and 

used to the inversing technique as an iterative approach. 

This paper is organized as follows: Section 2 describes the background of the EMPSO-based 

inversing technique. Section 3 presents a description of EMPSO and its flowchart, and Section 4 shows 

the results of six benchmark functions optimized by EMPSO. Section 5 describes the new inversing 

technique based on EMPSO. Finally, Section 6 reports both simulation results and experimental results 

by estimating defect profiles with the new inversing technique and Section 7 presents the conclusions. 

2. Background of EMPSO-Based Inversing Technique 

In early work [19], parameters of defect shape are estimated by using the inversing technique based 

on damping-boundary-based PSO (DBPSO). The effectiveness of the DBPSO was verified by the 

application to defect parameters estimation, the results of which demonstrated that DBPSO-based 

inversing technique is promising for solving MFL signal inverse problems. 

With the requirement of visualization, estimating profile of defect directly draws more and more 

attention, instead of the shape parameters estimation. Different from estimation of defect parameters, 

in order to estimate defect profile accurately, the defect profile is necessary to be separated into many 

uniform discrete values, and this produces the dimension of the problem. The estimation of defect 

profile is formulated to a high dimension optimization problem. So finding a variant of PSO with 

higher optimizing capability is urgent. 
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In order to improve PSO’s searching ability and efficiency, many PSO variants have been proposed. 

Among these variants, efficient population utilization strategy for PSO (EPUS-PSO) is incorporated 

with population manager to eliminate redundant particles and hire new ones or maintain particle 

numbers and two built-in sharing strategies to enhance sharing among all particles [20]. Cooperative 

coevolving particle swarm optimization (CCPSO2) adopts a new PSO location update rule that relies 

on Cauchy and Gaussian distributions to sample new points in the search space and a scheme to 

dynamically determine the coevolving subcomponent sizes of the variables [21]. In self-learning 

particle swarm optimizer (SLPSO), each particle has a set of four strategies to cope with different 

situations in the solution space [22]. Although these algorithms have been widely applied to various 

optimization problems, finding a kind of PSO algorithm with the capability to optimize high complex 

problems with efficient search behavior, rapid convergence and outstanding optimization results is still 

an active area of research [23]. It has been proved that by applying CCPSO2 and EPUS-PSO to 

inversing technique, the estimated profiles are not successfully close to the true profiles. Inspired by 

the above several PSO variants, EMPSO is proposed in this paper. 

3. EMPSO 

For efficiently handling high dimension optimization problems like defect profile estimation, 

EMPSO is presented, which includes three modifications to make the process more efficient from three 

different aspects. In order to strengthen exchange of information among particles, particle pair model 

(PPM) was built and introduced to PSO. For more efficient searching when facing different landscapes 

of problems, velocity updating scheme including three velocity updating model was also proposed. In 

addition, for achieving more rational utilization of computing resources and more chances to search 

optimum solution out, automatic particle selection for re-initialization was implemented. 

3.1. PPM 

In standard PSO algorithm and its variants, each particle is considered as a relatively independent 

agent, which has indirect information exchange via gbest (global best location) when velocity is 

updated or by applying some methods like searching-range-sharing strategy in EPUS-PSO [20]. 

However, it’s difficult for such information exchange methods to effectively find potential better 

solutions. For example, solution-sharing strategy in EPUS-PSO denotes a unique sharing rate for each 

particle to decide if randomly selecting two another particles’ pbest (personal best location) from the 

particle swarm and then choosing the better one to update velocity, this strategy really accomplishes 

information exchange, but in fact, after applying solution-sharing strategy, the location of a particle 

may be even worse than its previous one, because the selected pbest of another particle could make the 

particle further from optimum solution. 

In order to avoid above situation, a new model for information exchange, called PPM is introduced 

by imitating some animals which form a team by several units to forage. By applying PPM, particle 

swarm will be divided into several particle pairs containing two particles, the two particles in the same 

particle pair have the common pbest, which means pbest of a particle pair will be updated as long as 

either of the particle pair finishes location updating, but the two particles have their own freedom to 
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finish velocity and location updating. Thus, particles of particle pair complement each other’s 

advantages and will be more likely to gain better solution than two irrelevant particles in traditional ways. 

3.2. Velocity Updating Scheme  

In standard PSO, velocity update of each particle is affected by its own pbest and gbest at the same 

time. In fact, each particle is not simply influenced by gbest; all the neighbors’ lbest (local best 

location) are used to modify the velocity of a particle [18]. So far, most variants of PSO used two of 

the above three models to update particles’ velocity, but it’s generally believed that the pulls of the 

three models is different.  

In details, pbest, gbest and lbest are inclined to exploitation, convergence and exploration 

respectively, so if each particle simultaneously learns from two models, the algorithm may suffer from 

the disadvantages of the two models. For example, for standard PSO, after several iterations, particles 

will gather in several clusters, or even just one cluster, which is probably the local optimal solution. 

Each particle in the cluster may perform a local search to make evolution continue but not be able to 

jump out from local optimal solution to explore other better solutions. This kind of terrible situation is 

caused by excessive convergence, so an lbest model should be added to guide particles to search new 

spaces. If a pbest model and an lbest model are both used, it’s likely for particles to have inadequate 

search in their own nearby regions of pbest position. 

For these reasons, gbest, pbest and lbest models are used independently to update velocity. A gbest 

model is a suitable velocity updating model for convergence, especially at the final phase of iterations, 

with enough search of solution space, and it’s urgent for all particles to converge on optimum search 

results. For a certain particle, its pbest is the best solution so far, a better solution is likely near pbest, 

especially when the particle is in a slope. So for most problems, exploiting the region near pbest is an 

efficient method. For the lbest model, many works has been done about how to utilize information 

from neighbors. For example, all neighbors of a particle are used to update velocity by some certain 

topology, a particle searches through its neighbors in order to identify the one with the best result so 

far, and uses information from that one source to bias its search in a promising direction [23]. The 

utilization of neighbors promotes diversity of velocity updating and keeps a balance between a 

particle’s own pbest and its neighbors’ pbest. 

Three velocity updating equations corresponding to the three models are shown as follows. 

(1) Each particle updates velocity with its previous velocity and gbest: 

( 1) ( ) ( ( ) ( ))d d d d

k k kv t v t cr gbest t x t     (1) 

(2) Each particle updates velocity with its previous velocity and pbest: 

( 1) ( ) ( ( ) ( ))d d d d

k k k kv t v t cr pbest t x t     (2) 

(3) Each particle updates velocity with its previous velocity and lbest:  

( 1) ( ) ( ( ) ( ))d d d d

k k k kv t v t cr lbest t x t     (3) 

where ( 1)d

kv t   is the velocity in the thd  dimension of the thk  particle at the ( 1)tht   iteration, ( )d

kx t  

is the location in the thd  dimension of the thk  particle at the ( )tht  iteration, ( )d

klbest t  is the pbest of 
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the better particle from two random particles except the particle itself, r is a randomly distributed 

number, c is a coefficient which is usually set to be 1.49,   is the inertia weight. 

It should be noted that at the early phase of iterations, the importance of exploration and 

exploitation is high and the importance of convergence is increasing along with iterations. So it’s 

useful to classify these three learning models into two types, that is, type 1 with (1) for converging and 

type 2 with (2–3) for exploring and exploiting. The probability of using type 2 to update velocity 

begins with the maximum and decreases along with iterations. The probability of choosing type 1 is 

exactly opposite. In every generation, decide whether to select type 1 or type 2 by comparing selection 

ratio p1 with a random number uniformly distributed from 0 to 1. If type 2 is selected, in the same way, 

selection ratio p2, also compared with a random number uniformly distributed from 0 to 1, is used to 

decide whether to select a particle’s own pbest or lbest. p1 is updated along with iterations and p2  

is a constant: 

1 max max min

max

( ) ( )
t

p t p p p
t

    (4) 

where pmax and pmin are the maximum and minimum of p1 which are usually set to be 0.85 and 0.3.  

p2 is a probability constant set to be 0.8. 

3.3. Particle Re-Initialization Strategy 

For PSO, if a particle cannot find a better solution to update its pbest in several consecutive 

iterations, it may accomplish adequate search around pbest and be trapped into the local minimum [18]; 

If the gbest has not been updated in several consecutive iterations, it also may accomplish adequate 

search around gbest and there is no better solution than gbest around all particles’ pbest. It is  

time-consuming and inefficient in the two situations, and avoiding them as far as possible can enhance 

searching ability. Based on it, particles in the above two situations can reinitialize their locations and 

velocities like particle initialization at the beginning of iterations, thus particles are able to search new 

parts of the solution space. 

However, it is difficult to effectively implement this idea. This is because it is scarcely possible to 

exactly know when particles are in the two situations. So the two activating thresholds (T1, T2) , which 

both are positive integer numbers, denote maximum permissible times for particle not finding any 

better solution to update pbest and for particle swarm not updating gbest, respectively. In details, if a 

particle’s pbest has not been updated over T1 iterations, the location and velocity will be reinitialized, 

randomly assigned with values in the solution space and speed range, respectively. If the gbest of the 

particle swarm has not been updated over T2 iterations, both two particles of the particle pair with 

worst pbest in the particle swarm will also be reinitialized with random locations and velocities. 

Revived particles will never be affected by their past parameters and search for better solution in the 

new locations. It is worthwhile to note that T1, T2 should be assigned with suitable numbers, too large 

thresholds cannot enhance the search ability effectively, too small thresholds will mistakenly 

reinitialize many particles which are not in the above two situations. 

Above all, PPM, velocity updating scheme and particle re-initialization strategy are proposed to 

improve the performance of PSO for high dimensional global optimization problem. The complete 
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flowchart of the EMPSO is shown in Figure 3. After dividing particle swarm to several particle pairs 

and initializing all the parameters, each particle adaptively selects one of the three velocity updating 

models to update velocity and location. Next, check whether the particle needs re-initialization. Repeat 

these steps until the iteration meets maximum. 

Figure 3. The flowchart of EMPSO. 
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4. Optimization Results of Six Benchmark Functions  

To investigate how EMPSO performs in different types of problems and compare it with SLPSO 

and EPUS-PSO, several benchmark functions including traditional functions and shifted function are 

chosen [18]. 

4.1. Benchmark Functions  

All benchmark functions used in this paper are shown as follows: 

 Griewank function: 

2

1 1 1

100
( ) 1 4000 ( 100) cos( ) 1

nn i
ii i

x
f x x

i 


      (5) 
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 Rastrigin function: 

2

2 1
( ) ( 10cos2 10)

n

i ii
f x x x


    (6) 

 Rosenbrock function: 

2 2

3 11
( ) (100( ) ( 1) )

n

i i ii
f x x x x

     (7) 

 Schwefel function: 

4 1
( ) 418.9829 sin( )

n

i ii
f x n x x


    (8) 

 Schwefel_2_21 function: 

5 1( ) maxi if x x  (9) 

 Shifted Schwefel_1_2 function: 

2

6 1 1
( ) ( ) ,

n i

ji j
f x z z x o

 
     (10) 

 1 2 ... no o o o : the shifted global optimum. 

Different functions own different search range, these functions’ search range and global optimum 

are listed in Table 1. 

Table 1. Search range and global optimum. 

Function Number Search Range Global Optimum 

1f   600,600  0 

2f   5.12,5.12  0 

3f   2.048,2.048  0 

4f   500,500  0 

5f   100,100  0 

6f   100,100  0 

The fitness value of the six benchmark functions means the function value of the best particle in 

PSO algorithm. The fitness value changes with algorithm iteration. The final optimization result of an 

algorithm is the fitness value of the last iteration. 

4.2. Parameter Settings and Initialization of the Three Algorithms  

The experiments compared three variants of PSO, including EMPSO, SLPSO and EPUS-PSO on 

six benchmark functions with 100 dimensions (100-D). All the PSO variants were implemented with 

MATLAB R2011b. The inertia weight and acceleration coefficients of each peer algorithm are 

presented in Table 2, which is exactly the same as that used in the original paper. The pairs of the 

swarm size and maximum iterations for solving 100 dimension problems are set to (40, 300,000). For 

EMPSO, T1, T2 are set with 20 and 25. 
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Table 2. Parameters’ settings of three variants of PSO. 

Algorithm Inertia Weight Acceleration Coefficients 

EMPSO 
0.5

0.9
max_

gen

gen
    1.49c   

SLPSO 
0.5

0.9
max_

gen

gen
    1.96c   

EPUS-PSO 
1

2ln 2
   1 2 0.5 ln 2c c    

4.3. Optimization Results 

Results of the 100-D test functions: the best solutions of the three algorithms on the six benchmark 

functions with 100 dimensions are shown on Table 3, where the best result on each problem among all 

algorithms is shown in bold. With the increasing dimensions of test functions, the optimization will be 

more complicated. Even though the number of particles and maximum of generations are increased, 

the results may not be as good as them in the 30-D test functions, but still quite good. The performance 

of EMPSO is still better than SLPSO and EPUS-PSO, which is partly attributable to the more 

significant effect of the particle pair model and three different velocity updating methods. Figures 4–9 

show the fitness change curves of the optimum solution for these algorithms with six test functions. It 

can be seen that the convergence of EMPSO is still faster than that of SLPSO and EPUS-PSO. 

Table 3. Final results of 100-D test functions. 

Function Number EMPSO SLPSO EPUS-PSO 

f1 2.22 × 10−16
 0.13 2.76 × 10−7 

f2 0 1.14 × 10−13 1.73 × 10−7 

f3 3.86 × 10
−29

 7.12 × 10−26 305.7 

f4 1.09 × 10
−10

 2.02 × 103 2.34 × 104 

f5 3.91 × 10
−22

 2.90 × 10−5 0.06 

f6 4.43 × 10
−26

 6.56 × 10−24 1.83 × 105 

Figure 4. 100-D Griewank function (f1). 
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Figure 5. 100-D Rastrigin function (f2). 

 

Figure 6. 100-D Rosenbrock function (f3). 

 

Figure 7. 100-D Schwefel function (f4). 
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Figure 8. 100-D Schwefel_2_21 function (f5).  

 

Figure 9. 100-D shifted Schwefel_1_2 function (f6). 

 

The optimization results show EMPSO is capable to optimize different types of 100-D problems. In 

this paper, the inversing technique for defect profile estimation is a kind of 100-D problem, so EMPSO 

is introduced to the inversing technique as iterative algorithm. 

5. Inversing Technique Based on EMPSO 

In the new inversing technique based on EMPSO, a radial basis function neural network (RBFNN) 

is selected as the forward model to predict MFL signals from a defect profile which has been proved to 

be feasible to accurately model the forward process [6]. The iterative procedure is achieved by 

EMPSO to minimize a cost function that represents the difference between the predicted signals of the 

neural networks forward model and the measured signals. The cost function is shown: 
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1
( )

M

j jj
F p y


   (11) 

where M is the dimension of the MFL signals,  1 2 ... MP p p p  is the measured MFL signals, 

 1 2 ... MY y y y  is the MFL signals predicted by RBFNN. 

For the new inversing technique, the first step is training RBFNN and initializing the parameters 

and particles’ locations and velocities. Then the values of cost function are calculated after the new 
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locations are transduced into the predicted MFL signals by forward model. All particles’ locations 

(also defect profiles) and velocities are updated. The cost of predicted signals becomes smaller and 

smaller along with the iterations of EMPSO. Finally, when the termination criterion is achieved, the 

predicted MFL signal of the optimum profile will be close to the measured signal. The framework of 

inversing technique based on EMPSO is shown in Figure 10. 

Figure 10. The framework of the new inversing technique. 
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6. Simulation Results and Experimental Results  

In this paper, firstly MFL data [6] simulated by software are used to verify the performance of the 

inversing technique based on EMPSO including 240 2-D defect samples with varying widths and 

depths. 210 defect samples are used to train RBFNN and the remaining 30 are for profile estimation. 

An example of defect samples is shown in Figure 11, where the true profile of the defect (12.7 cm 

width, 1.524 cm deep) is denoted by solid line in Figure 11a and its MFL signal in the presence of 5% 

noise and the one without noise are denoted by dotted line and solid line, respectively, in Figure 11b. 

The size of the sampling point interval is 0.508 cm. RBFNN with 100 input nodes and 100 output 

nodes are used as forward model, spread of radial basis functions is 1 × 10
−12

. 

Figure 11. The profile and MFL signal for the defect (12.7 cm width, 1.524 cm deep).  

(a) The defect profile; (b) The MFL signal. 
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Self-learning PSO (SLPSO) [22] is also applied, which has a superior performance in comparison 

with several other peer algorithms. For comparing the inversing technique based on EMPSO with the 

one based on SLPSO, MFL signal without noise and with 5% noise are used to estimate defect 

profiles. T1, T2 are set to be 20 and 25. Both EMPSO and SLPSO have a population size set at  

80 particles. The inertia weight was decreased linearly from 0.9 to 0.4 over 20,000 iterations and 

50,000 iterations for estimation of MFL signal without noise and with 5% noise, respectively. The 

solution range of 100 dimensions is from −2.159 to 0 cm.  

Figures 12–14 show the estimated defect profiles by processing MFL signal without noise. In 

details, the solid line, dotted line and chain line denote the measured profile, profile estimated by the 

inversing technique based on SLPSO and profile estimated by the one based on EMPSO, respectively. 

The values of cost function of the two estimated profiles and their computing time are shown in Table 4. 

Figure 12. The profiles estimated by the two inversing techniques (MFL signal without 

noise, 14.732 cm width, 1.905 cm depth). 

 

Figure 13. The profiles estimated by the two inversing techniques (MFL signal without 

noise, 16.764 cm width, 1.143 cm depth). 
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Figure 14. The profiles estimated by the two inversing techniques (MFL signal without 

noise, 17.78 cm width, 1.27 cm depth). 

 

Table 4. Values of Cost Function and Computing Time. 

Inversing Methods Profile Shape (cm) Cost Values Computing Time (s) 

 14.732 width, 1.905 depth 3.5724 × 10−10 3.745 × 104 

SLPSO 16.764 width, 1.143 depth 4.4422 × 10−11 4.676 × 104 

 17.78 width, 1.27 depth 2.3556 × 10−11 4.747 × 104 

 14.732 width, 1.905 depth 3.5620 × 10
−10

 2.207 × 10
4
 

EMPSO 16.764 width, 1.143 depth 4.1402 × 10
−11

 3.351 × 10
4
 

 17.78 width, 1.27 depth 1.9449 × 10
−11

 3.214 × 10
4
 

Both estimated profiles are close to the measured profile, but the differences between them are not 

obvious, and it is proved from the values of cost function for the estimated results that the inversing 

technique based on EMPSO outperforms the one based on SLPSO and is less time-consuming. 

Figures 15–17 show the reconstructed defect profiles by processing MFL signal with 5% noise. The 

values of cost function of the two profiles estimated by SLPSO-based inversing technique and 

EMPSO-based inversing technique and their computing time are in Table 5. 

Figure 15. The profiles estimated by the two inversing techniques (MFL signal with 5% 

noise, 14.732 cm width, 1.905 cm depth). 
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Figure 16. The profiles estimated by the two inversing techniques (MFL signal with 5% 

noise, 16.764 cm width, 1.143 cm depth). 

 

Figure 17. The profiles estimated by the two inversing techniques (MFL signal with 5% 

noise, 17.78 cm width, 1.27 cm depth). 

 

Table 5. Values of Cost Function and Computing Time. 

Inversing Methods Profile Shape (cm) Cost Values Computing Time (s) 

 14.732 width, 1.905 depth 7.8196 × 10−5 1.712 × 104 

SLPSO 16.764 width, 1.143 depth 6.1103 × 10−5 2.063 × 104 

 17.78 width, 1.27 depth 5.9973 × 10−5 1.575 × 104 

 14.732 width, 1.905 depth 7.8167 × 10
−5

 1.260 × 10
4
 

EMPSO 16.764 width, 1.143 depth 6.1103 × 10−5 1.516 × 10
4
 

 17.78 width, 1.27 depth 5.9973 × 10−5 1.256 × 10
4
 

Due to the existence of 5% noise in MFL signal, the estimated profiles are further from the true 

profile than the ones estimated from MFL signal without noise. But the results are also near the true 

profiles, and for EMPSO-based inversing technique, the values of cost function are better than the ones 

calculated by SLPSO-based inversing technique. What’s more, the proposed technique also consumes 

less time. 

In order to further verify the performance of the proposed EMPSO-based inversing technique, the 

measured MFL data are used. The schematic of experimental equipment is shown in Figure 18. 
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Figure 18. Schematic of the experimental equipment. 
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The experimental equipment mainly includes a rotating platform, excitation coil, sensors, signal 

conditioning circuit, data acquisition card, receiving terminal (personal computer here) and electric 

machinery. Many defects are distributed on the edge surface of the rotating platform. A magnetizing 

yoke with an excitation coil is used to generate a magnetic field, the magnetic pole of which is 1 mm 

distance from the rotating platform. The Hall sensor probe is located at the center of the two magnetic 

poles of the magnetizing yoke at 0.5 mm distance from the edge surface, aiming to acquire the MFL 

signal. After regulated by the signal conditioning circuit, MFL signals are transmitted to the data 

acquisition card. Finally, the computer receives the MFL signals. In addition, the speed of the rotating 

platform is controlled by electric machinery. 

The type of material of the top surface of the rotating platform is U71Mn. Defects with different 

sizes are distributed on the top surface of the rotating platform, the practical speed of which ranges from 

2 to 50 m/s. The types of Hall-effect sensors and data acquisition card are UGN3503 and ADLINK 

DAQ 2204. As the amplitude of the MFL detecting signal is of a millivolt level and the range of  

data acquisition card is volt level, an AD620 instrumentation amplifier is applied to design an 

amplifying circuit whose amplification factor is 100. In addition, to avoid the detection device from 

magnetizing the rotating platform repeatedly, we lay out the magnetization reversal device opposite to 

the detection device. 

Figure 19 shows the experimental MFL signals gathered by sensors on groove defects. As we can 

see, different from simulated MFL signals, the experiment MFL signals includes noise signals which 

mainly appear when the Hall sensors acquire the signals. Before using the above signal simulated by 

software to estimate real profiles, the measured real MFL signal is periodically sampled and 

normalized to staying the same level with the simulated signal. Here the two inversing techniques 

based on EMPSO and SLPSO are applied to real defect profile estimation.  

The RBFNN trained by 210 defect samples is regarded as the forward model. The estimated defect 

profiles for defect 1 (0.04 cm width, 0.6 cm depth) and defect 2 (0.04 cm width, 0.4 cm depth)  

from the measured real signals are shown in Figures 20 and 21. The computation time and cost 

function values are listed in Table 6. From Tables 4–6, it can be seen that the computation time of the 

EMPSO-based inversing technique is reduced by 20%–30% compared to that of the SLPSO-based 

inversing technique, and the cost value of the former is less than or the same to that of the latter,  
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so the overall performance of the proposed EMPSO-based inversing technique is better than the 

SLPSO-based inversing technique. 

Figure 19. The measured real MFL signal. 

 

Figure 20. Comparison between the real profile and estimated profiles (defect 1). 

 

Figure 21. Comparison between the real profile and estimated profiles (defect 2). 

 

Table 6. Values of cost function and computing time. 

Inversing Methods Experimental Samples Cost Values Computing Time (s) 

SLPSO 
Defect 1 6.3581 × 10−5 1.132 × 104 

Defect 2 4.7932 × 10−5 1.192 × 104 

EMPSO 
Defect 1 5.9781 × 10

−5
 8.740 × 10

3
 

Defect 2 4.3911 × 10
−5

 9.149 × 10
3
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The profiles estimated by the EMPSO-based inversing technique are still closer to the real profiles 

than those of the SLPSO-based inversing technique, and the EMPSO-based inversing technique 

consumes less time. Overall, the profiles estimated from measured real signal aren’t as good as the 

ones estimated from simulated signals which have more errors. The main reason for this could  

be the measurement environment for real MFL signal is more complex. The experiments show the 

EMPSO-based inversing technique is suitable for estimating profiles from real signals. 

7. Conclusions 

The objective of this paper was to propose a new variant of PSO called EMPSO and apply an 

inversing technique based on EMPSO to profile estimation of 2-D defects. Firstly, the optimization 

results of the selected six benchmark functions prove the good performance of EMPSO when handling 

100-D problems. Then the experimental results demonstrate that the inversing technique based on 

EMPSO is capable of estimating 2-D defect profiles and outperforms the inversing technique based on 

SLPSO. With the existence of low noise in MFL signals, the estimated profiles are still close to the 

measured profiles. The results estimated from real MFL signals by the EMPSO-based inversing 

technique also indicate that the algorithm is capable of providing an accurate solution of the defect 

profiles with real signals. The future work will be developed from two aspects, that is applying the 

inversing technique to the estimation of 3-D defect profiles and largely decreasing the computing time 

of the inversing technique. 
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