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Abstract: Wireless sensor networks (WSNs) consist of sensors, gateways and users.
Sensors are widely distributed to monitor various conditions, such as temperature,
sound, speed and pressure but they have limited computational ability and energy. To
reduce the resource use of sensors and enhance the security of WSNs, various user
authentication protocols have been proposed. In 2011, Yeh et al. first proposed a user
authentication protocol based on elliptic curve cryptography (ECC) for WSNs. However,
it turned out that Yeh et al.’s protocol does not provide mutual authentication, perfect
forward secrecy, and key agreement between the user and sensor. Later in 2013,
Shi et al. proposed a new user authentication protocol that improves both security and
efficiency of Yeh et al.’s protocol. However, Shi et al.’s improvement introduces other
security weaknesses. In this paper, we show that Shi et al.’s improved protocol is vulnerable
to session key attack, stolen smart card attack, and sensor energy exhausting attack.
In addition, we propose a new, security-enhanced user authentication protocol using ECC
for WSNs.
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1. Introduction

Wireless sensor networks (WSNs) provide a feasible real-time monitoring system. Wireless sensors
can be easily deployed in various environments such as military surveillance, forest fire detection,
health care and wildlife monitoring. WSNs basically consist of users, sensors and gateways whose
communication security is a significant concern in real-world applications [1]. Users and gateways
have sufficient resources to be used in the system, but sensors are different. Sensors have limited
computational ability, low battery, low bandwidth, and a small amount of memory. Therefore, in WSNs,
it is important to reduce the use of sensors to extend their lifespans [2–4].

Various user authentication protocols have been proposed for securing WSNs while minimizing the
use of sensors. In 2004, Watro et al. proposed a user authentication protocol employing the RSA and
Diffie-Hellman algorithms [5]. In 2006, Wong et al. proposed an efficient dynamic user authentication
protocol using a hash function [6]. However, Tseng et al. demonstrated that Wong et al.’s authentication
protocol is vulnerable to stolen-verifier attack, replay attack and forgery attack [7,8]. Later in 2009,
Das proposed a two-factor user authentication protocol using smart cards. Das showed how to design an
authentication protocol where only the user who is in possession of both the smart card and the password
can pass the verification of the gateway [8]. However, several security-related flaws in Das’s protocol
have been disclosed by later studies as summarized below:

• He et al. demonstrated that Das’s protocol is vulnerable to insider attacks and impersonation
attacks, and that it does not allow users to change their passwords freely. He et al. proposed
an improved two-factor protocol [9] which can resist insider and impersonation attacks.
• Khan and Alghathbar showed that Das’s protocol fails to provide mutual authentication between

the gateway and the sensor, and due to this failure, it is not secure against a gateway bypassing
attack and a privileged-insider attack [10].
• Chen et al. also pointed out that Das’s protocol does not achieve mutual authentication between the

gateway and the sensor, and proposed a robust authentication protocol that provides the property
of mutual authentication [11].

In 2011, Yeh et al. [2] revealed that Chen et al.’s protocol has difficulty in updating users’ passwords
and is vulnerable to an insider attack. As an improvement of Chen et al.’s protocol, Yeh et al. presented
the first user authentication protocol that uses elliptic curve cryptography (ECC) in WSN environments.
However, Han [12] showed that Yeh et al.’s protocol has still some security weaknesses: it does not
provide perfect forward secrecy and fails to achieve mutual authentication and key agreement between
the user and the sensor. To address these problems with Yeh et al.’s protocol, Shi et al. [3] have recently
proposed a new smart-card-based user authentication protocol using ECC for WSNs. Shi et al.’s protocol
performs more efficiently, both in terms of computation and communication costs, and provides better
security than Yeh et al.’s protocol. However, we found that Shi et al.’s improvement is not secure enough
yet and their protocol is susceptible to session key attacks, stolen smart card attacks, and sensor energy
exhausting attacks. In addition to reporting the security weaknesses, we also show how to enhance the
security of Shi et al.’s protocol with no significant increase in communication and computation costs.
We analyze and verify the security of the proposed protocol using non-monotonic cryptographic logic
(Rubin logic).
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Throughout the paper, we make the following assumptions on the capabilities of the probabilistic
polynomial-time adversary A in order to properly capture security requirements of two-factor
authentication protocols using smart cards in wireless sensor networks.

• A has the complete control of all message exchanges between the protocol participants: a user, a
sensor and the gateway. That is, A can eavesdrop, insert, modify, intercept, and delete messages
exchanged among the three parties at will.
• A is able to (1) extract the sensitive information on the smart card of a user through a power

analysis attack [13,14] or (2) find out the user’s password possibly via shoulder-surfing or by
employing a malicious card reader. However, it is assumed that A is unable to compromise both
the two factors: the information on the smart card and the password of the user; it is clear that
there is no way to prevent A from impersonating the user if both factors are compromised.

2. Overview of Elliptic Curves Cryptography

In 1985, Neal Koblitz and Victor S. Miller proposed the use of elliptic curves in cryptography. After
various studies on ECC, it has been widely used since the early 21st century. ECC is a type of public-key
cryptography and based on the algebraic structure of elliptic curves over finite fields. Elliptic curves are
also used in several integer factorization algorithms. ECC provides the important benefit of a smaller
key size, despite which it is able to maintain the same degree of security as other types of public-key
cryptography, such as RSA, DH and DSA. Therefore, ECC is especially useful for wireless devices,
which typically have limited CPU capacity, power and network connectivity. Table 1 shows the NIST
guidelines on choosing key sizes in ECC and other public key cryptography [15].

Table 1. ECC key sizes compared with other PKC schemes.

Security (bits) ECC RSA/DH/DSA MIPS-Years to Attack Protection Lifetime

80 160 1,024 1012 until 2010
112 224 2,048 1024 until 2030
128 256 3,072 1028 beyond 2031
192 384 7,680 1047 beyond 2031
256 512 15,360 1066 beyond 2031

ECC has three related mathematical problems: the Elliptic Curve Discrete Logarithm Problem
(ECDLP), Elliptic Curve Computational Diffie-Hellman Problem (ECCDHP), and Elliptic Curve
Decisional Diffie-Hellman Problem (ECDDHP). No polynomial time algorithm can solve the ECDLP,
ECCDHP and ECDDHP with non-negligible probability.

Let p > 3 be a large prime and choose two field elements a, b ∈ Fp satisfying 4a3 + 27b2 6= 0 mod p

to define the equation of a non-supersingular elliptic curve E: y2 = x3 + ax + b mod p over Fp. Choose
a generator point P = (xP , yP ) whose order is a large prime number q over E(Fp). In the same way, a
subgroup G of the elliptic curve group E(Fp) with order q is constructed. Then, the three mathematical
problems in ECC are defined at various study [16–18] as follows.
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• ECDLP: Given a point element Q in G, find an integer x ∈ Z∗q such that Q = xP , where xP
indicates that the point P is added to itself x times by the elliptic curves operation.
• ECCDHP: For a, b ∈ Z∗q , given two point elements aP , bP in G, compute abP in G.
• ECDDHP: For a, b, c ∈ Z∗q , given three point elements aP , bP and cP in G, decide whether
cP = abP .

3. Review of Shi et al.’s Protocol

In Shi et al.’s protocol [3], the gateway is a trusted node that holds two sufficiently large master
keys, x and y. Before starting the system, the gateway and the sensors share a long-term secret key
SKGS = h(IDSn‖y). Shi et al.’s protocol consists of four phases; user registration phase, login phase,
authentication phase, and password update phase. For convenience, the notations used throughout this
paper are summarized in Table 2.

Table 2. Notations.

Symbol Description

p, q Two large prime numbers
FP A finite field
E An elliptic curve defined on finite field FP with large order
G The group of elliptic curve points on E
IDU The identity of user U
IDSn The identity of sensor Sn
pwU The user U ’s password
GW The gateway of WSN
x, y The master keys of GW
h(·) A secure one-way hash function
‖ A string concatenation operation
⊕ A bitwise XOR operation

3.1. Registration Phase

In this phase, the user U securely submits its identity IDU and password pwU to the gateway GW .
Then, GW issues U a smart card containing the user authentication information, as shown in Figure 1.

3.2. Login and Authentication Phases

In the login and authentication phases, when U enters IDU and pwU into a smart card terminal, the
smart card must validate the legitimacy of U . Then, U , Sn and GW authenticate with each other. This
protocol uses 4 messages (M1, M2, M3, M4) for mutual authentication, as described in Figure 2. Lastly,
U and Sn share the session key sk. After the authentication phase, U and Sn communicate with each
other using the session key sk.
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Figure 1. The registration phase of Shi et al.’s protocol.

User (U) Gateway (GW )

chooses IDU , pwU

generates a random number bU
computes pwU = h(pwU ⊕ bU )

computes KU = h(IDU‖x)× P

BU = h(IDU ⊕ pwU )

WU = h(IDU‖pwU )⊕KU

inputs bU into the smart card

〈IDU , pwU 〉

smart card 〈BU ,WU , h(·)〉

Figure 2. The login and authentication phases of Shi et al.’s protocol.

User (U) Sensor (Sn) Gateway (GW )

pwU = h(pwU ⊕ bU )

B′
U = h(IDU ⊕ pwU )

checks B′
U = BU

KU = h(IDU‖pwU )⊕WU

generates rU ∈ Z∗
q

X = rU × P

X ′ = rU ×KU

α = h(IDU‖X‖X ′‖TU )

checks T ′ − TU ≤ ∆T

generates rS ∈ Z∗
q

Y = rS × P

β = h(SKGS‖IDU‖X‖TU‖α‖IDSn‖Y ‖TS)

checks T ′′ − TU ≤ ∆T

checks T ′′ − TS ≤ ∆T

checks β = h(SKGS‖IDU‖X‖TU‖α‖IDSn‖Y ‖TS)

X ′ = h(IDU‖x)×X

checks α = h(IDU‖X‖X ′‖TU )

γ = h(SKGS‖IDU‖X‖TU‖α‖IDSn‖Y ‖TS‖TG)

δ = h(IDU‖X‖X ′‖TU‖Y ‖TS)

checks T ′′′ − TG ≤ ∆T

checks γ = h(SKGS‖IDU‖X‖TU‖α‖IDSn‖Y ‖TS‖TG)

KSU = rS ×X

τ = h(Y ‖TS‖δ‖KSU)

sk = h(X‖Y ‖KSU)

checks T ′′′′ − TS ≤ ∆T

checks δ = h(IDU‖X‖X ′‖TU‖IDSn‖Y ‖TS)

KUS = rU × Y

checks τ = h(Y ‖TS‖δ‖KUS)

sk = h(X‖Y ‖KUS)

M1 = 〈IDU , X, TU , α〉

M2 = 〈IDU , X, TU , α, IDSn , Y, TS , β〉

M3 = 〈TG, γ, δ〉

M4 = 〈Y, TS, δ, τ〉
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3.3. Password Update Phase

In the password update phase, U enters the identity IDU , the old password pwU , and the new password
pw′U . Then, the smart card updates the password after first checking the correctness of the old password,
as shown in Figure 3.

Figure 3. The password update phase of Shi et al.’s protocol.

User (U)

inserts smart card

enters IDU , pwU , pw
′
U

pwU = h(pwU ⊕ bU )

B′
U = h(IDU ⊕ pwU )

checks B′
U = BU

KU = h(IDU‖pwU )⊕WU

pw′
U = h(pw′

U ⊕ bU )

W ′
U = h(IDU‖pw′

U )⊕KU

BU = h(IDU ⊕ pw′
U )

replaces WU with W ′
U

4. Security Weaknesses in Shi et al.’s Protocol

This section shows that Shi et al.’s protocol is vulnerable to a session key attack, a stolen smart card
attack, and a sensor energy exhausting attack.

4.1. Session Key Attack

In Shi et al.’s protocol, the user U and the sensor Sn have to perform the login and authentication
phases when they want to share a session key which will be used for protecting their subsequent
communication. A problem occurs if U shares its session key with an attacker, not with the intended
sensor Sn. In the protocol, the gateway GW and the user U check each other’s legitimacy using the
authenticators α and δ, respectively. However, α and δ do not include information about the sensor Sn

with which U intends to establish a session key. The attacker exploits this design flaw in mounting a
session key attack. The attack is depicted in Figure 4 and its description follows.

When U inputs IDU and pwU , and sends M1 to sensor Sn, the attacker intercepts M1 and sends it to
sensor SA which was previously stolen by the attacker. Upon receiving M1, the stolen sensor SA will
generate the messageA2 and send it to the gatewayGW . However, the attacker replaces IDSn contained
inA2 with IDA to makeGW believe that IDU wants to communicate with sensor SA, not with Sn. After
receiving A2, the gateway GW generates A3 without noticing any discrepancy and sends it to sensor SA.
Lastly, the attacker sends the user U the message A4 generated by SA using the message A3 from GW .
Because there is no information about the sensor Sn in A4 and M4, the user U undoubtedly shares the
session key with the attacker while thinking that it has shared the key with the sensor Sn.
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Figure 4. A session key attack on Shi et al.’s protocol.

User Sensor Gateway 

Attacker Stolen sensor

(1) 

(2) 

(3) 

(4) 

Session key 

(1) 

(1) 

(2) 

(3) (4) 

4.2. Stolen Smart Card Attack

Kocher et al. and Messerges et al. pointed out that the confidential information stored in smart cards
could be extracted by physically monitoring its power consumption [13,14]. Therefore, it is fair to say
that if a user loses his or her smart card, all information in the smart card may be revealed to the attacker.

In Shi et al.’s protocol, the smart card stores various information for user login and authentication.
The smart card for the user IDU includes bU , BU , WU and h(·). Using these information and IDU , an
attacker can guess U ’s password pwU . If IDU is used in public communication, the attacker can obtain
or steal it without difficulty. Figure 5 describes a stolen smart card attack against Shi et al.’s protocol.

The attacker can obtain information from the smart card using attacks such as simple power analysis
(SPA) and differential power analysis (DPA). This information includes bU , BU , WU and h(·). Recall
that BU = h(IDU ⊕ h(pwU ⊕ bU)). Using BU as a password verifier, the attacker can easily find out
the password pwU by mounting an offline password guessing attack (also known as an offline dictionary
attack) [19–22] if the password pwU is not long enough. After successfully mounting the password
guessing attack, the attacker can login and authenticate with the sensor Sn and the gateway GW using
the identity IDU and the password pwU .
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Figure 5. A stolen smart card attack on Shi et al.’s protocol.

Attacker

gets IDU in public communication channel

gets(steals) user′s smart card

obtains information from smart card using SPA and DPA

→ gets bU , BU ,WU and h(·)

BU = h(IDU ⊕ pwU )

pwU = h(pwU ⊕ bU )

→ BU = h(IDU ⊕ h(pwU ⊕ bU ))

executes off−line password attack

→ figures out user′s password pwU

→ logins to WSNs using IDU and pwU

4.3. Sensor Energy Exhausting Attack

The computational cost of a sensor is a critical consideration in the design of WSNs as it increases
the consumption of the battery power of the sensor. Often it is economically advantageous to discard
a sensor rather than recharge it. For this reason, the battery power of a sensor is usually important
in wireless devices, with its lifetime determining the sensor lifetime. Previous work have suggested
several types of energy exhausting attacks. Buttyan et al. [23] investigated the reliability of transport
protocols for WSNs. Brownfield et al. [24] researched the battery depletion effect through the reduction
of sleep cycles. Khouzani et al. [25,26] investigated malware attacks in battery-constrained wireless
networks. As shown by the previous researches, WSNs need to eliminate unnecessary computational
costs of sensors so that the effects of an energy exhausting attack on sensors can be minimized.

In Shi et al.’s protocol, the sensor performs various cryptographic operations such as one-way
hash function evaluations, scalar-point multiplications, random number generations, and map-to-point
hash function evaluations. Scalar-point multiplications are much more expensive than hash function
evaluations. The computational costs of generating a random number and evaluating a map-to-point
hash function are about half the cost of performing a scalar-point multiplication. A sensor consumes a
large amount of energy to perform a scalar-point multiplication and very little to perform a hash function
evaluation [27–29].

Figure 6 shows the possibility of a sensor energy exhaustion attack. The attacker can keep sending
malicious messages, A1, A2, A3, generated to consume the battery power of the sensor. The attacker
can do so because the sensor only checks the freshness of the timestamp in M1. For each of these fake
messages, the sensor checks the freshness of the timestamp and proceeds to perform the subsequent
cryptographic operations, thereby consuming large amounts of energy. Accordingly, it is necessary to
modify the protocol so that the sensor can check if the message M1 is from a legitimate user, not from
an imposter.
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Figure 6. A sensor energy exhausting attack on Shi et al.’s protocol.

Attacker Sensor 

checks  

…

generates 

After checking only the timestamp , 

the sensor :

· generates a random number

· performs a scalar-point multiplication

· performs a hash function evaluation

5. The Proposed Protocol

Like Shi et al.’s protocol, our proposed protocol is divided into three phases: the user registration
phase, login and authentication phase, and password update phase. Before the protocol is ever executed,
the gateway generates two master keys, x and y, and shares a long-term secret key SKGS = h(IDSn‖y)

with the sensor Sn. In describing the protocol, we use the same notations as in Table 2 unless
stated otherwise.

5.1. Registration Phase

For a user U , this phase is performed only once when U registers itself with the gateway GW .
Figure 7 illustrates how the phase works, and its description follows:

Figure 7. The registration phase.

User (U) Gateway (GW )

chooses IDU , pwU

generates a random number bU
computes pwU = h(pwU ⊕ bU )

computes KU = h(IDU‖x)× P

AU = pwU ⊕ h(x ⊕ y)

BU = h(IDU‖pwU‖h(x⊕ y))

WU = h(IDU‖pwU )⊕KU

inputs bU into the smart card

〈IDU , pwU 〉

smart card 〈AU , BU ,WU , h(·)〉

(1) The user U chooses its identity IDU and password pwU freely, generates a random number bU ,
and computes pwU = h(pwU ⊕ bU). U sends IDU and pwU to GW via a secure channel.

(2) The gateway GW computes:
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KU = h(IDU‖x)× P
AU = pwU ⊕ h(x⊕ y)

BU = h(IDU‖pwU‖h(x⊕ y))

WU = h(IDU‖pwU)⊕KU

Then, GW issues U a smart card loaded with {AU , BU ,WU , h(·)}.
(3) Lastly, U inputs the random number bU into the smart card.

5.2. Login and Authentication Phase

This phase is carried out whenever U wants to gain access to the WSN. During the phase, U
establishes a session key with the sensor Sn while being authenticated by the gateway GW . The phase
proceeds as follows (see also Figure 8):

Step 1. U inserts its smart card into the card reader and inputs its identity IDU and password pwU .
Then, the smart card computes:

pwU = h(pwU ⊕ bU)

B′U = h(IDU‖pwU‖h(x⊕ y))

and checks if BU is equal to B′U . If not equal, the smart card aborts the protocol. Otherwise, it
retrieves the current timestamp TU , chooses a random number rU ∈ Z∗q , and computes:

KU = h(IDU‖pwU)⊕WU

X = rU × P
X ′ = rU ×KU

ω = h(IDU‖h(IDSn‖h(x⊕ y))‖TU)

α = h(IDU‖IDSn‖X‖X ′‖TU‖ω)

After the computations, the smart card sends the message M1 = 〈IDU , IDSn , X, TU , α, ω〉 to the
sensor Sn.

Step 2. Upon receiving M1 from U , the sensor Sn retrieves the current timestamp T ′ and verifies the
freshness of U ’s timestamp TU by checking that:

T ′ − TU ≤ ∆T

where ∆T is the maximum allowed time difference between TU and T ′. If TU is not fresh, Sn

rejects U ’s request and aborts the protocol. Otherwise, Sn checks if ω is equal to the hash value
h(IDU‖h(IDSn‖h(x ⊕ y))‖TU). If they are not equal, Sn aborts the protocol. Otherwise, Sn

generates a random number rS ∈ Z∗q , retrieves the current timestamp TS , and computes:

Y = rS × P
β = h(SKGS‖IDU‖X‖TU‖α‖ω‖IDSn‖Y ‖TS)

Then, Sn sends the message M2 = 〈IDU , X, TU , α, ω, IDSn , Y, TS, β〉 to the gateway GW .
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Figure 8. The login and authentication phase.

User (U) Sensor (Sn) Gateway (GW )

pwU = h(pwU ⊕ bU )

h(x⊕ y) = pwU ⊕AU

B′
U = h(IDU‖pwU‖h(x⊕ y))

checks B′
U = BU

KU = h(IDU‖pwU )⊕WU

generates rU ∈ Z∗
q

retrieves U ′s timestamp TU

X = rU × P

X ′ = rU ×KU

ω = h(IDU‖h(IDSn‖h(x⊕ y))‖TU )

α = h(IDU‖IDSn‖X‖X ′‖TU‖ω)

checks T ′ − TU ≤ ∆T

checks ω = h(IDU‖h(IDSn‖h(x⊕ y))‖TU )

generates rS ∈ Z∗
q

retrieves Sn
′s timestamp TS

Y = rS × P

β = h(SKGS‖IDU‖X‖TU‖α‖ω‖IDSn‖Y ‖TS)

checks T ′′ − TS ≤ ∆T

checks β = h(SKGS‖IDU‖X‖TU‖α‖ω‖IDSn‖Y ‖TS)

X ′ = h(IDU‖x)×X

checks α = h(IDU‖IDSn‖X‖X ′‖TU‖ω)
retrieves GW ′s timestamp TG

γ = h(SKGS‖IDU‖X‖TU‖α‖IDSn‖Y ‖TS‖TG)

δ = h(IDU‖X‖X ′‖TU‖IDSn‖Y ‖TS)

checks T ′′′ − TG ≤ ∆T

checks γ = h(SKGS‖IDU‖X‖TU‖α‖IDSn‖Y ‖TS‖TG)

KSU = rS ×X

retrieves rS
′s new timestamp T ′

S

τ = h(Y ‖T ′
S‖δ‖KSU)

sk = h(X‖Y ‖KSU)

checks T ′′′′ − T ′
S ≤ ∆T

checks δ = h(IDU‖X‖X ′‖TU‖IDSn‖Y ‖TS)

KUS = rU × Y

checks τ = h(Y ‖T ′
S‖δ‖KUS)

sk = h(X‖Y ‖KUS)

M1 = 〈IDU , IDSn , X, TU , α, ω〉

M2 = 〈IDU , X, TU , α, ω, IDSn , Y, TS, β〉

M3 = 〈TG, γ, δ〉

M4 = 〈Y, TS , T
′
S, δ, τ〉
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Step 3. After receiving M2, GW retrieves the current timestamp T ′′ and verifies the freshness of
the timestamp TS by checking that T ′′ − TS ≤ ∆T . If TS is not fresh, GW aborts
the protocol. Otherwise, GW computes X ′ = h(IDU‖x) × X and checks if α equals
h(IDU‖IDSn‖X‖X ′‖TU‖ω) and β equals h(SKGS‖IDU‖X‖TU‖α‖ω‖IDSn‖Y ‖TS). If either
of the checks fails, GW aborts the protocol. Otherwise, GW retrieves the current timestamp TG
and computes:

γ = h(SKGS‖IDU‖X‖TU‖α‖IDSn‖Y ‖TS‖TG)

δ = h(IDU‖X‖X ′‖TU‖IDSn‖Y ‖TS)

Then, GW sends M3 = 〈TG, γ, δ〉 to the sensor Sn.

Step 4. Having received M3, Sn retrieves the current timestamp T ′′′ and checks if T ′′′ − TG ≤ ∆T and
γ = h(SKGS‖IDU‖X‖TU‖α‖IDSn‖Y ‖TS‖TG). Only if both the checks hold, Sn retrieves the
new timestamp T ′S and computes:

KSU = rS ×X
τ = h(Y ‖T ′S‖δ‖KSU)

sk = h(X‖Y ‖KSU)

Then, Sn sends M4 = 〈Y, TS, T ′S, δ, τ〉 to the user U .

Step 5. With M4 in hand, U retrieves the current timestamp T ′′′′, computes KUS = rU × Y , and checks
if (1) T ′′′′−T ′S ≤ ∆T ; (2) δ = h(IDU‖X‖X ′‖TU‖IDSn‖Y ‖TS); and (3) τ = h(Y ‖T ′S‖δ‖KUS).
If any of the checks fail, U aborts the protocol. Otherwise, U computes:

sk = h(X‖Y ‖KUS)

5.3. Password Update Phase

Our protocol allows users to freely update their passwords. The password update phase works as
follows (see also Figure 9):

1. The user U inserts its smart card into a smart card reader and enters the identity IDU , the old
password pwU , and the new password pw′U .

2. The smart card computes pwU = h(pwU ⊕ bU), h(x ⊕ y) = AU ⊕ pwU , and B′U = h(IDU‖
pwU‖h(x⊕y)) and checks if B′ is equal to B. If they are not the same, the password update phase
stops. Otherwise, the smart card computes:

KU = WU ⊕ h(IDU‖pwU)

pw′U = h(pw′U ⊕ bU)

A′U = pw′U ⊕ h(x⊕ y)

B′U = h(IDU‖pw′U‖h(x⊕ y))

W ′
U = h(IDU‖pw′U)⊕KU

and replaces AU , BU and WU with A′U , B′U and W ′
U , respectively.
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Figure 9. The password update phase.
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6. Performance Comparison

Table 3 compares our improved protocol with Yeh et al.’s protocol [2] and Shi et al.’s protocol [3]
in terms of the computational costs required by the protocols. The efficiency comparison is based on
theoretical analysis and experimental results [3,27–29].

Table 3. Efficiency comparison.

Protocol
Computational Cost

User Sensor Gateway

Yeh et al.’s protocol 2M + 1R+ 1A+ 4H 2M + 1R+ 1A+ 1P + 1H 3M + 1R+ 1P + 1H

Shi et al.’s protocol 3M + 5H 2M + 3H 1M + 4H

Our protocol 3M + 7H 2M + 4H 1M + 4H

Notations used in Table 3 are described as follows:

M scalar-point multiplication
R random point generation
A point addition
P map-to-point hash function evaluation
H hash function evaluation

The computational costs of generating a random point and evaluating a map-to-point hash function
are about half the cost of performing a scalar-point multiplication. Hash function evaluations and point
addition operations are often ignored in cost estimates since they are much faster than scalar-point
multiplications. If we ignore hash function evaluations, the computational costs described in Table 3
can be estimated as in Table 4.
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Table 4. Estimated efficiency comparison.

Protocol
Computational Cost

User Sensor Gateway

Yeh et al.’s protocol 2.5M 3M 3M

Shi et al.’s protocol 3M 2M 1M

Our protocol 3M 2M 1M

As shown in Tables 3 and 4, our proposed protocol and Shi et al.’s protocol are more efficient than
Yeh et al.’s protocol, in terms of the computational costs of the sensor and the gateway. In WSNs, it
is important to minimize the energy consumption of the sensor node. In this sense, it is fair to say
that our protocol and Shi et al.’s protocol are better suited for WSNs than Yeh et al.’s protocol. The
performance of our proposed protocol is similar to that of Shi et al.’s protocol. But, as we demonstrated in
Section 4, Shi et al.’s protocol is vulnerable to a session key attack, a stolen smart card attack, and a
sensor energy exhausting attack. Consequently, we can say that our protocol enhances the security of
Shi et al.’s protocol while maintaining the efficiency of the protocol.

7. Security Analysis and Verification

In this section, we first provide a heuristic security analysis for the proposed protocol and then
formally verify the security analysis by using Rubin logic.

7.1. Heuristic Security Analysis

7.1.1. Stolen-Verifier Attack

In WSNs, an attacker may attempt to mount a stolen-verifier attack if the gateway stores a password
verifier [30] and then, impersonate a legal user using the verifier stolen from the gateway. However, in
our protocol, the gateway does not store a password verifier of any kind but stores only the master secret
keys x and y which are used in computing:

SKGS = h(IDSn‖y)

X ′ = h(IDU‖x)×X

7.1.2. Insider Attack

An insider attack occurs when the gateway manager or system administrator can access a user’s secret
(e.g., user password) and then impersonate the user. However, in our protocol, the user U does not send
a plain password to the gateway, but sends only the password-derived hash value pwU = h(pwU ⊕ bU).
Since bU is a sufficiently high-entropy random number, the gateway cannot learn the password pwU from
the hash value pwU . In addition, the gateway does not manage any table for storing user passwords
or their verifiers (e.g., an ID/password table) Therefore, an insider attack is not possible against
our protocol.
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7.1.3. Replay Attack

In our protocol, each of the protocol messages (M1, M2, M3 and M4) accompanies at least one of the
authenticators (α, β, γ, δ, τ and ω) which are generated using a timestamp (TU , TS , T ′S or TG) as part of
the hash input. The protocol participants (U , Sn and GW ) verify the authenticity of incoming messages
by checking the freshness of the timestamps and the legitimacy of the authenticators. But, an attacker
cannot compute any of the authenticators for a fresh timestamp without knowing an appropriate secret.
Therefore, our proposed protocol is secure against replay attacks.

7.1.4. Man-in-the-Middle Attack

It is impossible for an attacker to mount a man-in-the-middle attack against our proposed protocol.
In a typical man-in-the-middle attack, an attacker intercepts the messages being exchanged between the
communicating parties and instead, sends arbitrary messages for its own benefit impersonating one of
them to the other. But, our protocol allow the parties to authenticate all the protocol messages with the
authenticators α, β, γ, δ, τ and ω, and therefore, is secure against man-in-the-middle attacks.

7.1.5. Gateway Impersonation Attack

An attacker cannot impersonate the gateway because it cannot forge the message:

M3 = 〈TG, γ, δ〉

To generate γ or δ, one needs to know either SKGS or h(IDU‖x). However, h(IDU‖x) is the secret
shared only between the user and the gateway while SKGS is the secret shared between the sensor and
the gateway. Therefore, it is impossible for an attacker to mount a gateway impersonation attack.

7.1.6. User Impersonation Attack

It is impossible for an attacker to impersonate the user as it cannot forge the message:

M1 = 〈IDU , IDSn , X, TU , α, ω〉

The attacker should knowX ′ to compute α and should know h(x⊕y) to compute ω. But, the attacker
knows neither X ′ nor h(x⊕ y) and therefore, cannot mount a user impersonation attack.

7.1.7. Sensor Impersonation Attack

An attacker cannot impersonate the sensor because it can forge the messages M2 =

〈IDU , X, TU , α, ω, IDSn , Y, TS, β〉 and M4 = 〈Y, TS, T ′S, δ, τ〉. The attacker cannot compute β without
knowing SKGS and cannot compute δ without knowing the secret h(IDU‖x). But, the attacker knows
neither SKGS nor x and therefore, cannot mount a sensor impersonation attack.
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7.1.8. Mutual Authentication

Mutual authentication is an important security property that an authentication protocol should
achieve [31,32]. Our proposed protocol provides mutual authentication among the three parties: the
user, the sensor and the gateway.

• The gateway authenticates the user using α in M2.
• The gateway authenticates the sensor using β in M2.
• The sensor authenticates the gateway using γ in M3.
• The user authenticates the gateway using δ in M4.
• The user and the sensor authenticate each other via δ from the gateway.

This means that our protocol achieves mutual authentication.

7.1.9. Perfect Forward Secrecy

Perfect forward secrecy means that a session key derived from a set of long-term keys will not be
compromised even if one of the long-term keys is compromised in the future. The proposed protocol
uses the session key sk = h(X‖Y ‖rS ×X) for the sensor and sk = h(X‖Y ‖rU ×Y ) for the user. Even
though h(IDU‖x) and x are compromised, an attacker cannot know rU or rS . Under the assumption
that the ECCDHP problem is hard, the attacker cannot compute rS from rS × X and rU from rU × Y .
Therefore, our protocol provides perfect forward secrecy.

7.1.10. Key Agreement

The proposed protocol provides key agreement between the user and the sensor. To the session-key
computation, the user contributes its random number rU while the sensor contributes its random number
rS . It is straightforward to verify that KSU and KUS are equal:

KSU = rS ×X = rS × rU × P
KUS = rU × Y = rU × rS × P

Since KSU = KUS , it is clear that the user and the sensor compute session keys of the same value:

sk = h(X‖Y ‖KUS)

= h(X‖Y ‖KSU)

7.1.11. Session Key Attack

In our protocol:

• α is combined with two identities IDU and IDSn , which indicates that the user U wants to
communicate with the sensor Sn,
• δ is also combined with IDU and IDSn , which indicates that the gateway has authenticated both

the user IDU and the sensor IDSn .

But, no attacker can compute α and δ, and therefore, can share a session key with the user.
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7.1.12. Stolen Smart Card Attack

In Shi et al.’s protocol, the attacker can obtain bU and BU from the smart card and thus can use
BU = h(IDU ⊕ h(pwU ⊕ bU)) as the password verifier in its offline dictionary attack. However, in our
protocol, BU is computed asBU = h(IDU‖pwU‖h(x⊕y)). Even if the attacker obtains bU andBU from
the smart card, it cannot use BU as a password verifier since it does not know the hash value h(x ⊕ y).
Therefore, no attacker can mount an offline dictionary attack against our protocol.

7.1.13. Sensor Energy Exhausting Attack

In Shi et al.’s protocol, the sensor has to generate a random number and execute a scalar-point
multiplication whenever it receives the message M1 from the user. Random number generations and
scalar-point multiplications are expensive and exhaust a large amount of the sensor’s energy. This makes
Shi et al.’s protocol vulnerable to a sensor energy exhausting attack. However, in our protocol, the sensor
first checks the validity of ω = h(IDU‖h(IDSn‖h(x⊕y))‖TU) before generating a random number and
performing a scalar-point multiplication. Checking the validity of ω only requires one hash function
evaluation. Therefore, our proposed protocol is secure against a sensor energy exhausting attack.

Table 5 summarizes and compares the security of our protocol, Yeh et al.’s protocol, and
Shi et al.’s protocol.

Table 5. Security comparison.

Attack and Security Property Yeh et al.’s Protocol Shi et al.’s Protocol Our Protocol

Stolen-verifier attack Secure Secure Secure
Insider attack Secure Secure Secure
Replay attack Secure Secure Secure
Man-in-the-middle attack Secure Secure Secure
Gateway impersonation attack Secure Secure Secure
User impersonation attack Secure Secure Secure
Sensor impersonation attack Insecure Secure Secure
Mutual authentication No Yes Yes
Perfect forward secrecy No Yes Yes
Key agreement between user and sensor No Yes Yes
Session key attack Insecure Insecure Secure
Stolen smart card attack Insecure Insecure Secure
Sensor energy exhausting attack Insecure Insecure Secure

7.2. Rubin Logic Verification

We analyze the proposed protocol using Rubin logic which can be applicable in analyzing an
authentication protocol. Rubin logic integrates protocol analysis with specification and uses the notions
of global sets, local sets, and actions. As the protocol run is progressed, the possession and belief sets
(specified by local sets) are modified for each principal by inference rules (specified by global sets) and
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actions [33,34]. As the possession and belief sets are modified, secret set and observers sets (specified
by global sets) are modified as well.

Global Sets. The first step of the specification of any protocol using Rubin logic is to instantiate the
global sets with values. Global sets are public to each principal in a protocol specification.

• Principal Set: This set contains the principals who participate in a protocol.
• Rule Set: This set contains inference rules for deriving new statements from existing assertions.
• Secret Set: This set contains all of the secrets that exist at any given time in the system.
• Observers Sets: For each secret, its set contains all the principals who could possibly know

the secret by listening to network traffic or generating it themselves.

Local Sets. Local sets are private to each principal in a protocol specification [35]. For each principal,
Pi, Rubin logic defines the following sets:

• Possession Set(Pi): This set contains all the data relevant to security that this principal
knows or possesses. We denote this set by POSS(Pi) = (poss1, poss2, · · · , possn).
• Belief Set(Pi): This set contains all the beliefs hold by a principal. For example, the

keys it holds between itself and other principals, beliefs about jurisdiction, beliefs about
freshness, and beliefs about the possessions of other principals. We denote this set by
BEL(Pi) = (bel1, bel2, · · · , beln).
• Behavior List(Pi): This item is a list rather than a set because the elements are ordered.

BL(Pi) = Behavior List of Pi.

Actions. Rubin logic defines actions for dealing with the knowledge in a protocol [36]. The action lists
that precede and follow message operations in a principal’s behavior list determine a sequence of
events performed by the principal during a protocol run. We use the following actions:

• Generate-nonce(N)

• Send(Pi, X)

• Receive(Pi, X)

• Update(X)

• Forget(X)

• Concat(X1, X2, · · · , Xn)

• XOR(X1, X2, · · · , Xn)

• Check(X1, X2, · · · , Xn)

• Scalar-multiplication(X1, X2, · · · , Xn)

• Hash(h(·);X1, X2, · · · , Xn)

• Check-freshness(T )

Here, Concat(X1, X2, · · · , Xn) is the action that concatenates the submessages X1, X2, · · · , Xn.

7.2.1. Protocol Specification

Notations used for the protocol specification is the same as those in Table 2. Phases 1, 2 and 3
represent the registration phase, the login and authentication phase, and the password updated phase.
The global and local sets for the protocol are specified as follows:
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Global Sets. The global sets are specified as follows:

• Principal set: A principal is one of U , Sn and GW . U is the protocol initiator.
• Rule set:

– X contains Y : Y appears as a submessage of X .
– S :=← f(S): S is replaced by the value f(S).
– X from E: X is received from E.
– LINK(N ): LINK is used to link responses to challenges. When a principal generates

a nonce, N , the formula LINK(N ) is added to the belief set of the principal.

• Secret Set: {pwU , bU , x, y, h(x⊕y), SKGS}
• Observers Sets:

– Observers(pwU) : {U}
– Observers(bU) : {U}
– Observers(x) : {GW}
– Observers(y) : {GW}
– Observers(h(x⊕ y)) : {Sn, GW}
– Observers(SKGS) : {Sn, GW}

Local Sets. : The local sets are defined for each U , Sn and GW . Tables 6–8 show the specification of
the local sets for U , Sn and GW , respectively.

Table 6. Local sets specification for principal U .

Principal U

POSS(U ) = {pwU , bU , {IDU}} (U16) Update(IDU , IDSn
, X , TU , α, ω)

BEL(U ) = {](pwU ), ](bU )} (U17) Receive(Sn, {Y , TS , δ, τ})
BL(U ) (U18) Check-freshness(T ′

S)
Phase 1 (U19) Check

(U1) pwU ← Hash(h(·); XOR(pwU , bU )) (δ, Hash(h(·); Contat(IDU ,X ,X ′,TU ,IDSn
,Y ,TS)))

(U2) Send(GW , {IDU , pwU}) (U20) KUS ← Scalar-multiplication(rU , Y )
(U3) Update(IDU , pwU ) (U21) Check(τ , Hash(h(·); Contat(Y , T ′

S , δ, KUS)))
(U4) Receive(GW , {AU , BU , WU , h(·)}) (U22) sk← Hash(h(·); Contat(X , Y , KUS))

Phase 2 Phase 3
(U5) pwU ← Hash(h(·); XOR(pwU , bU )) (U23) pwU ← Hash(h(·); XOR(pwU , bU ))
(U6) h(x⊕y)← XOR(pwU , AU ) (U24) B′

U ← Hash(h(·); Concat(IDU , pwU , h(x⊕y))
(U7) B′

U ← Hash(h(·); Concat(IDU , pwU , h(x⊕y))) (U25) Check(B′
U , BU )

(U8) Check(B′
U , BU ) (U26) KU ← XOR(Hash(h(·); Concat(IDU , pwU )), WU )

(U9) KU ← XOR(Hash(h(·); Concat(IDU , pwU )), WU ) (U27) h(x⊕y)← XOR(pwU , AU )
(U10) Generate-nonce(rU ) (U28) pw′

U← Hash(h(·); XOR(pw′
U , AU ))

(U11) X ← Scalar-multiplication(rU , P ) (U29) A′
U ← XOR(pwU , h(x⊕y))

(U12) X ′ ← Scalar-multiplication(rU , KU ) (U30) B′
U ← Hash(h(·); Concat(IDU , pw′

U , h(x⊕y)))
(U13) ω← (U31) W ′

U ← XOR(Hash(h(·); Concat(IDU , pw′
U )), KU )

Hash(h(·); Concat(IDU , Hash(h(·);IDSn
, h(x⊕y)), TU )) (U32) AU ← A′

U

(U14) α← Hash(h(·); Concat(IDU ,IDSn ,X ,X ′,TU ,ω)) (U33) BU ← B′
U

(U15) Send(Sn, {IDU , IDSn
, X , TU , α, ω}) (U34) WU ←W ′

U
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Table 7. Local sets specification for principal Sn.

Principal Sn

POSS(Sn) = {SKGS , h(x⊕y), {IDSn}} (SN7)
BEL(Sn) = {](SKGS), ](h(x⊕y))} Send(GW , {IDU , X , TU , α, ω, IDSn

, Y , TS , β})
BL(Sn) (SN8) Update(IDU , X , TU , α, ω, IDSn

, Y , TS , β)
Phase 2 (SN9) Receive(GW , {TG, γ, δ})

(SN1) Receive(U , {IDU , IDSn
, X , TU , α, ω}) (SN10) Check-freshness(TG)

(SN2) Check-freshness(TU ) (SN11) Check
(SN3) Check (γ,Hash(h(·);Concat(SKGS ,IDU ,X ,TU ,α,IDSn ,Y ,TS ,TG)))
(ω, Hash(h(·);Concat(IDU ,Hash(h(·);IDSn

,h(x⊕y)),TU ))) (SN12) KSU ← Scalar-multiplication(rS , X)
(SN4) Generate-nonce(rS) (SN13) τ ← Hash(h(·); Concat(Y , T ′

S , δ, KSU ))
(SN5) Y ← Scalar-multiplication(rS , P ) (SN14) sk← Hash(h(·); Contat(X , Y , KSU ))
(SN6) β ← Hash (SN15) Send(U , {Y , TS , T ′

S , δ, τ})
(h(·); Concat(SKGS , IDU , X , TU , α, ω, IDSn

, Y , TS)) (SN16) Update(Y , TS , T ′
S , δ, τ )

Table 8. Local sets specification for principal GW .

Principal GW

POSS(GW ) = {x, y, h(x⊕y), SKGS} Phase 2
BEL(GW ) = {](x), ](y), ](h(x⊕y)), ](SKGS)} (GW9) Receive(Sn, {IDU , X , TU , α, ω, IDSn

, Y , TS , β})
BL(GW ) (GW10) Check-freshness(TS)

Phase 1 (GW11) Check
(GW1) Received(U , {IDU , pwU}) (β, Hash(h(·);Concat(SKGS ,IDU ,X ,TU ,α,ω,IDSn

,Y ,TS)))
(GW2) KU ← (GW12)
Scalar-multiplication(Hash(h(·); Concat(IDU , x)), P ) X ′ ← Scalar-multiplication(Hash(h(·); Concat(IDU , x)), X)
(GW3) AU ← XOR(pwU , h(x⊕y)) (GW13)
(GW4) BU ← Hash(h(·); Concat(IDU , pwU , h(x⊕y))) Check(α, Hash(h(·); Concat(IDU , IDSn , X , X ′, TU , ω)))
(GW5) (GW14) γ ←
WU ← XOR(Hash(h(·); Concat(IDU , pwU )), KU ) Hash(h(·); Concat(SKGS ,IDU ,X ,TU ,α,IDSn

,Y ,TS ,TG))
(GW6) Send(U , {AU , BU , WU , h(·)}) (GW15) δ← Hash(h(·);Contat(IDU ,X ,X ′,TU ,IDSn ,Y ,TS))
(GW7) Update(AU , BU , WU , h(·)) (GW16) Send(Sn, {TG, γ, δ})
(GW8) Forget(IDU , pwU , AU , BU , KU , WU ) (GW17) Update(TG, γ, δ)

7.2.2. Analysis and Verification

In phase 1, U initiates the protocol, and then the actions in BL(U ) are performed. Firstly, (U1)–(U3)
actions in BL(U ) are performed, which represent that U sends IDU and pwU to GW for registration.
Next, (GW1)–(GW8) actions in BL(GW ) are performed to generate AU , BU , KU and WU , and to send
them to U . By (GW8), GW deletes IDU , pwU , AU , BU , KU and WU from POSS(GW ) and BEL(GW ).
Lastly, the (U4) action in BL(U ) is executed, then phase 1 is finished. Due to the (GW8) forget action, the
local sets ofGW are not changed. However, the local sets of principal U are changed as described below.

• POSS(U) = {pwU , bU , pwU , {IDU}, {AU , BU ,WU , h(·)} from GW}
• BEL(U) = {](pwU), ](bU), ](pwU)}

Accordingly, the global sets are modified as follows:
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• Secret set: {pwU , bU , pwU , x, y, SKGS, h(x⊕ y)}
• Observers sets:

– Observers(pwU ): {U}

In the (U5)–(U8) actions in BL(U ) of phase 2, the smart card authenticates U , who inputs IDU and
pwU , by checking whether BU and B′U are same or not. Next, the (U9)–(U15) actions are executed to
generate the protocol values X , X ′, h(x⊕ y), ω, α and rU . After the (U16) update action, the local sets
of U are changed as follows:

• POSS(U) = {IDSn , pwU , bU , pwU , X,X
′, h(x⊕ y), TU , α, ω, rU , {IDU}}

• BEL(U) = {](pwU), ](bU), ](rU), ](pwU), ](X ′), ](h(x⊕ y)), ](TU),LINK(rU)}

Then, the global sets are modified as follows:

• Secret set: {pwU , bU , pwU , x, y,X
′, SKGS, h(x⊕ y)}

• Observers sets:

– Observers(X ′) : {U}
– Observers(h(x⊕ y)) : {U}

After the (U5)–(U16) actions are finished, Sn starts the actions in BL(Sn) with the incoming message
M1 from U . The (SN1)–(SN3) actions in BL(Sn) are performed to verify the correctness of message
M1. If the check succeeds, the (SN4)–(SN8) actions are performed to make the values Y , β and rS , and
to send the message M2. The local sets of Sn are changed as follows.

• POSS(Sn) = {Y, TS, rS, β, SKGS, h(x⊕ y), {IDSn}, {IDU , X, TU , α, ω} from U}
• BEL(Sn) = {](rS), ](SKGS), ](h(x⊕ y)), ](TS),LINK(rS)}

In this case, the global sets remain unchanged and thus, the secret set is the same as above:

• Secret set: {pwU , bU , pwU , x, y,X
′, SKGS, h(x⊕ y)}

After (SN1)–(SN8) actions of BL(Sn) are finished, (GW9)–(GW17) actions of BL(GW ) are executed.
(GW9)–(GW13) actions check the timestamp of Sn, and then verify the legitimacy of U and Sn. If they
are correct, (GW14)–(GW17) actions of BL(Sn) are executed to make values(γ, δ) for authentication
and send message. γ is used for authentication with Sn and δ is used for authentication with U .

After the (SN1)–(SN8) actions are done, the (GW9)–(GW13) actions in BL(GW ) are performed
to check the legitimacy of U and Sn. If the verification succeeds, the (GW14)–(GW17) actions are
performed to generate γ and δ and to send the message M3 to Sn. The local sets of GW are modified as
shown below.

• POSS(GW ) = {TG, γ, δ, x, y,X ′, SKGS, h(x⊕ y), {IDU , X, TU , α, ω, IDSn , Y, TS, β} from Sn}
• BEL(GW ) = {](x), ](y), ](X ′), ](SKGS), ](h(x⊕ y)), ](TG)}

The global sets are updated as follows:

• Secret set: {pwU , bU , pwU , x, y,X
′, SKGS, h(x⊕ y)}
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• Observers sets:

– Observers(X ′) = {GW}

After the (GW9)–(GW17) actions are finished, the (SN9)-(SN11) actions in BL(Sn) are conducted to
verify the legitimacy of GW and U via the authenticator γ. If the verification process is completed, the
(SN12)–(SN16) actions are performed to generate τ and sk from rS , KSU , X and Y , and to send the
message M4 to U . The local sets of Sn is updated as follows:

• POSS(Sn) = {Y, T ′S, KSU , rS, τ, sk, SKGS, {IDSn}, {TG, γ, δ} from GW}
• BEL(Sn) = {](KSU), ](sk), ](SKGS), ](T ′S),LINK (rS)}

Accordingly, the global sets are modified as follows:

• Secret set: {pwU , bU , pwU , x, y,KSU , sk,X
′, SKGS, h(x⊕ y)}

• Observers sets:

– Observers(KSU) = {Sn}
– Observers(sk) = {Sn}

The (U17)–(U19) actions in BL(U ) are to check the legitimacy ofGW and Sn while the (U20)–(U22)
actions are to generate the session key sk from rU , KUS , X and Y . So, the conditions for the linkage
rule are satisfied.

• POSS(U) = {KUS, sk, {IDU}, {Y, T ′S, δ, τ} from Sn}
• BEL(U) = {](KUS), ](X ′), ](sk), ](h(x⊕ y)}

• Secret set: {pwU , bU , pwU , x, y,KSU , KUS, sk,X
′, SKGS, (x⊕ y)}

• Observers sets:

– Observers(KUS) = {U}
– Observers(sk) = {U}

In phase 3, U changes its password and updates AU , BU and WU stored in the smart card. In this
phase, the local sets of U and the global sets remain unchanged.

The following shows the final version of the global sets.

• Secret set: {pwU , bU , pwU , x, y,KSU , KUS, sk,X
′, SKGS, h(x⊕ y)}

• Observers sets:

– Observers(pwU) : {U}
– Observers(bU) : {U}
– Observers(pwU) : {U}
– Observers(x) : {GW}
– Observers(y) : {GW}
– Observers(KSU) : {Sn}
– Observers(KUS) : {U}
– Observers(sk) : {U, Sn}
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– Observers(X ′) : {U,GW}
– Observers(SKGS) : {Sn, GW}
– Observers(h(x⊕ y)) : {U, Sn, GW}

This result implies that:

• pwU , bU and pwU are known only to the user U .
• x and y are known only to the gateway GW .
• The long-term key SKGS shared between Sn and GW is not exposed.
• X ′ is only known to U and GW .
• KUS and KSU are only available to U and Sn.
• The session key sk is securely shared between U and Sn.
• h(x⊕ y) is only known to the authorized principals: U , Sn and GW .
• U , Sn and GW are mutually authenticated during the protocol execution.

This verifies the security claims we made in the previous subsection.

8. Conclusions

In this paper, we have identified that Shi et al.’s ECC-based authentication protocol designed for
wireless sensor networks (WSNs) is vulnerable to: a session key attack, a stolen smart card attack, and a
sensor energy exhausting attack. We have also proposed a new authentication protocol that addresses the
identified security weaknesses. Our proposed protocol is as efficient as Shi et al.’s protocol and is better
suited for WSNs than Yeh et al.’s protocol, the predecessor of Shi et al.’s protocol. As for the security
of the proposed protocol, we have provided a heuristic analysis and formally verified the analysis using
Rubin logic.
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